JP2007088270A - Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element - Google Patents

Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element Download PDF

Info

Publication number
JP2007088270A
JP2007088270A JP2005276201A JP2005276201A JP2007088270A JP 2007088270 A JP2007088270 A JP 2007088270A JP 2005276201 A JP2005276201 A JP 2005276201A JP 2005276201 A JP2005276201 A JP 2005276201A JP 2007088270 A JP2007088270 A JP 2007088270A
Authority
JP
Japan
Prior art keywords
layer
light emitting
well
semiconductor light
electron blocking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005276201A
Other languages
Japanese (ja)
Inventor
Nobuyuki Takakura
信之 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005276201A priority Critical patent/JP2007088270A/en
Publication of JP2007088270A publication Critical patent/JP2007088270A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form a light emitting layer with a multiple quantum well of InGaN (well layer)/AlInGaN (barrier layer), in which a quantum well is deep and which can accumulate multiple electrons, and to install an electron stopper layer 15 corresponding to the well in a semiconductor light emitting element where an n-type nitride semiconductor layer, the light emitting layer (active layer) and a p-type nitride semiconductor layer are sequentially laminated on a substrate. <P>SOLUTION: Barrier layers 14d, 14e, 14f and 14g of the light emitting layer 14 are formed of an Al<SB>0.3</SB>In<SB>0.12</SB>Ga<SB>0.58</SB>N layer, well layers 14a, 14b and 14c are formed of a In<SB>0.15</SB>Ga<SB>0.85</SB>N layer, and an electron blocking layer 15 is formed of an Al<SB>0.4</SB>In<SB>0.1</SB>Ga<SB>0.5</SB>N layer. The electron block layer 15 can be formed at a temperature which is remarkably lower than a case when it is formed of AlGaN. A deposition temperature is brought close to the well layers 14a, 14b and 14c formed of InGaN, sufficient film quality can be obtained and emission efficiency can be improved much more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体内で電子と正孔とを結合させて発光させる半導体発光素子、およびそれを用いる照明装置ならびにその半導体発光素子の製造方法に関する。   The present invention relates to a semiconductor light emitting element that emits light by combining electrons and holes in a semiconductor, an illumination device using the same, and a method for manufacturing the semiconductor light emitting element.

近年、III−N化合物(以下、ナイトライドと呼ぶ。)を用いて、その中に発光層(活性層)として多重量子井戸を形成し、外部から電流を流して、この多重量子井戸で電子と正孔とを結合させて発光させる半導体固体発光素子の発展が目覚しい。   In recent years, a III-N compound (hereinafter referred to as a nitride) is used to form a multiple quantum well as a light emitting layer (active layer) therein, and an electric current is passed from the outside. The development of semiconductor solid-state light emitting devices that emit light by combining holes is remarkable.

そのような半導体発光素子の代表例として、非特許文献1が挙げられる。その従来技術によれば、紫色から青色で発光する半導体発光素子において、前記発光層の構成を、井戸層をIn0.15Ga0.85N、障壁層をAl0.04In0.15Ga0.81Nとして、深い量子井戸を形成するものの試作が報告されている。この文献による従来例を図3および図4に示す。図3はその従来技術による半導体発光素子の断面図であり、図4は半導体層におけるエネルギーバンド図である。図4では、簡単のために、バンドオフセットは省略してある。この従来技術では、すべての条件が記載されていないために、不明な箇所は推測することとする。 A typical example of such a semiconductor light emitting device is Non-Patent Document 1. According to the prior art, in the semiconductor light emitting device that emits light from purple to blue, the light emitting layer has a structure in which the well layer is In 0.15 Ga 0.85 N and the barrier layer is Al 0.04 In 0.15 Ga. A prototype of a deep quantum well is reported as 0.81 N. Conventional examples according to this document are shown in FIGS. FIG. 3 is a cross-sectional view of the conventional semiconductor light emitting device, and FIG. 4 is an energy band diagram in the semiconductor layer. In FIG. 4, the band offset is omitted for simplicity. In this prior art, since all conditions are not described, an unknown part is estimated.

MOCVDを用いて、サファイア基板1上にバッファ層2を形成し、その後、Siドープした厚み3μmのn型GaN層3を形成し、その上に発光層4、エレクトロン・ブロッキング層5を形成し、その上にp型GaN層6を形成してエピタキシャル層を完成させている。その後は、公知となっている技術を用いて、p型電極7およびn型電極8を形成して該半導体発光素子を完成する。ただし、この従来技術には、電極形成までは記載していないので、従来例の姿として妥当な形を推測により補っている。   Using MOCVD, the buffer layer 2 is formed on the sapphire substrate 1, then the Si-doped n-type GaN layer 3 having a thickness of 3 μm is formed, and the light emitting layer 4 and the electron blocking layer 5 are formed thereon, A p-type GaN layer 6 is formed thereon to complete the epitaxial layer. Thereafter, the p-type electrode 7 and the n-type electrode 8 are formed using a known technique to complete the semiconductor light emitting device. However, since this prior art does not describe the process up to electrode formation, a reasonable form as a figure of the conventional example is supplemented by estimation.

そして、この従来技術では、発光層4は、3つの井戸層4a,4b,4cおよびそれを挟み込む障壁層4d,4e,4f,4gから構成されており、上述のように、井戸層4a,4b,4cはIn0.15Ga0.85N、障壁層4d,4e,4f,4gはAl0.04In0.15Ga0.81Nによって形成されている。また、発光層4からp型GaN層6への電子のリークを防ぐエレクトロン・ブロッキング層5は、AlGaNから形成されている。 In this prior art, the light emitting layer 4 is composed of three well layers 4a, 4b, 4c and barrier layers 4d, 4e, 4f, 4g sandwiching the well layers. As described above, the well layers 4a, 4b 4c are formed of In 0.15 Ga 0.85 N, and the barrier layers 4d, 4e, 4f, and 4g are formed of Al 0.04 In 0.15 Ga 0.81 N. The electron blocking layer 5 that prevents leakage of electrons from the light emitting layer 4 to the p-type GaN layer 6 is made of AlGaN.

