JP2010232290A - Nitride semiconductor light-emitting diode and manufacturing method therefor - Google Patents

Nitride semiconductor light-emitting diode and manufacturing method therefor Download PDF

Info

Publication number
JP2010232290A
JP2010232290A JP2009076144A JP2009076144A JP2010232290A JP 2010232290 A JP2010232290 A JP 2010232290A JP 2009076144 A JP2009076144 A JP 2009076144A JP 2009076144 A JP2009076144 A JP 2009076144A JP 2010232290 A JP2010232290 A JP 2010232290A
Authority
JP
Japan
Prior art keywords
layer
nitride semiconductor
light emitting
emitting diode
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009076144A
Other languages
Japanese (ja)
Other versions
JP5306873B2 (en
Inventor
Satoshi Komada
聡 駒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009076144A priority Critical patent/JP5306873B2/en
Publication of JP2010232290A publication Critical patent/JP2010232290A/en
Application granted granted Critical
Publication of JP5306873B2 publication Critical patent/JP5306873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nitride semiconductor light-emitting diode which improves light-emission efficiency at the injection of a high-density current, and a manufacturing method for the nitride semiconductor light-emitting diode. <P>SOLUTION: The light-emitting diode at least includes an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer, and a light-emitting layer in the active layer is composed of a plurality of layers where at least two or more layers having different In mixed crystal ratios are formed in contact with each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、窒化物半導体発光ダイオード素子に関し、特に、電流密度の大きい領域で高い発光効率を有する窒化物半導体発光ダイオード素子およびその製造方法に関する。   The present invention relates to a nitride semiconductor light-emitting diode element, and more particularly to a nitride semiconductor light-emitting diode element having high light emission efficiency in a region with a large current density and a method for manufacturing the same.

特許文献1によれば、活性層が井戸層、障壁層からなり、井戸層と障壁層の間に両者のバンドギャップの間をとるようなバッファ層を形成する技術があげられている。この構造によれば、量子井戸にトラップされるキャリア数を充分確保できる電位障壁を実現しつつ、格子定数の変化をなだらかにすることで界面に生ずる格子欠陥を抑制することができると報告されている。   According to Patent Document 1, there is a technique in which an active layer is formed of a well layer and a barrier layer, and a buffer layer is formed between the well layer and the barrier layer so as to have a band gap between the two. According to this structure, it has been reported that a lattice defect generated at the interface can be suppressed by smoothing the change of the lattice constant while realizing a potential barrier that can secure a sufficient number of carriers trapped in the quantum well. Yes.

特許第3304782号公報Japanese Patent No. 3304742

窒化物半導体発光ダイオードでは、電流密度が数A/cmを超える領域では電流密度が上がるに従い効率が低下するという課題が挙げられる。この課題を解決する手段の一つとして発光層の体積を大きくすることがあげられる。それを実現する案として量子井戸数を増やすこと、井戸層厚をあげることが挙げられるが、前者はキャリアの偏りにより発光層の体積を増やすことができない。後者はピエゾ電界によるキャリアの空間的な分離により、発光効率が低下し、課題解決には至らない。高い電流密度で効率の高い発光ダイオードは単位面積あたりの光量を増やすことができるため、チップを小型化できること、チップ単価を下げることができる。従ってこの課題を解決することができる窒化物半導体発光ダイオード素子およびその窒化物半導体発光ダイオードの製造方法が要望されている。 In the nitride semiconductor light emitting diode, there is a problem that the efficiency decreases as the current density increases in a region where the current density exceeds several A / cm 2 . One means for solving this problem is to increase the volume of the light emitting layer. As a proposal for realizing this, it is possible to increase the number of quantum wells and increase the thickness of the well layer. However, the former cannot increase the volume of the light emitting layer due to the bias of carriers. In the latter case, the luminous efficiency is lowered due to spatial separation of carriers by a piezoelectric field, and the problem cannot be solved. Since a light-emitting diode with high current density and high efficiency can increase the amount of light per unit area, the chip can be reduced in size and the unit cost of the chip can be reduced. Therefore, there is a demand for a nitride semiconductor light-emitting diode element and a method for manufacturing the nitride semiconductor light-emitting diode that can solve this problem.

上記の事情に鑑みて、本発明の目的は、高い密度の電流を注入したときの発光効率を向上させることができる窒化物半導体発光ダイオード及びその窒化物半導体発光ダイオードの製造方法を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a nitride semiconductor light emitting diode capable of improving the light emission efficiency when a high density current is injected and a method for manufacturing the nitride semiconductor light emitting diode. is there.

本発明は、少なくともn型窒化物半導体層、活性層、p型窒化物半導体層からなる発光ダイオードにおいて、活性層中の発光層は複数の層からなり、異なるIn混晶比を持つ層が少なくとも2以上ともに接して形成される、窒化物半導体発光ダイオードである。   The present invention provides a light emitting diode comprising at least an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer, wherein the light emitting layer in the active layer comprises a plurality of layers, and at least layers having different In mixed crystal ratios. It is a nitride semiconductor light emitting diode formed in contact with two or more.

本発明に係る窒化物半導体発光ダイオードは、前記複数の層からなる発光層は、n型窒化物半導体層側に形成された発光層のIn混晶比がより大きいものであることが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, the light emitting layer composed of the plurality of layers preferably has a larger In mixed crystal ratio in the light emitting layer formed on the n-type nitride semiconductor layer side.

本発明に係る窒化物半導体発光ダイオードは、前記複数の層からなる発光層のうち、少なくとも2層のIn混晶比は、それぞれ10%以上であることが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, the In mixed crystal ratio of at least two layers among the light emitting layers composed of the plurality of layers is preferably 10% or more.