このように発光層4をInGaN/AlInGaNで形成することで、InGaNの井戸層4a,4b,4cの室温でのバンドギャップは2.7〜3.0eV、AlInGaNの障壁層4d,4e,4f,4gの室温でのバンドギャップは3.4〜3.5eVと、従来のInGaN/GaNの発光層よりも深い量子井戸を形成し(GaNのバンドギャップは3.4eV)、電子を多く蓄積して発光量を向上させている。
M.Shatalov etal, Appl. Phys. Lett. 78, 817 (2001)
Thus, by forming the light emitting layer 4 from InGaN / AlInGaN, the InGaN well layers 4a, 4b, 4c have a band gap of 2.7 to 3.0 eV at room temperature, and AlInGaN barrier layers 4d, 4e, 4f, The band gap of 4 g at room temperature is 3.4 to 3.5 eV, which forms a quantum well deeper than the conventional InGaN / GaN light emitting layer (GaN band gap is 3.4 eV), and accumulates many electrons. The amount of luminescence is improved.
M. Shatalov etal, Appl. Phys. Lett. 78, 817 (2001)

しかしながら、上述の従来技術では、電子移動度が大きいことに起因するp型GaN層6への電子のリークを防止するために設けるエレクトロン・ブロッキング層5として、AlInGaNの障壁層4d,4e,4f,4gより大きなバンドギャップが必要であり、明確には言明されてはいないが、同文献では、AlGaNを用いていると考えられる(AlGaNのバンドギャップは3.8eV)。これは、同文献のp817の右下から11行目に、”without top p-GaN and the AlGaN electron-blocking layers.”との技術があるからである。   However, in the above-described prior art, as the electron blocking layer 5 provided to prevent leakage of electrons to the p-type GaN layer 6 due to high electron mobility, AlInGaN barrier layers 4d, 4e, 4f, Although a band gap larger than 4 g is necessary and not clearly stated, it is considered that AlGaN is used in this document (the band gap of AlGaN is 3.8 eV). This is because there is a technique “without top p-GaN and the AlGaN electron-blocking layers” in the eleventh line from the lower right of p817 of the same document.

しかしながら、同文献のp817の左下から12行目にあるように、AlGaNはInGaNを井戸層に用いる限り、InGaNの解離を防止するために、750〜850℃で形成しなければならず、これがヘテロ接合の品質を落とし、発光効率を劣化させるという問題がある。すなわち、AlInGaNに比べてAlが多いAlGaNでは、好ましい成膜温度が1000℃以上と高く、それでAlInGaNのバンドギャップ、たとえば前記3.5eVに対して大きな、たとえば3.8eVのバンドギャップを得ることができるのに対して、上記のように成膜温度を低下すると、バンドギャップは、たとえば3.6eV程度しか得ることができなくなってしまう。   However, as shown in the twelfth line from the lower left of p817 of the same document, AlGaN must be formed at 750 to 850 ° C. in order to prevent dissociation of InGaN as long as InGaN is used for the well layer. There is a problem that the quality of the junction is lowered and the luminous efficiency is deteriorated. That is, in AlGaN having a larger amount of Al than AlInGaN, a preferable film forming temperature is as high as 1000 ° C. or higher, and thus a band gap of AlInGaN, for example, a band gap of 3.8 eV, which is larger than 3.5 eV, can be obtained. On the other hand, if the film formation temperature is lowered as described above, the band gap can be obtained only about 3.6 eV, for example.

本発明の目的は、InGaN/AlInGaNの利点を活かしながら、膜質の良いエレクトロン・ブロッキング層を有する半導体発光素子およびそれを用いる照明装置ならびに半導体発光素子の製造方法を提供することである。   An object of the present invention is to provide a semiconductor light emitting element having an electron blocking layer with good film quality, an illumination device using the semiconductor light emitting element, and a method for manufacturing the semiconductor light emitting element while taking advantage of InGaN / AlInGaN.

本発明の半導体発光素子は、基板上に少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層して成る半導体発光素子において、前記発光層とp型窒化物半導体層との間にエレクトロン・ブロッキング層を備え、多重量子井戸構造から成る前記発光層の井戸層がInGaN、障壁層および前記エレクトロン・ブロッキング層がAlInGaNから成り、前記障壁層のバンドギャップはGaNのバンドギャップよりも大きく、かつ前記エレクトロン・ブロッキング層のバンドギャップは前記障壁層のバンドギャップよりも大きいことを特徴とする。   The semiconductor light-emitting device of the present invention is a semiconductor light-emitting device in which at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer are sequentially stacked on a substrate, wherein the light-emitting layer, the p-type nitride semiconductor layer, An electron blocking layer is provided, and the well layer of the light emitting layer having a multiple quantum well structure is made of InGaN, the barrier layer and the electron blocking layer are made of AlInGaN, and the band gap of the barrier layer is more than the band gap of GaN. And the band gap of the electron blocking layer is larger than the band gap of the barrier layer.

また、本発明の半導体発光素子の製造方法は、基板上に少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層して成る半導体発光素子の製造方法において、1000±z1℃で前記基板上にn型窒化物半導体層を形成する工程と、温度を低下し、800±z2℃で、多重量子井戸構造から成る前記発光層の障壁層をAlInGaNで形成し、800±z3℃の温度で、井戸層をInGaNで形成する工程を前記障壁層と井戸層との組数回繰返す工程と、前記800±z2℃の温度で、エレクトロン・ブロッキング層をAlInGaNで形成する工程と、温度を上昇し、前記1000±z1℃で前記p型窒化物半導体層を形成する工程とを含むことを特徴とする。   According to another aspect of the present invention, there is provided a method for manufacturing a semiconductor light-emitting device, wherein the semiconductor light-emitting device is formed by sequentially stacking at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer on a substrate. A step of forming an n-type nitride semiconductor layer on the substrate at ℃, and the temperature is lowered, and at 800 ± z2 ℃, the barrier layer of the light emitting layer having a multiple quantum well structure is formed of AlInGaN, and 800 ± z3 A step of forming a well layer with InGaN at a temperature of ° C., a step of repeating the combination of the barrier layer and the well layer several times, a step of forming an electron blocking layer with AlInGaN at a temperature of 800 ± z 2 ° C., and And raising the temperature to form the p-type nitride semiconductor layer at 1000 ± z1 ° C.