本発明に係る窒化物半導体発光ダイオードは、前記複数の層からなる発光層のうち、最もIn混晶比の大きい層を除く少なくとも1層の層厚は2nm以上であることが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, it is preferable that the layer thickness of at least one layer excluding the layer having the largest In mixed crystal ratio among the plurality of light emitting layers is 2 nm or more.

本発明に係る窒化物半導体発光ダイオードは、前記複数の層からなる発光層において、In混晶比の小さい層の層厚が、In混晶比のより大きい層の層厚に比べ大きいものであることが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, in the light emitting layer composed of the plurality of layers, the layer thickness of the layer having a small In mixed crystal ratio is larger than the layer thickness of the layer having a large In mixed crystal ratio. It is preferable.

本発明に係る窒化物半導体発光ダイオードは、前記活性層は障壁層と井戸層の周期構造であり、井戸層のうち少なくとも一層は、前記複数の層からなる発光層であることが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, it is preferable that the active layer has a periodic structure of a barrier layer and a well layer, and at least one of the well layers is a light emitting layer composed of the plurality of layers.

本発明に係る窒化物半導体発光ダイオードは、前記障壁層はGaN層からなることが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, the barrier layer is preferably composed of a GaN layer.

本発明に係る窒化物半導体発光ダイオードは、前記障壁層の層厚は5nm以上であることが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, the barrier layer preferably has a thickness of 5 nm or more.

本発明に係る窒化物半導体発光ダイオードは、前記活性層と前記p型窒化物半導体層の間にGaN層が形成されたことが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, a GaN layer is preferably formed between the active layer and the p-type nitride semiconductor layer.

本発明に係る窒化物半導体発光ダイオードは、前記活性層と前記p型窒化物半導体層の間に形成されたGaN層の層厚は5nm以上であることが好ましい。   In the nitride semiconductor light emitting diode according to the present invention, the thickness of the GaN layer formed between the active layer and the p-type nitride semiconductor layer is preferably 5 nm or more.

本発明は、前記の窒化物半導体発光ダイオードの製造方法において、前記複数の層からなる発光層は、各層ごと有機金属気相成長法によりトリメチルガリウムに対するトリメチルインジウムの供給量を変化させることにより形成される、窒化物半導体発光ダイオードの製造方法である。   In the method for manufacturing a nitride semiconductor light emitting diode according to the present invention, the light emitting layer composed of the plurality of layers is formed by changing a supply amount of trimethylindium to trimethylgallium by metal organic chemical vapor deposition for each layer. This is a method for manufacturing a nitride semiconductor light emitting diode.

本発明に係る窒化物半導体発光ダイオードの製造方法は、前記複数の層からなる発光層は、各層ごと有機金属気相成長法により成長温度が一定で形成されることが好ましい。   In the method for manufacturing a nitride semiconductor light emitting diode according to the present invention, the light emitting layer composed of the plurality of layers is preferably formed with a constant growth temperature by metal organic vapor phase epitaxy for each layer.

本発明に係る窒化物半導体発光ダイオードの製造方法は、前記活性層とp型窒化物半導体層の間に形成されたGaN層は、前記複数の層からなる発光層と同じ成長温度で形成されることが好ましい。   In the method for manufacturing a nitride semiconductor light emitting diode according to the present invention, the GaN layer formed between the active layer and the p-type nitride semiconductor layer is formed at the same growth temperature as the light emitting layer composed of the plurality of layers. It is preferable.

本発明によれば、高い密度の電流を注入したときの発光効率を向上させることができる窒化物半導体発光ダイオードおよびその窒化物半導体発光ダイオードの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the nitride semiconductor light-emitting diode which can improve the light emission efficiency when a high density electric current is inject | poured, and the nitride semiconductor light-emitting diode can be provided.

本発明の窒化物半導体発光ダイオードの一例である窒化物半導体層構成の好ましい一例の模式的な断面図である。It is typical sectional drawing of a preferable example of the nitride semiconductor layer structure which is an example of the nitride semiconductor light-emitting diode of this invention. 本発明の窒化物半導体発光ダイオードの一例である窒化物半導体層構成の好ましい一例の模式的な断面図である。It is typical sectional drawing of a preferable example of the nitride semiconductor layer structure which is an example of the nitride semiconductor light-emitting diode of this invention. 本発明の実施例、及び比較例における窒化物半導体層構成の好ましい一例の模式的な断面図である。It is typical sectional drawing of a preferable example of the nitride semiconductor layer structure in the Example of this invention, and a comparative example.

以下、本発明の実施の形態について説明する。なお、本発明の図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。   Embodiments of the present invention will be described below. In the drawings of the present invention, the same reference numerals represent the same or corresponding parts.

図1に、本発明の窒化物半導体発光ダイオードの一例である窒化物半導体層構成の好ましい一例の模式的な断面図を示す。この窒化物半導体発光ダイオードは、基板1上にn型窒化物半導体2、活性層3、p型窒化物半導体層4を少なくとも形成させる。   FIG. 1 is a schematic cross-sectional view of a preferred example of a nitride semiconductor layer configuration that is an example of the nitride semiconductor light emitting diode of the present invention. In this nitride semiconductor light emitting diode, at least an n-type nitride semiconductor 2, an active layer 3, and a p-type nitride semiconductor layer 4 are formed on a substrate 1.

<基板>
本発明において、基板1はサファイア、SiC、GaN基板など選択できる。
<Board>
In the present invention, the substrate 1 can be selected from a sapphire, SiC, GaN substrate and the like.

<n型窒化物半導体層>
本発明において、n型窒化物半導体層2はAlxInyGa1-x-yN(0≦x≦1、0≦y≦1)から形成され、低温バッファ層、アンドープ層を形成してもよく、ドーパントはSi、Geなどが選択される。
<N-type nitride semiconductor layer>
In the present invention, the n-type nitride semiconductor layer 2 may be formed of Al x In y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), and a low-temperature buffer layer and an undoped layer may be formed. The dopant is selected from Si, Ge and the like.

<p型窒化物半導体層>
本発明において、p型窒化物半導体層4は後述する活性層3上に、AlxInyGa1-x-yN(0≦x≦1、0≦y≦1)から形成され、ドーパントはMg、Znなどが選択される。
<P-type nitride semiconductor layer>
In the present invention, the p-type nitride semiconductor layer 4 is formed of Al x In y Ga 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1) on the active layer 3 described later, and the dopant is Mg, Zn or the like is selected.

<活性層>
本発明において、活性層3はn型窒化物半導体層2上に形成された井戸層とすることもできる。
<Active layer>
In the present invention, the active layer 3 may be a well layer formed on the n-type nitride semiconductor layer 2.

この井戸層は発光層として機能し、異なるIn混晶比を持つ層が少なくとも2以上ともに接して形成される。発光層の組成はInxGa1-xN(x>0.1)であることが発光効率の観点から好ましい。さらに、本発明においてIn混晶比とは、全13族元素のモル原子数に対するInのモル原子数の比を意味する。 This well layer functions as a light emitting layer, and is formed in contact with at least two layers having different In mixed crystal ratios. The composition of the light emitting layer is preferably In x Ga 1-x N (x> 0.1) from the viewpoint of light emission efficiency. Furthermore, in the present invention, the In mixed crystal ratio means the ratio of the number of moles of In to the number of moles of all group 13 elements.

このような構造とすることでより厚い発光層を得ることができ、高い電流密度での効率をあげることができる。さらに同一組成で厚い発光層を形成するときと比べて、ピエゾ電界によるキャリアの空間的な分離を小さくすることができ、効率の高い発光層を得ることができる。   With such a structure, a thicker light emitting layer can be obtained, and the efficiency at a high current density can be increased. Furthermore, compared with the case of forming a thick light emitting layer with the same composition, the spatial separation of carriers due to the piezoelectric field can be reduced, and a highly efficient light emitting layer can be obtained.

この構造と類似する従来構造は井戸層と障壁層の間にバッファ層が形成されている。しかし、該バッファ層は層厚、発光層に対する組成から発光しないと考えられ、本発明の構造とは本質的に異なるものである。   In the conventional structure similar to this structure, a buffer layer is formed between the well layer and the barrier layer. However, it is considered that the buffer layer does not emit light due to the layer thickness and the composition with respect to the light emitting layer, which is essentially different from the structure of the present invention.

この発光層に形成された複数の層において、In混晶比の小さい層はそれよりも大きい層に対し、p層側に形成されることが、In混晶比の小さい層で発光を有効に得るうえで好ましい。また、発光層に形成された複数の層において、隣り合う層のIn混晶比の差は2〜10%であることが好ましい。   In the plurality of layers formed in the light emitting layer, the layer having a small In mixed crystal ratio is formed on the p layer side with respect to the layer having a larger In mixed crystal ratio. It is preferable in obtaining. In the plurality of layers formed in the light emitting layer, the difference in the In mixed crystal ratio between adjacent layers is preferably 2 to 10%.

さらに発光層うち少なくとも2層のIn混晶比はそれぞれ10%以上であることが量子井戸のキャリアのトラップの効果を得、高い発光効率を実現するうえで好ましく、全層のIn混晶比が10%であることがさらに好ましい。   Further, it is preferable that the In mixed crystal ratio of at least two of the light emitting layers is 10% or more, respectively, in order to obtain the effect of trapping carriers in the quantum well and realize high luminous efficiency. More preferably, it is 10%.

さらに発光層の層厚は最もIn混晶比の大きい層を除く少なくとも1層が2nm以上であることが、In混晶比の異なるそれぞれの層で発光を得て、高い電流密度での発光効率向上のうえで好ましく、全層が2nm以上であることがさらに好ましい。   Furthermore, the thickness of the light emitting layer is that at least one layer excluding the layer with the largest In mixed crystal ratio is 2 nm or more. Light emission is obtained at each layer having a different In mixed crystal ratio, and luminous efficiency at a high current density is obtained. It is preferable in terms of improvement, and the total layer is more preferably 2 nm or more.

さらに発光層中に形成されたIn混晶比の異なる各層において、In混晶比の小さい層がそれよりも大きい層に比べ大きい層厚のとき、In混晶比の小さい層と大きい層でキャリアを分配し、複数の波長をもつ発光を得て、結果として高い電流密度での発光効率を高める点で好ましい。   Further, in each of the layers having different In mixed crystal ratios formed in the light emitting layer, when the layer having a small In mixed crystal ratio has a larger layer thickness than the larger layer, carriers in the layer having a small In mixed crystal ratio and a layer having a large In mixed crystal ratio. Is preferable in that light emission having a plurality of wavelengths is obtained, and as a result, the light emission efficiency at a high current density is increased.

また、In混晶比が小さくなればなるほど、最適な結晶品質の層厚が大きくなるため好ましい。   In addition, the smaller the In mixed crystal ratio, the more preferable the layer thickness with the optimum crystal quality.

また活性層3は図2のように井戸層3a、障壁層3bの周期構造とすることもできる。
その場合少なくとも複数形成された井戸層3aのうち、主要に発光に寄与する少なくとも井戸層3aの1層は上記異なるIn混晶比からなる複数の層からなる発光層であることが好ましい。複数の井戸層3aを形成することにより、発光層の発光効率を高めることができる。
Further, the active layer 3 may have a periodic structure of a well layer 3a and a barrier layer 3b as shown in FIG.
In that case, at least one of the well layers 3a mainly contributing to light emission among the plurality of well layers 3a is preferably a light emitting layer composed of a plurality of layers having different In mixed crystal ratios. By forming the plurality of well layers 3a, the light emission efficiency of the light emitting layer can be increased.