上記の構成によれば、基板上に少なくともn型窒化物半導体層、発光層(活性層)およびp型窒化物半導体層を順次積層して成る半導体発光素子において、前記発光層とp型窒化物半導体層との間に、電子のp型窒化物半導体層への流入を阻止することで発光効率を高めるためのエレクトロン・ブロッキング層を設け、多重量子井戸構造(MQW)から成る発光層の井戸層をInx1Ga(1−x1)N(0<x1<1)で形成し、発光層の障壁層をAly2Inx2Ga(1−x2−y2)N(0<x2<1,0<y2<1)の4元元素で形成し、同様に前記エレクトロン・ブロッキング層をAly3Inx3Ga(1−x3−y3)N(0<x3<1,0<y3<1)の4元元素で形成する。そして、前記障壁層のバンドギャップはGaNのバンドギャップよりも大きく、かつ前記エレクトロン・ブロッキング層のバンドギャップは前記障壁層のバンドギャップよりも大きい。 According to the above configuration, in the semiconductor light emitting device in which at least the n-type nitride semiconductor layer, the light emitting layer (active layer), and the p type nitride semiconductor layer are sequentially stacked on the substrate, the light emitting layer and the p type nitride are provided. An electron blocking layer is provided between the semiconductor layer and an electron blocking layer for preventing light from flowing into the p-type nitride semiconductor layer to increase light emission efficiency, and the well layer of the light emitting layer having a multiple quantum well structure (MQW) Are formed of In x1 Ga (1-x1) N (0 <x1 <1), and the barrier layer of the light emitting layer is Al y2 In x2 Ga (1-x2-y2) N (0 <x2 <1, 0 <y2 <1) and the electron blocking layer is formed of a quaternary element of Al y3 In x3 Ga (1-x3-y3) N (0 <x3 <1, 0 <y3 <1). Form. The band gap of the barrier layer is larger than the band gap of GaN, and the band gap of the electron blocking layer is larger than the band gap of the barrier layer.

そして、そのようなバンドギャップを実現するにあたって、AlInGaNのAlの量でバンドギャップを調整でき(Alを多くすることでバンドギャップを大きくできる)、またGaNよりもInGaNの方が低温でAlを加えることができる。   And in realizing such a band gap, the band gap can be adjusted by the amount of Al in AlInGaN (the band gap can be increased by increasing the amount of Al), and InGaN adds Al at a lower temperature than GaN. be able to.

したがって、エレクトロン・ブロッキング層は、AlGaNに近い高さのバンドギャップを有し、発光層からp層への電子のリークを防止して注入効率を高めることができる。また、前記エレクトロン・ブロッキング層はAlGaNより格段に低温で形成することができ、InGaNから成る井戸層と成膜温度を近付け、界面や層内部に欠陥もしくは不純物準位の少ない膜質の良いエレクトロン・ブロッキング層を形成することができ、更なる発光効率の向上を実現することができる。すなわち、量子井戸が深く、多くの電子を蓄積できるというInGaN/AlInGaN発光層(活性層)の利点を活かしながら、膜質の良いエレクトロン・ブロッキング層を提供して、発光効率の更なる向上を実現できる。   Therefore, the electron blocking layer has a band gap as high as AlGaN, and can prevent the leakage of electrons from the light emitting layer to the p layer, thereby increasing the injection efficiency. Further, the electron blocking layer can be formed at a temperature much lower than that of AlGaN, and the film forming temperature is brought close to the well layer made of InGaN, and the electron blocking layer having a good film quality with few defects or impurity levels at the interface or inside the layer. A layer can be formed, and further improvement in luminous efficiency can be realized. In other words, while taking advantage of the InGaN / AlInGaN light-emitting layer (active layer), which has a deep quantum well and can store many electrons, it provides an electron blocking layer with good film quality and can realize further improvement in light emission efficiency. .

さらにまた、本発明の半導体発光素子は、前記井戸層がInx1Ga(1−x1)N(0<x1<1)から成り、前記障壁層がAly2Inx2Ga(1−x2−y2)N(0<x2<1,0<y2<1)から成り、前記エレクトロン・ブロッキング層がAly3Inx3Ga(1−x3−y3)N(0<x3<1,0<y3<1)から成り、x1=0.15、x2=0.12、y2=0.3、x3=0.1、y3=0.4であることを特徴とする。 Furthermore, in the semiconductor light emitting device of the present invention, the well layer is made of In x1 Ga (1-x1) N (0 <x1 <1), and the barrier layer is Al y2 In x2 Ga (1-x2-y2). N (0 <x2 <1, 0 <y2 <1), and the electron blocking layer is made of Al y3 In x3 Ga (1-x3-y3) N (0 <x3 <1, 0 <y3 <1) X1 = 0.15, x2 = 0.12, y2 = 0.3, x3 = 0.1, y3 = 0.4.

上記の構成によれば、量子井戸を深くして大きな注入電流を得ることができ、かつエレクトロン・ブロッキング層のバンドギャップも大きくしてリーク電流を抑えることができるとともに、成膜温度を800℃前後の比較的近い値に設定することができ、良好な膜質を得ることもできる。   According to the above configuration, the quantum well can be deepened to obtain a large injection current, and the band gap of the electron blocking layer can be increased to suppress the leakage current, and the film forming temperature is set to about 800 ° C. Can be set relatively close to each other, and good film quality can be obtained.

また、本発明の半導体発光素子は、前記発光層による中心発光波長が、380nm以上、470nm以下であることを特徴とする。   The semiconductor light emitting device of the present invention is characterized in that a central emission wavelength by the light emitting layer is 380 nm or more and 470 nm or less.

上記の構成によれば、上記の波長域はInGaN/AlInGaNの発光層(活性層)の発光効率が高い波長域であり、その波長域内で、所望とするバンドギャップを得ることができる組成とすることが望ましい。   According to said structure, said wavelength range is a wavelength range with high luminous efficiency of the light emitting layer (active layer) of InGaN / AlInGaN, and it is set as the composition which can obtain the desired band gap within the wavelength range. It is desirable.

さらにまた、本発明の照明装置は、前記の半導体発光素子を用いることを特徴とする。   Furthermore, the lighting device of the present invention is characterized by using the semiconductor light emitting element.

上記の構成によれば、照明装置では、蛍光体を調整することで所望の演色性を得ることができ、効率のよい励起光が要求されるので、上述のような発光効率の高い半導体発光素子を用いることは、特に照明装置に好適である。   According to the above configuration, the lighting device can obtain a desired color rendering property by adjusting the phosphor, and efficient excitation light is required. Therefore, the semiconductor light emitting device having high luminous efficiency as described above. It is particularly suitable for the lighting device.