本発明において、障壁層3bは、GaN層であることが、結晶品質を向上させ、結果として発光層の発光効率を高めることができる点で好ましい。さらに障壁層3bの層厚は5nm以上であることが発光層の発光効率向上の点で好ましく、一方で動作電圧低減の観点からは層厚が薄いことが好ましいことから、両方を鑑みて6nm程度が最も好ましい。   In the present invention, it is preferable that the barrier layer 3b is a GaN layer in that the crystal quality can be improved and, as a result, the light emission efficiency of the light emitting layer can be increased. Further, the thickness of the barrier layer 3b is preferably 5 nm or more from the viewpoint of improving the light emitting efficiency of the light emitting layer. On the other hand, it is preferable that the layer thickness is thin from the viewpoint of reducing the operating voltage. Is most preferred.

前記発光層は有機金属気相成長法により形成され、In混晶比の異なる層それぞれは、トリメチルガリウムに対するトリメチルインジウムのモル流量を調整することにより形成されることが好ましく、さらに成長温度一定で形成することがIn蒸発を防ぐ点で好ましい。   The light emitting layer is formed by metal organic vapor phase epitaxy, and each layer having a different In mixed crystal ratio is preferably formed by adjusting the molar flow rate of trimethylindium with respect to trimethylgallium, and further formed at a constant growth temperature. It is preferable to prevent In evaporation.

活性層3とp型窒化物半導体層4の間にGaN層を形成することが発光層のInの蒸発を防ぐ点、発光層へのp型ドーパントの拡散を防ぐ点で好ましく、この効果を得る上で層厚は5nm以上が好ましい。   Forming a GaN layer between the active layer 3 and the p-type nitride semiconductor layer 4 is preferable in terms of preventing In evaporation of the light emitting layer and preventing diffusion of p-type dopant into the light emitting layer, and this effect is obtained. The layer thickness is preferably 5 nm or more.

このGaN層は有機金属気相成長法により形成され、発光層と同じ温度で形成されることが発光層のInの蒸発を防ぐ点で好ましい。   This GaN layer is formed by metal organic vapor phase epitaxy, and is preferably formed at the same temperature as the light emitting layer in terms of preventing evaporation of In in the light emitting layer.

<電極>
正負の電極形成は、例えばサファイヤのような絶縁基板の場合は、p型窒化物半導体層4側からn型窒化物半導体層2までエッチングすることで、p型窒化物半導体4上に電流拡散層を挟んで正電極、露出したn型窒化物半導体層2上に負電極をそれぞれ形成できる。
<Electrode>
For example, in the case of an insulating substrate such as sapphire, the positive and negative electrodes are formed by etching from the p-type nitride semiconductor layer 4 side to the n-type nitride semiconductor layer 2 to form a current diffusion layer on the p-type nitride semiconductor 4. A positive electrode and a negative electrode can be formed on the exposed n-type nitride semiconductor layer 2.

一方、GaN、SiCのような導電性基板の場合は、p型窒化物半導体4上に電流拡散層を挟んで正電極、基板1裏面に負電極を形成できる。   On the other hand, in the case of a conductive substrate such as GaN or SiC, a positive electrode can be formed on the p-type nitride semiconductor 4 with a current diffusion layer interposed therebetween, and a negative electrode can be formed on the back surface of the substrate 1.

<実施例1>
実施例1においては、図3に示す構成を有する窒化物半導体発光ダイオード素子を作製した。まず、サファイアからなる基板11を用意し、その基板11をMOCVD装置の反応炉内にセットした。そして、その反応炉内に水素を流しながら基板11の温度を1050℃まで上昇させて、基板11の表面(C面)のクリーニングを行なう。
<Example 1>
In Example 1, a nitride semiconductor light emitting diode element having the configuration shown in FIG. 3 was produced. First, a substrate 11 made of sapphire was prepared, and the substrate 11 was set in a reactor of an MOCVD apparatus. Then, the surface of the substrate 11 (C surface) is cleaned by raising the temperature of the substrate 11 to 1050 ° C. while flowing hydrogen into the reactor.

(n型窒化物半導体層の形成)
次に、基板11の温度を510℃まで低下させ、キャリアガスとして水素、原料ガスとしてアンモニアおよびTMG(トリメチルガリウム)を反応炉内に流して、基板11の表面(C面)上にGaNからなるバッファ層をMOCVD法により約20nmの厚さで積層する。
次いで、基板11の温度を1050℃まで上昇させて、キャリアガスとして水素、原料ガスとしてアンモニアおよびTMG、不純物ガスとしてシランを反応炉内に流して、SiがドーピングされたGaNからなるn型窒化物半導体下地層(キャリア濃度:1×1018/cm3)をMOCVD法によりバッファ層上に6μmの厚さで積層する。
(Formation of n-type nitride semiconductor layer)
Next, the temperature of the substrate 11 is lowered to 510 ° C., hydrogen as a carrier gas, ammonia and TMG (trimethylgallium) as a source gas are flown into the reaction furnace, and GaN is formed on the surface (C surface) of the substrate 11. The buffer layer is laminated with a thickness of about 20 nm by the MOCVD method.
Next, the temperature of the substrate 11 is raised to 1050 ° C., hydrogen as a carrier gas, ammonia and TMG as source gases, and silane as an impurity gas are flown into the reaction furnace, and an n-type nitride composed of GaN doped with Si A semiconductor underlayer (carrier concentration: 1 × 10 18 / cm 3 ) is laminated with a thickness of 6 μm on the buffer layer by MOCVD.

続いて、キャリア濃度が5×1018/cm3となるようにSiをドーピングしたこと以外はn型窒化物半導体下地層と同様にして、GaNからなるn型窒化物半導体コンタクト層をMOCVD法によりn型窒化物半導体下地層上に0.5μmの厚さで積層する。 Subsequently, an n-type nitride semiconductor contact layer made of GaN is formed by MOCVD in the same manner as the n-type nitride semiconductor underlayer except that Si is doped so that the carrier concentration becomes 5 × 10 18 / cm 3. It is laminated on the n-type nitride semiconductor underlayer with a thickness of 0.5 μm.

以上、バッファ層、n型窒化物下地層、n型窒化物コンタクト層をn型窒化物半導体層12とする。   As described above, the buffer layer, the n-type nitride underlayer, and the n-type nitride contact layer are referred to as the n-type nitride semiconductor layer 12.

(活性層の形成)
次に、基板11の温度を700℃に低下し、キャリアガスとして窒素、原料ガスとしてアンモニア、TMGおよびTMI(トリメチルインジウム)を反応炉内に流して、n型窒化物半導体コンタクト層上に第1井戸層として2.5nmの厚さのIn0.20Ga0.80N層、続いてTMGに対するTMI流量を変更することで第2井戸層として3nmの厚さのIn0.15Ga0.85N層を形成し、活性層13とする。
(Formation of active layer)
Next, the temperature of the substrate 11 is lowered to 700 ° C., nitrogen as a carrier gas, ammonia, TMG, and TMI (trimethylindium) as a source gas are flown into the reaction furnace, and the first on the n-type nitride semiconductor contact layer. An In 0.20 Ga 0.80 N layer having a thickness of 2.5 nm is formed as the well layer, and an In 0.15 Ga 0.85 N layer having a thickness of 3 nm is formed as the second well layer by changing the TMI flow rate with respect to TMG. 13

(蒸発防止層の形成)
続いて、基板11の温度を700℃のまま維持し、キャリアガスとして窒素、原料ガスとしてアンモニア、TMGを反応炉内に流して、活性層13上に蒸発防止層14としてGaN層を15nm形成した。
(Formation of evaporation prevention layer)
Subsequently, the temperature of the substrate 11 was maintained at 700 ° C., nitrogen as a carrier gas, ammonia as a source gas, and TMG were flowed into the reaction furnace to form a 15 nm GaN layer as an evaporation preventing layer 14 on the active layer 13. .

(p型窒化物半導体層の形成)
次いで、基板11の温度を950℃に上昇させ、キャリアガスとして水素、原料ガスとしてアンモニア、TMGおよびTMA(トリメチルアルミニウム)、不純物ガスとしてCP2Mgを反応炉内に流して、Mgが1×1020/cm3の濃度でドーピングされたAl0.20Ga0.85Nからなるp型窒化物半導体クラッド層をMOCVD法により蒸発防止層14上に約20nmの厚さで積層する。
(Formation of p-type nitride semiconductor layer)
Next, the temperature of the substrate 11 is raised to 950 ° C., hydrogen as a carrier gas, ammonia, TMG and TMA (trimethylaluminum) as source gases, and CP2Mg as impurity gases are flown into the reactor, and Mg becomes 1 × 10 20 / A p-type nitride semiconductor clad layer made of Al 0.20 Ga 0.85 N doped at a concentration of cm 3 is laminated on the evaporation prevention layer 14 to a thickness of about 20 nm by the MOCVD method.

次に、基板11の温度を950℃に保持し、キャリアガスとして水素、原料ガスとしてアンモニアおよびTMG、不純物ガスとしてCP2Mgを反応炉内に流して、Mgが1×1020/cm3の濃度でドーピングされたGaNからなるp型窒化物半導体コンタクト層をMOCVD法によりp型窒化物半導体クラッド層上に80nmの任意の厚さで積層する。 Next, the temperature of the substrate 11 is maintained at 950 ° C., hydrogen as the carrier gas, ammonia and TMG as the source gas, and CP2Mg as the impurity gas are flown into the reaction furnace, and Mg has a concentration of 1 × 10 20 / cm 3 . A p-type nitride semiconductor contact layer made of doped GaN is stacked on the p-type nitride semiconductor clad layer with an arbitrary thickness of 80 nm by MOCVD.

以上、p型窒化物半導体層15はp型窒化物半導体クラッド層、p型窒化物半導体コンタクト層からなる。   As described above, the p-type nitride semiconductor layer 15 includes a p-type nitride semiconductor cladding layer and a p-type nitride semiconductor contact layer.

次に、基板1の温度を700℃に低下し、キャリアガスとして窒素を反応炉内に流して、アニーリングを行なう。   Next, the temperature of the substrate 1 is lowered to 700 ° C., and annealing is performed by flowing nitrogen as a carrier gas into the reaction furnace.

(透光性電極の形成)
次に、ウェハーを反応炉から取り出し、最上層のp型窒化物半導体層15の表面にEB蒸着によりITO(インジウム・スズ酸化物)からなる透光性電極16を100nmの厚さで形成する。
(Formation of translucent electrode)
Next, the wafer is taken out of the reaction furnace, and a transparent electrode 16 made of ITO (indium tin oxide) is formed to a thickness of 100 nm on the surface of the uppermost p-type nitride semiconductor layer 15 by EB vapor deposition.