本発明の半導体発光素子およびその製造方法は、以上のように、基板上に少なくともn型窒化物半導体層、発光層(活性層)およびp型窒化物半導体層を順次積層して成る半導体発光素子において、前記発光層とp型窒化物半導体層との間に、電子のp型窒化物半導体層への流入を阻止することで発光効率を高めるためのエレクトロン・ブロッキング層を設け、多重量子井戸構造(MQW)から成る発光層の井戸層をInGaNで形成し、発光層の障壁層をAlInGaNの4元元素で形成し、同様に前記エレクトロン・ブロッキング層をAlInGaNの4元元素で形成する。   As described above, the semiconductor light-emitting device and the method for manufacturing the same according to the present invention are obtained by sequentially laminating at least an n-type nitride semiconductor layer, a light-emitting layer (active layer), and a p-type nitride semiconductor layer on a substrate. An electron blocking layer is provided between the light emitting layer and the p-type nitride semiconductor layer to increase the light emission efficiency by preventing electrons from flowing into the p-type nitride semiconductor layer. The well layer of the light emitting layer made of (MQW) is formed of InGaN, the barrier layer of the light emitting layer is formed of a quaternary element of AlInGaN, and similarly the electron blocking layer is formed of a quaternary element of AlInGaN.

それゆえ、エレクトロン・ブロッキング層は、AlGaNに近い高さのバンドギャップを有し、発光層からp層への電子のリークを防止して注入効率を高めることができる。また、前記エレクトロン・ブロッキング層はAlGaNより格段に低温で形成することができ、InGaNから成る井戸層と成膜温度を近付け、界面や層内部に欠陥もしくは不純物準位の少ない膜質の良いエレクトロン・ブロッキング層を形成することができ、更なる発光効率の向上を実現することができる。   Therefore, the electron blocking layer has a band gap with a height close to that of AlGaN, and can prevent the leakage of electrons from the light emitting layer to the p layer and increase the injection efficiency. Further, the electron blocking layer can be formed at a temperature much lower than that of AlGaN, and the film forming temperature is brought close to the well layer made of InGaN, and the electron blocking layer having a good film quality with few defects or impurity levels at the interface or inside the layer. A layer can be formed, and further improvement in luminous efficiency can be realized.

さらにまた、本発明の照明装置は、以上のように、前記の半導体発光素子を用いる。   Furthermore, the illumination device of the present invention uses the semiconductor light emitting element as described above.

それゆえ、効率のよい励起光が要求される照明装置に、上述の半導体発光素子を用いることは、特に好適である。   Therefore, it is particularly preferable to use the above-described semiconductor light-emitting element in an illumination device that requires efficient excitation light.

図1は、本発明の実施の一形態に係る半導体発光素子の断面図である。本発明の半導体発光素子の基本構造は、前述の図3で示す半導体発光素子と同様であり、以下にその構造を説明する。サファイア基板11上には、バッファ層12、n型GaN層13、発光層14、エレクトロン・ブロッキング層15およびp型GaN層16が順に積層され、エピタキシャル層が完成される。その後、p型電極17およびn型電極18が形成される。前記発光層14は、3つの井戸層14a,14b,14cおよびそれを挟み込む障壁層14d,14e,14f,14gから構成されている。   FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. The basic structure of the semiconductor light emitting device of the present invention is the same as that of the semiconductor light emitting device shown in FIG. 3, and the structure will be described below. On the sapphire substrate 11, a buffer layer 12, an n-type GaN layer 13, a light emitting layer 14, an electron blocking layer 15 and a p-type GaN layer 16 are sequentially laminated to complete an epitaxial layer. Thereafter, the p-type electrode 17 and the n-type electrode 18 are formed. The light emitting layer 14 includes three well layers 14a, 14b, and 14c and barrier layers 14d, 14e, 14f, and 14g sandwiching the well layers.

注目すべきは、本発明では、前記エレクトロン・ブロッキング層15の組成が図3で示す半導体発光素子と異なり、その成膜温度も異なることである。具体的には、井戸層14a,14b,14cはInGaNから成り、障壁層14d,14e,14f,14gはAlInGaNから成り、エレクトロン・ブロッキング層15が、障壁層14d,14e,14f,14gと同様のAlInGaNから成ることである。たとえば、前記井戸層14a,14b,14cはIn0.15Ga0.85Nから成り、障壁層14d,14e,14f,14gはAl0.3In0.12Ga0.58Nから成り、エレクトロン・ブロッキング層15はAl0.4In0.1Ga0.5Nから成る。これは、障壁層14d,14e,14f,14gとエレクトロン・ブロッキング層15とにおいて、所望のバンドギャップを実現するにあたって、それらをAlInGaNで作成すると、Alの量でバンドギャップを調整でき(Alを多くすることでバンドギャップを大きくできる)、またGaNよりもInGaNの方が低温でAlを加えることができるためである。 It should be noted that in the present invention, the composition of the electron blocking layer 15 is different from that of the semiconductor light emitting device shown in FIG. Specifically, the well layers 14a, 14b, and 14c are made of InGaN, the barrier layers 14d, 14e, 14f, and 14g are made of AlInGaN, and the electron blocking layer 15 is the same as the barrier layers 14d, 14e, 14f, and 14g. It consists of AlInGaN. For example, the well layers 14a, 14b, and 14c are made of In 0.15 Ga 0.85 N, and the barrier layers 14d, 14e, 14f, and 14g are made of Al 0.3 In 0.12 Ga 0.58 N, and electrons The blocking layer 15 is made of Al 0.4 In 0.1 Ga 0.5 N. In the barrier layers 14d, 14e, 14f, and 14g and the electron blocking layer 15, when the desired band gap is realized, if they are made of AlInGaN, the band gap can be adjusted by the amount of Al (a large amount of Al By doing so, the band gap can be increased), and InGaN can add Al at a lower temperature than GaN.

以下に、上述のように構成される半導体発光素子の結晶成長方法を説明する。成長に用いるガスは、キャリアガスとして、水素ガス(H)、窒素ガス(N)、成長に係わるガスとして、アンモニア(NH)、トリメチルガリウム(Ga(CH)、トリメチルアルミニウム(Al(CH)、トリメチルインジウム、(In(CH)、シラン(SiH)、シクロペンタジエニルマグネシウム(Mg(C)である。 Below, the crystal growth method of the semiconductor light-emitting device comprised as mentioned above is demonstrated. The gases used for the growth are hydrogen gas (H 2 ), nitrogen gas (N 2 ) as carrier gases, and ammonia (NH 3 ), trimethyl gallium (Ga (CH 3 ) 3 ), and trimethyl aluminum (G) as growth gases. Al (CH 3 ) 3 ), trimethylindium, (In (CH 3 ) 3 ), silane (SiH 4 ), and cyclopentadienyl magnesium (Mg (C 5 H 5 ) 2 ).