(パット電極の形成)
透光性電極16上に所定の形状にパターニングされたマスクを形成し、RIE(反応性イオンエッチング)装置で透光性電極16側からエッチングを行い、n型窒化物半導体コンタクト層の表面を露出させる。透光性電極16上及び露出したn型窒化物半導体コンタクト層上の所定の位置にTiとAlを含むパット電極17、18をそれぞれ形成する。以上によりLED素子とする。
(Formation of pad electrode)
A mask patterned in a predetermined shape is formed on the translucent electrode 16, and etching is performed from the translucent electrode 16 side with an RIE (reactive ion etching) apparatus to expose the surface of the n-type nitride semiconductor contact layer. Let Pad electrodes 17 and 18 containing Ti and Al are formed at predetermined positions on the translucent electrode 16 and the exposed n-type nitride semiconductor contact layer, respectively. Thus, an LED element is obtained.

このLED素子において、第1井戸層からは450nm、第2井戸層からは430nmの発光を得ることができ、それらが合成されてブロードで440nm程度にピークをもつ発光を得ることができる。また比較例1に対し発光効率の高いLEDを得ることができる。また発光層厚が大きいため、50A/cm2以上の高い電流密度において発光効率の高いLEDを得ることができる。 In this LED element, light emission of 450 nm can be obtained from the first well layer and light emission of 430 nm can be obtained from the second well layer, and they can be synthesized to obtain light emission having a broad peak at about 440 nm. Further, an LED having a higher luminous efficiency than that of Comparative Example 1 can be obtained. Moreover, since the light emitting layer thickness is large, an LED having high luminous efficiency can be obtained at a high current density of 50 A / cm 2 or more.

<実施例2>
実施例1に対し、活性層13の条件を変更させる以外は同様とする。
<Example 2>
The same applies to Example 1 except that the conditions of the active layer 13 are changed.

(活性層の形成)
基板11の温度を700℃に低下し、キャリアガスとして窒素、原料ガスとしてアンモニア、TMGおよびTMI(トリメチルインジウム)を反応炉内に流して、n型窒化物半導体コンタクト層上に第1井戸層として2.5nmの厚さのIn0.20Ga0.80N層、続いてTMGに対するTMI流量を変更することで第2井戸層として3nmの厚さのIn0.15Ga0.85N層、その上に第3井戸層として3.5nmのIn0.10Ga0.90N層を形成し、活性層13とした。
(Formation of active layer)
The temperature of the substrate 11 is lowered to 700 ° C., nitrogen as the carrier gas, ammonia, TMG and TMI (trimethylindium) as the source gas are flowed into the reactor, and the first well layer is formed on the n-type nitride semiconductor contact layer. An In 0.20 Ga 0.80 N layer with a thickness of 2.5 nm, an In 0.15 Ga 0.85 N layer with a thickness of 3 nm as a second well layer by changing the TMI flow rate for TMG, and a third well layer thereon A 3.5 nm In 0.10 Ga 0.90 N layer was formed as the active layer 13.

このLED素子において、第1井戸層からは450nm、第2井戸層からは430nm、第3井戸層からは410nmの発光を得ることができ、それらが合成されてブロードな430nm程度にピークをもつ発光を得ることができる。発光効率は実施例1に比べ劣るものの、50A/cm2以上の高い電流密度において、それよりも小さい電流密度に比べて発光効率の低下の小さいLEDを得ることができる。 In this LED element, it is possible to obtain light emission of 450 nm from the first well layer, 430 nm from the second well layer, and 410 nm from the third well layer, and they are synthesized to emit light having a peak at about 430 nm. Can be obtained. Although the luminous efficiency is inferior to that of Example 1, an LED having a small decrease in luminous efficiency can be obtained at a high current density of 50 A / cm 2 or more as compared with a smaller current density.

<実施例3>
実施例1に対し、活性層13の条件を変更させる以外は同様とする。
<Example 3>
The same applies to Example 1 except that the conditions of the active layer 13 are changed.

(活性層の形成)
基板11の温度を700℃に低下し、キャリアガスとして窒素、原料ガスとしてアンモニア、TMGおよびTMI(トリメチルインジウム)を反応炉内に流して、n型窒化物半導体コンタクト層上に第1井戸層として3nmの厚さのIn0.15Ga0.85N層、続いてTMGに対するTMI流量を変更することで第2井戸層として2.5nmの厚さのIn0.20Ga0.80N層を形成し、活性層13とした。
(Formation of active layer)
The temperature of the substrate 11 is lowered to 700 ° C., nitrogen as the carrier gas, ammonia, TMG and TMI (trimethylindium) as the source gas are flowed into the reactor, and the first well layer is formed on the n-type nitride semiconductor contact layer. An In 0.15 Ga 0.85 N layer having a thickness of 3 nm and an In 0.20 Ga 0.80 N layer having a thickness of 2.5 nm were formed as the second well layer by changing the TMI flow rate with respect to TMG. .

このLED素子において、第1井戸層からは430nm、第2井戸層からは450nmの発光を得ることができ、それらが合成されてブロードで440nm程度にピークをもつ発光を得ることができる。発光効率は実施例1に及ばないものの、比較例1に対し発光効率の高いLEDを得ることができる。   In this LED element, light emission of 430 nm can be obtained from the first well layer, and light emission of 450 nm can be obtained from the second well layer, and they can be synthesized to obtain light emission having a peak at about 440 nm. Although the luminous efficiency does not reach that of Example 1, an LED having higher luminous efficiency than that of Comparative Example 1 can be obtained.

<実施例4>
実施例1に対し、活性層13の条件を変更させる以外は同様とする。
<Example 4>
The same applies to Example 1 except that the conditions of the active layer 13 are changed.

(活性層の形成)
基板11の温度を700℃に低下し、キャリアガスとして窒素、原料ガスとしてアンモニア、TMGおよびTMI(トリメチルインジウム)を反応炉内に流して、n型窒化物半導体コンタクト層上に第1井戸層として2.5nmの厚さのIn0.20Ga0.80N層、続いてTMGに対するTMI流量を変更し、成長時間を任意に変更することで第2井戸層として1〜4nmの厚さのIn0.15Ga0.85N層を形成し、活性層13とする。
(Formation of active layer)
The temperature of the substrate 11 is lowered to 700 ° C., nitrogen as the carrier gas, ammonia, TMG and TMI (trimethylindium) as the source gas are flowed into the reactor, and the first well layer is formed on the n-type nitride semiconductor contact layer. The In 0.20 Ga 0.80 N layer with a thickness of 2.5 nm, and subsequently, the TMI flow rate for TMG is changed, and the growth time is arbitrarily changed to arbitrarily change the In 0.15 Ga 0.85 N with a thickness of 1 to 4 nm as the second well layer. A layer is formed as the active layer 13.

第2井戸層の厚さが2nm以下ではこの層からの発光が第1井戸層に比べて小さくなり、ほぼ第1井戸層の450nmのピークを持つ発光がメインとなり、高い電流密度での発光効率向上の効果は小さくなる。層厚3nm以上では逆に第2井戸層の結晶品質が低下し発光効率低下を招くので、この組成の組み合わせでは層厚3nmのとき、つまり実施例1のときが一番好ましい。   When the thickness of the second well layer is 2 nm or less, light emission from this layer is smaller than that of the first well layer, and light emission having a peak of about 450 nm of the first well layer is main, and light emission efficiency at a high current density. The effect of improvement is reduced. On the contrary, when the layer thickness is 3 nm or more, the crystal quality of the second well layer is lowered and the luminous efficiency is lowered. Therefore, the combination of this composition is most preferable when the layer thickness is 3 nm, that is, in Example 1.

<実施例5>
実施例1に対し、活性層13の条件を変更させる以外は同様とする。
<Example 5>
The same applies to Example 1 except that the conditions of the active layer 13 are changed.

(活性層の形成)
基板11の温度を700℃に低下し、キャリアガスとして窒素、原料ガスとしてアンモニア、TMGおよびTMI(トリメチルインジウム)を反応炉内に流して、n型窒化物半導体コンタクト層上に第1井戸層として2.5nmの厚さのIn0.20Ga0.80N層、続いてTMGに対するTMI流量を任意に変更し、第2井戸層3nmの厚さのInxGa1-xN層(x=0.05〜0.20)を形成し、活性層13とする。
(Formation of active layer)
The temperature of the substrate 11 is lowered to 700 ° C., nitrogen as the carrier gas, ammonia, TMG and TMI (trimethylindium) as the source gas are flowed into the reactor, and the first well layer is formed on the n-type nitride semiconductor contact layer. An In 0.20 Ga 0.80 N layer with a thickness of 2.5 nm, and subsequently a TMI flow rate with respect to TMG is arbitrarily changed, and an In x Ga 1-x N layer with a thickness of 3 nm of the second well layer (x = 0.05 to 0.20) to form an active layer 13.

第2井戸層のIn混晶比が10%以下のときこの層からの発光が第1井戸層に比べて小さくなり、ほぼ第1井戸層の450nmのピークを持つ発光がメインとなり、高い電流密度での発光効率向上の効果は小さくなる。ピエゾ電界によるキャリアの空間的分離を、層を第1井戸層、第2井戸層に分けることにより、小さくする効果を得る上でIn混晶比15%のとき、つまり実施例1のときが最も好ましい。   When the In mixed crystal ratio of the second well layer is 10% or less, light emission from this layer becomes smaller than that of the first well layer, and light emission having a peak of about 450 nm of the first well layer is mainly used, and a high current density is obtained. The effect of improving the light emission efficiency is small. In order to obtain the effect of reducing the spatial separation of the carriers by the piezoelectric field by dividing the layer into the first well layer and the second well layer, the case where the In mixed crystal ratio is 15%, that is, the case of Example 1 is the most. preferable.

<実施例6>
実施例1に対し、活性層13の条件を変更させる以外は同様とする。
<Example 6>
The same applies to Example 1 except that the conditions of the active layer 13 are changed.

(活性層の形成)
基板11の温度を700℃に低下し、キャリアガスとして窒素、原料ガスとしてアンモニア、TMGおよびTMI(トリメチルインジウム)を反応炉内に流して、n型窒化物半導体コンタクト層上に第1井戸層として2.5nmの厚さのIn0.20Ga0.80N層、続いてTMGに対するTMI流量を変更することで第2井戸層として3nmの厚さのIn0.15Ga0.85N層を形成し、続いてTMGを反応炉内に流して厚さ6nmのGaNからなる障壁層を形成し、これを1周期とする5周期の多重量子井戸構造を形成する。その後第1井戸層として2.5nmの厚さのIn0.20Ga0.80N層、続いてTMGに対するTMI流量を変更することで第2井戸層として3nmの厚さのIn0.15Ga0.85N層を形成し、活性層13とする。
(Formation of active layer)
The temperature of the substrate 11 is lowered to 700 ° C., nitrogen as the carrier gas, ammonia, TMG and TMI (trimethylindium) as the source gas are flowed into the reactor, and the first well layer is formed on the n-type nitride semiconductor contact layer. An In 0.20 Ga 0.80 N layer with a thickness of 2.5 nm is formed, and then a TMI flow rate for TMG is changed to form an In 0.15 Ga 0.85 N layer with a thickness of 3 nm as a second well layer, followed by reaction with TMG. A barrier layer made of GaN having a thickness of 6 nm is formed by flowing into the furnace, and a five-cycle multi-quantum well structure having this cycle as one cycle is formed. Thereafter, an In 0.20 Ga 0.80 N layer having a thickness of 2.5 nm is formed as the first well layer, and an In 0.15 Ga 0.85 N layer having a thickness of 3 nm is formed as the second well layer by changing the TMI flow rate for TMG. The active layer 13 is used.