先ず、サファイア基板11を有機および酸溶液にて洗浄を行う。そして、MOCVD装置を用いて、76Torrの減圧雰囲気下で、550℃で30nmのGaNバッファ層12を形成し、その後、1000±z1℃、たとえばz1=+20の1020℃に昇温して、Siをドープしながらn型GaN層13を3μm堆積する。これらの技術はすでに周知の事柄であり、詳細は省略する。   First, the sapphire substrate 11 is cleaned with an organic and acid solution. Then, using a MOCVD apparatus, a GaN buffer layer 12 having a thickness of 30 nm is formed at 550 ° C. in a reduced pressure atmosphere of 76 Torr. Thereafter, the temperature is increased to 1000 ± z1 ° C., for example, 1020 ° C. of z1 = + 20. While doping, an n-type GaN layer 13 is deposited by 3 μm. These techniques are already well known and will not be described in detail.

その後、温度を800±z2℃、たとえばz2=+40の840℃に降温し、材料ガスとして、アンモニア、トリメチルガリウム、トリメチルインジウムおよびトリメチルアルミニウムを、それぞれインジウムの組成比が12%、アルミニウムの組成比が30%、ガリウムの組成比が58%になるように流量比を選んで流し、発光層14内の1番目の障壁層14dとなる前記Al0.3In0.12Ga0.58N層を厚さ約5nm形成する。続いて、温度を800±z3℃、たとえばz3=−50の750℃に降温し、障壁層形成の場合と同様に、それぞれのガス流量比を選んで、インジウムの組成比が15%、ガリウムの組成比が85%になる条件で、発光層14内の1番目の井戸層14aとなる前記In0.15Ga0.85N層を厚さ約3nm形成する。以下同様に、2番目の障壁層14eおよび井戸層14b、3番目の障壁層14fおよび井戸層14c、ならびに4番目の障壁層14gを形成する。 Thereafter, the temperature is lowered to 800 ± z2 ° C., for example, 840 ° C. where z2 = + 40, and ammonia, trimethylgallium, trimethylindium, and trimethylaluminum are used as material gases, respectively, with an indium composition ratio of 12% and an aluminum composition ratio of The Al 0.3 In 0.12 Ga 0.58 N layer serving as the first barrier layer 14d in the light emitting layer 14 is flowed by selecting a flow ratio so that the composition ratio of gallium is 30% and 58%. A thickness of about 5 nm is formed. Subsequently, the temperature is lowered to 800 ± z3 ° C., for example, 750 ° C. where z3 = −50, and in the same manner as in the barrier layer formation, each gas flow rate ratio is selected, the composition ratio of indium is 15%, Under the condition that the composition ratio is 85%, the In 0.15 Ga 0.85 N layer to be the first well layer 14a in the light emitting layer 14 is formed to a thickness of about 3 nm. Similarly, the second barrier layer 14e and the well layer 14b, the third barrier layer 14f and the well layer 14c, and the fourth barrier layer 14g are formed.

この後に、障壁層14gの温度800±z2℃の840℃に保ったまま、アンモニア、トリメチルガリウム、トリメチルインジウムおよびトリメチルアルミニウムのそれぞれのガス流量比を変えて、インジウムの組成比が10%、アルミニウムの組成比が40%、ガリウムの組成比が50%になるようにし、前記エレクトロン・ブロッキング層15となる前記Al0.4In0.1Ga0.5N層を厚さ約20nm形成する。 Thereafter, the gas flow ratio of ammonia, trimethylgallium, trimethylindium and trimethylaluminum is changed while maintaining the temperature of the barrier layer 14g at 840 ° C., which is 800 ± z 2 ° C., and the composition ratio of indium is 10%. The Al 0.4 In 0.1 Ga 0.5 N layer to be the electron blocking layer 15 is formed to a thickness of about 20 nm so that the composition ratio is 40% and the gallium composition ratio is 50%.

その後は、前記1000±z1℃の1020℃に昇温して、Mgをドープしながら、p型GaN層16を形成してエピウェハの作成を終了し、p型電極17およびn型電極18を形成するのであるが、これも従来から周知の手法であるので、詳細は省略する。こうして、本発明の半導体発光素子が完成する。   Thereafter, the temperature is raised to 1020 ° C., which is 1000 ± z1 ° C., the p-type GaN layer 16 is formed while doping Mg, and the creation of the epi-wafer is completed, and the p-type electrode 17 and the n-type electrode 18 are formed. However, since this is also a conventionally well-known method, details are omitted. Thus, the semiconductor light emitting device of the present invention is completed.

図2は、上述のように作成された本発明の半導体発光素子の半導体層におけるエネルギーバンド図である。簡単のため、バンドオフセットは省略している。n型GaN層13およびp型GaN層16のバンドギャップは、室温で3.4eVである。前記発光層14の内、障壁層14d,14e,14f,14gは前記Al0.3In0.12Ga0.58N層から成り、バンドギャップは室温で3.5eVと、GaN層13,16より高い障壁を実現しており、したがって量子井戸の深さは従来例のInGaN/GaNよりも深く、キャリアの蓄積量も多くできる。 FIG. 2 is an energy band diagram in the semiconductor layer of the semiconductor light emitting device of the present invention prepared as described above. For simplicity, the band offset is omitted. The band gaps of the n-type GaN layer 13 and the p-type GaN layer 16 are 3.4 eV at room temperature. Among the light emitting layers 14, the barrier layers 14d, 14e, 14f, and 14g are composed of the Al 0.3 In 0.12 Ga 0.58 N layer, and the band gap is 3.5 eV at room temperature. Therefore, the quantum well is deeper than the conventional InGaN / GaN and the amount of accumulated carriers can be increased.

一方、井戸層14a,14b,14cは前記In0.15Ga0.85N層から成り、室温でのバンドギャップは3.0eVで、該井戸層14a,14b,14cで発光再結合により発光される光の波長は、410nmの紫色である。エレクトロン・ブロッキング層15は、前記Al0.4In0.1Ga0.5N層から成り、室温でのバンドギャップは3.8eVと障壁層14d,14e,14f,14gよりも高く、電子のp型GaN層16へのリークを止めるには充分な高さである。 On the other hand, the well layers 14a, 14b, and 14c are composed of the In 0.15 Ga 0.85 N layer, and the band gap at room temperature is 3.0 eV. The well layers 14a, 14b, and 14c emit light by light emission recombination. The wavelength of light is 410 nm purple. The electron blocking layer 15 is made of the Al 0.4 In 0.1 Ga 0.5 N layer, and has a band gap at room temperature of 3.8 eV, which is higher than the barrier layers 14d, 14e, 14f, and 14g. The height is high enough to stop leakage to the p-type GaN layer 16.

ここで、従来例のAlGaNで同様な高さのバンドギャップを有するエレクトロン・ブロッキング層5を形成するためには、Al組成14%、Ga組成86%のAl0.14Ga086Nを1100℃で堆積する必要があり、発光層4の解離を防ぐためには、前述したように、この最適なAl0.14Ga086N形成条件よりかなり低温で形成しなければならない。(750〜850℃)。 Here, in order to form the electron blocking layer 5 having the same band gap with AlGaN of the conventional example, Al 0.14 Ga 086 N having an Al composition of 14% and a Ga composition of 86% is formed at 1100 ° C. In order to prevent dissociation of the light emitting layer 4, it must be formed at a temperature considerably lower than the optimum Al 0.14 Ga 086 N forming condition as described above. (750-850 degreeC).

したがって、本発明のエレクトロン・ブロッキング層15は、格段に低温で形成でき、発光層14の膜質も該エレクトロン・ブロッキング層15の膜質も共に高品質に保ちながら、素子の形成が可能なことが理解される。このようにして、量子井戸が深く、多くの電子を蓄積できるというInGaN/AlInGaNの発光層14の利点を活かしながら、膜質の良いエレクトロン・ブロッキング層15を提供して、発光効率の更なる向上を実現できる。   Therefore, it is understood that the electron blocking layer 15 of the present invention can be formed at a remarkably low temperature, and the device can be formed while maintaining both the film quality of the light emitting layer 14 and the film quality of the electron blocking layer 15 at a high quality. Is done. In this way, the electron blocking layer 15 with good film quality is provided and the luminous efficiency is further improved while taking advantage of the light emitting layer 14 of InGaN / AlInGaN that has a deep quantum well and can accumulate many electrons. realizable.

また、AlとInとの2つのパラメータx,yを調整することで、前記発光層14の中心発光波長およびバンドギャップを容易に変化させることができ、前記中心発光波長を380nm以上、470nm以下とすることで、InGaN/AlInGaNから成る発光層14の発光効率を高くすることができる。   Further, by adjusting the two parameters x and y of Al and In, the center emission wavelength and the band gap of the light emitting layer 14 can be easily changed, and the center emission wavelength is set to 380 nm or more and 470 nm or less. As a result, the light emission efficiency of the light emitting layer 14 made of InGaN / AlInGaN can be increased.

さらにまた、半導体発光素子を用いる照明装置では、蛍光体を調整することで所望の演色性を得ることができ、効率のよい励起光が要求されるので、上述のような発光効率の高い半導体発光素子を用いることは、特に照明装置に好適である。   Furthermore, in a lighting device using a semiconductor light emitting element, a desired color rendering property can be obtained by adjusting a phosphor, and efficient excitation light is required. The use of the element is particularly suitable for a lighting device.

本発明の実施の一形態に係る半導体発光素子の断面図である。1 is a cross-sectional view of a semiconductor light emitting element according to an embodiment of the present invention. 本発明の半導体発光素子によるエネルギーバンド図である。It is an energy band figure by the semiconductor light-emitting device of this invention. 従来技術の半導体発光素子の断面図である。It is sectional drawing of the semiconductor light-emitting device of a prior art. 従来技術の半導体発光素子によるエネルギーバンド図である。It is an energy band figure by the semiconductor light emitting element of a prior art.

符号の説明Explanation of symbols

11 サファイア基板
12 バッファ層
13 n型GaN層
14 発光層
14a,14b,14c 井戸層
14d,14e,14f,14g 障壁層
15 エレクトロン・ブロッキング層
16 p型GaN層
17 p型電極
18 n型電極
11 Sapphire substrate 12 Buffer layer 13 n-type GaN layer 14 Light-emitting layers 14a, 14b, 14c Well layers 14d, 14e, 14f, 14g Barrier layer 15 Electron blocking layer 16 p-type GaN layer 17 p-type electrode 18 n-type electrode

Claims (5)

基板上に少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層して成る半導体発光素子において、
前記発光層とp型窒化物半導体層との間にエレクトロン・ブロッキング層を備え、
多重量子井戸構造から成る前記発光層の井戸層がInGaN、障壁層および前記エレクトロン・ブロッキング層がAlInGaNから成り、前記障壁層のバンドギャップはGaNのバンドギャップよりも大きく、かつ前記エレクトロン・ブロッキング層のバンドギャップは前記障壁層のバンドギャップよりも大きいことを特徴とする半導体発光素子。
In a semiconductor light-emitting device comprising at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer sequentially stacked on a substrate,
An electron blocking layer is provided between the light emitting layer and the p-type nitride semiconductor layer,
The well layer of the light emitting layer having a multiple quantum well structure is made of InGaN, the barrier layer and the electron blocking layer are made of AlInGaN, the band gap of the barrier layer is larger than the band gap of GaN, and the electron blocking layer A semiconductor light emitting device, wherein a band gap is larger than a band gap of the barrier layer.
前記井戸層がInx1Ga(1−x1)N(0<x1<1)から成り、前記障壁層がAly2Inx2Ga(1−x2−y2)N(0<x2<1,0<y2<1)から成り、前記エレクトロン・ブロッキング層がAly3Inx3Ga(1−x3−y3)N(0<x3<1,0<y3<1)から成り、x1=0.15、x2=0.12、y2=0.3、x3=0.1、y3=0.4であることを特徴とする請求項1記載の半導体発光素子。 The well layer is made of In x1 Ga (1-x1) N (0 <x1 <1), and the barrier layer is Al y2 In x2 Ga (1-x2-y2) N (0 <x2 <1, 0 <y2). <1), and the electron blocking layer is made of Al y3 In x3 Ga (1-x3-y3) N (0 <x3 <1, 0 <y3 <1), x1 = 0.15, x2 = 0 12. The semiconductor light emitting device according to claim 1, wherein y2 = 0.3, x3 = 0.1, and y3 = 0.4. 前記発光層による中心発光波長が、380nm以上、470nm以下であることを特徴とする請求項1記載の半導体発光素子。   2. The semiconductor light emitting element according to claim 1, wherein a central emission wavelength by the light emitting layer is 380 nm or more and 470 nm or less. 前記請求項2または3記載の半導体発光素子を用いることを特徴とする照明装置。   An illumination device using the semiconductor light emitting element according to claim 2. 基板上に少なくともn型窒化物半導体層、発光層およびp型窒化物半導体層を順次積層して成る半導体発光素子の製造方法において、
1000±z1℃で前記基板上にn型窒化物半導体層を形成する工程と、
温度を低下し、800±z2℃で、多重量子井戸構造から成る前記発光層の障壁層をAlInGaNで形成し、800±z3℃の温度で、井戸層をInGaNで形成する工程を前記障壁層と井戸層との組数回繰返す工程と、
前記800±z2℃の温度で、エレクトロン・ブロッキング層をAlInGaNで形成する工程と、
温度を上昇し、前記1000±z1℃で前記p型窒化物半導体層を形成する工程とを含むことを特徴とする半導体発光素子の製造方法。
In a method for manufacturing a semiconductor light-emitting element, in which at least an n-type nitride semiconductor layer, a light-emitting layer, and a p-type nitride semiconductor layer are sequentially stacked on a substrate.
Forming an n-type nitride semiconductor layer on the substrate at 1000 ± z1 ° C .;
The step of forming the barrier layer of the light emitting layer having a multiple quantum well structure with AlInGaN at a temperature of 800 ± z 2 ° C. at a temperature of 800 ± z 2 ° C. and forming the well layer with InGaN at a temperature of 800 ± z 3 ° C. A step of repeating the set with the well layer several times;
Forming an electron blocking layer of AlInGaN at a temperature of 800 ± z2 ° C .;
And raising the temperature to form the p-type nitride semiconductor layer at 1000 ± z1 ° C.
JP2005276201A 2005-09-22 2005-09-22 Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element Pending JP2007088270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276201A JP2007088270A (en) 2005-09-22 2005-09-22 Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276201A JP2007088270A (en) 2005-09-22 2005-09-22 Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JP2007088270A true JP2007088270A (en) 2007-04-05

Family

ID=37974947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276201A Pending JP2007088270A (en) 2005-09-22 2005-09-22 Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JP2007088270A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023722A1 (en) * 2007-08-14 2009-02-19 Nitek, Inc. Micro-pixel ultraviolet light emitting diode
KR101012515B1 (en) * 2007-08-20 2011-02-08 렌슬러 폴리테크닉 인스티튜트 Nitride semiconductor light emitting device
KR101018088B1 (en) 2008-11-07 2011-02-25 삼성엘이디 주식회사 Nitride Semiconductor Device
JP2011044596A (en) * 2009-08-21 2011-03-03 Sharp Corp Nitride semiconductor element, method of manufacturing the same, and semiconductor device
KR101025971B1 (en) 2008-12-10 2011-03-30 삼성엘이디 주식회사 Nitride semiconductor light emitting device
CN101997268A (en) * 2009-08-21 2011-03-30 夏普株式会社 Nitride semiconductor wafer, nitride semiconductor chip, method of manufacture thereof, and semiconductor device
JP2011077371A (en) * 2009-09-30 2011-04-14 Sharp Corp Nitride semiconductor element, nitride semiconductor wafer, and method of manufacture of nitride semiconductor element
EP2325899A1 (en) * 2008-08-29 2011-05-25 Kabushiki Kaisha Toshiba Semiconductor device
JP2011119374A (en) * 2009-12-02 2011-06-16 Sharp Corp Nitride semiconductor element and method of manufacturing the same, and semiconductor device
US8344413B2 (en) 2009-05-29 2013-01-01 Sharp Kabushiki Kaisha Nitride semiconductor wafer, nitride semiconductor chip, and method of manufacture of nitride semiconductor chip
JP2013026616A (en) * 2011-07-25 2013-02-04 Lg Innotek Co Ltd Light-emitting device
CN103035790A (en) * 2012-12-13 2013-04-10 华灿光电股份有限公司 Light emitting diode epitaxial wafer and preparation method thereof
CN103117342A (en) * 2011-11-17 2013-05-22 广东量晶光电科技有限公司 Light-emitting diode (LED) lighting structure
WO2013147552A1 (en) * 2012-03-29 2013-10-03 Seoul Opto Device Co., Ltd. Near uv light emitting device
US8664688B2 (en) 2009-03-27 2014-03-04 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting chip, method of manufacture thereof, and semiconductor optical device
KR20140026891A (en) * 2012-08-23 2014-03-06 엘지이노텍 주식회사 Light emitting device, light emitting device package, and lighting system
WO2014123092A1 (en) * 2013-02-05 2014-08-14 株式会社トクヤマ Nitride semiconductor light-emitting element
KR101617312B1 (en) * 2011-01-26 2016-05-02 에피스타 코포레이션 A light-emitting device
US9502607B2 (en) 2012-05-30 2016-11-22 Osram Opto Semiconductors Gmbh Method for producing an active zone for an optoelectronic semiconductor chip and optoelectronic semiconductor chip
WO2017071400A1 (en) * 2015-10-28 2017-05-04 厦门市三安光电科技有限公司 Light emitting diode and manufacturing method therefor
KR101778159B1 (en) * 2011-02-01 2017-09-26 엘지이노텍 주식회사 Light Emitting device and Light Emitting device Package
US10879421B2 (en) 2016-02-09 2020-12-29 Lumeova, Inc. Ultra-wideband, free space optical communication apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076519A (en) * 2000-08-30 2002-03-15 Fujitsu Ltd Semiconductor laser
JP2003008059A (en) * 2001-06-22 2003-01-10 Sharp Corp Nitride-family semiconductor light-emitting element
WO2005020396A1 (en) * 2003-08-26 2005-03-03 Sony Corporation GaN III-V COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076519A (en) * 2000-08-30 2002-03-15 Fujitsu Ltd Semiconductor laser
JP2003008059A (en) * 2001-06-22 2003-01-10 Sharp Corp Nitride-family semiconductor light-emitting element
WO2005020396A1 (en) * 2003-08-26 2005-03-03 Sony Corporation GaN III-V COMPOUND SEMICONDUCTOR LIGHT-EMITTING DEVICE AND METHOD FOR MANUFACTURING SAME

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009023722A1 (en) * 2007-08-14 2009-02-19 Nitek, Inc. Micro-pixel ultraviolet light emitting diode
KR101012515B1 (en) * 2007-08-20 2011-02-08 렌슬러 폴리테크닉 인스티튜트 Nitride semiconductor light emitting device
US8502266B2 (en) 2007-08-20 2013-08-06 Samsung Electronics Co., Ltd. Nitride semiconductor light emitting device
EP2325899A1 (en) * 2008-08-29 2011-05-25 Kabushiki Kaisha Toshiba Semiconductor device
JP2011258994A (en) * 2008-08-29 2011-12-22 Toshiba Corp Semiconductor device
EP2325899A4 (en) * 2008-08-29 2015-04-29 Toshiba Kk Semiconductor device
KR101018088B1 (en) 2008-11-07 2011-02-25 삼성엘이디 주식회사 Nitride Semiconductor Device
KR101025971B1 (en) 2008-12-10 2011-03-30 삼성엘이디 주식회사 Nitride semiconductor light emitting device
US8664688B2 (en) 2009-03-27 2014-03-04 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting chip, method of manufacture thereof, and semiconductor optical device
US8344413B2 (en) 2009-05-29 2013-01-01 Sharp Kabushiki Kaisha Nitride semiconductor wafer, nitride semiconductor chip, and method of manufacture of nitride semiconductor chip
CN101997268A (en) * 2009-08-21 2011-03-30 夏普株式会社 Nitride semiconductor wafer, nitride semiconductor chip, method of manufacture thereof, and semiconductor device
JP2011044596A (en) * 2009-08-21 2011-03-03 Sharp Corp Nitride semiconductor element, method of manufacturing the same, and semiconductor device
JP2011077371A (en) * 2009-09-30 2011-04-14 Sharp Corp Nitride semiconductor element, nitride semiconductor wafer, and method of manufacture of nitride semiconductor element
JP2011119374A (en) * 2009-12-02 2011-06-16 Sharp Corp Nitride semiconductor element and method of manufacturing the same, and semiconductor device
KR101617312B1 (en) * 2011-01-26 2016-05-02 에피스타 코포레이션 A light-emitting device
KR101778159B1 (en) * 2011-02-01 2017-09-26 엘지이노텍 주식회사 Light Emitting device and Light Emitting device Package
JP2013026616A (en) * 2011-07-25 2013-02-04 Lg Innotek Co Ltd Light-emitting device
CN103117342A (en) * 2011-11-17 2013-05-22 广东量晶光电科技有限公司 Light-emitting diode (LED) lighting structure
WO2013147552A1 (en) * 2012-03-29 2013-10-03 Seoul Opto Device Co., Ltd. Near uv light emitting device
US9502607B2 (en) 2012-05-30 2016-11-22 Osram Opto Semiconductors Gmbh Method for producing an active zone for an optoelectronic semiconductor chip and optoelectronic semiconductor chip
KR20140026891A (en) * 2012-08-23 2014-03-06 엘지이노텍 주식회사 Light emitting device, light emitting device package, and lighting system
KR101953716B1 (en) 2012-08-23 2019-03-05 엘지이노텍 주식회사 Light emitting device, light emitting device package, and lighting system
CN103035790A (en) * 2012-12-13 2013-04-10 华灿光电股份有限公司 Light emitting diode epitaxial wafer and preparation method thereof
WO2014123092A1 (en) * 2013-02-05 2014-08-14 株式会社トクヤマ Nitride semiconductor light-emitting element
CN105009310A (en) * 2013-02-05 2015-10-28 株式会社德山 Nitride semiconductor light-emitting element
EP2955763A4 (en) * 2013-02-05 2016-08-24 Tokuyama Corp Nitride semiconductor light-emitting element
WO2017071400A1 (en) * 2015-10-28 2017-05-04 厦门市三安光电科技有限公司 Light emitting diode and manufacturing method therefor
US10879421B2 (en) 2016-02-09 2020-12-29 Lumeova, Inc. Ultra-wideband, free space optical communication apparatus
US10930816B2 (en) * 2016-02-09 2021-02-23 Lumeova, Inc. Ultra-wideband light emitting diode and optical detector comprising aluminum indium gallium nitride and method of fabricating the same
US11233172B2 (en) 2016-02-09 2022-01-25 Lumeova, Inc. Ultra-wideband, free space optical communication apparatus
US11923478B2 (en) 2016-02-09 2024-03-05 Lumeova, Inc. Ultra-wideband, free space optical communication apparatus

Similar Documents

Publication Publication Date Title
JP2007088270A (en) Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
JP5737111B2 (en) Group III nitride semiconductor light emitting device
TWI451591B (en) Nitride-based light emitting device
JP2008182284A (en) Light emitting device using nitride semiconductor and fabrication method of the same
CN104810442B (en) A kind of LED epitaxial slice and its growing method
JP5279006B2 (en) Nitride semiconductor light emitting device
JP2006510234A5 (en)
JP5322523B2 (en) Light emitting device and manufacturing method thereof
JP2013149938A (en) Group iii nitride semiconductor light emitting element
JP6587673B2 (en) Light emitting element
JP2012146847A (en) Nitride semiconductor light-emitting element and semiconductor optical device
JP2010258096A (en) Nitride semiconductor light emitting device
JP2006332258A (en) Nitride semiconductor device and its manufacturing method
JP2007088269A (en) Semiconductor light emitting element, lighting device using the same and manufacturing method of semiconductor light emitting element
KR20130141945A (en) Light emitting device having electron blocking layer
WO2011102450A1 (en) Method of manufacture for a compound semiconductor light-emitting element
JP5777196B2 (en) Manufacturing method of nitride semiconductor light emitting device
CN108281519B (en) light emitting diode epitaxial wafer and manufacturing method thereof
JP2007299848A (en) Semiconductor light emitting element
CN108550676B (en) Light emitting diode epitaxial wafer and manufacturing method thereof
US20090078961A1 (en) Nitride-based light emitting device
JP2011035156A (en) Method for manufacturing group iii nitride semiconductor light emitting device
JP2008227103A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT
KR20090056319A (en) Nitride compound semiconductor light-emitting device with a superlattice structure
WO2022196374A1 (en) Light-emitting element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622