このLED素子において、第1井戸層からは450nm、第2井戸層からは430nmの発光を得ることができ、それらが合成されてブロードで440nm程度にピークをもつ発光を得ることができる。また比較例1、実施例1に対しさらに発光効率の高いLEDを得ることができ、好ましい。また発光層厚が大きいため、50A/cm2以上の高い電流密度において発光効率の高いLEDを得ることができる。 In this LED element, light emission of 450 nm can be obtained from the first well layer and light emission of 430 nm can be obtained from the second well layer, and they can be synthesized to obtain light emission having a broad peak at about 440 nm. Further, it is possible to obtain an LED having higher luminous efficiency than Comparative Example 1 and Example 1, which is preferable. Moreover, since the light emitting layer thickness is large, an LED having high luminous efficiency can be obtained at a high current density of 50 A / cm 2 or more.

<比較例1>
実施例1に対し、活性層13の条件を変更させる以外は同様とする。
<Comparative Example 1>
The same applies to Example 1 except that the conditions of the active layer 13 are changed.

(活性層の形成)
基板11の温度を700℃に低下し、キャリアガスとして窒素、原料ガスとしてアンモニア、TMGおよびTMI(トリメチルインジウム)を反応炉内に流して、n型窒化物半導体コンタクト層上に5.5nmの厚さのIn0.17Ga0.80Nからなる井戸層を形成し、活性層13とした。
(Formation of active layer)
The temperature of the substrate 11 is lowered to 700 ° C., nitrogen as a carrier gas, ammonia, TMG and TMI (trimethylindium) as a source gas are flown into the reactor, and a thickness of 5.5 nm is formed on the n-type nitride semiconductor contact layer. A well layer made of In 0.17 Ga 0.80 N was formed as the active layer 13.

このLED素子において、440nmの発光を得ることができる。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
In this LED element, light emission of 440 nm can be obtained.
It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明によれば、高い電流密度の電流を注入したときの発光効率を向上させることができる窒化物半導体発光ダイオードおよびその窒化物半導体発光ダイオードの製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the nitride semiconductor light-emitting diode which can improve the luminous efficiency when the electric current of a high current density is inject | poured, and the nitride semiconductor light-emitting diode can be provided.

1,11 基板、2,12 n型窒化物半導体層、3,13 活性層、3a 井戸層、3b 障壁層、4,15 p型窒化物半導体層、14 蒸発防止層、16 透光性電極 17,18 パット電極。   1,11 substrate, 2,12 n-type nitride semiconductor layer, 3,13 active layer, 3a well layer, 3b barrier layer, 4,15 p-type nitride semiconductor layer, 14 evaporation prevention layer, 16 translucent electrode 17 18 pad electrodes.

Claims (13)

少なくともn型窒化物半導体層、活性層、p型窒化物半導体層からなる発光ダイオードにおいて、
活性層中の発光層は複数の層からなり、異なるIn混晶比を持つ層が少なくとも2以上ともに接して形成される、窒化物半導体発光ダイオード。
In a light emitting diode comprising at least an n-type nitride semiconductor layer, an active layer, and a p-type nitride semiconductor layer,
The light emitting layer in the active layer is composed of a plurality of layers, and a nitride semiconductor light emitting diode in which at least two layers having different In mixed crystal ratios are formed in contact with each other.
前記複数の層からなる発光層は、n型窒化物半導体層側に形成された発光層のIn混晶比がより大きいものである、請求項1記載の窒化物半導体発光ダイオード。   2. The nitride semiconductor light emitting diode according to claim 1, wherein the light emitting layer composed of the plurality of layers has a larger In mixed crystal ratio of the light emitting layer formed on the n-type nitride semiconductor layer side. 前記複数の層からなる発光層のうち、少なくとも2層のIn混晶比は、それぞれ10%以上である、請求項1または2記載の窒化物半導体発光ダイオード。   3. The nitride semiconductor light emitting diode according to claim 1, wherein an In mixed crystal ratio of at least two of the plurality of light emitting layers is 10% or more. 前記複数の層からなる発光層のうち、最もIn混晶比の大きい層を除く少なくとも1層の層厚は2nm以上である、請求項1〜3いずれか記載の窒化物半導体発光ダイオード。   4. The nitride semiconductor light-emitting diode according to claim 1, wherein a thickness of at least one layer excluding a layer having the largest In mixed crystal ratio among the plurality of light-emitting layers is 2 nm or more. 前記複数の層からなる発光層において、In混晶比の小さい層の層厚が、In混晶比のより大きい層の層厚に比べ大きいものである、請求項1〜4いずれか記載の窒化物半導体発光ダイオード。   The nitriding according to any one of claims 1 to 4, wherein, in the light emitting layer comprising the plurality of layers, the layer thickness of the layer having a small In mixed crystal ratio is larger than the layer thickness of a layer having a larger In mixed crystal ratio. Semiconductor light emitting diode. 前記活性層は障壁層と井戸層の周期構造であり、井戸層のうち少なくとも一層は、前記複数の層からなる発光層である、請求項1〜5いずれか記載の窒化物半導体発光ダイオード。   The nitride semiconductor light emitting diode according to any one of claims 1 to 5, wherein the active layer has a periodic structure of a barrier layer and a well layer, and at least one of the well layers is a light emitting layer composed of the plurality of layers. 前記障壁層はGaN層からなる、請求項6記載の窒化物半導体発光ダイオード。   The nitride semiconductor light emitting diode according to claim 6, wherein the barrier layer is made of a GaN layer. 前記障壁層の層厚は5nm以上である、請求項6または7記載の窒化物半導体発光ダイオード。   The nitride semiconductor light-emitting diode according to claim 6 or 7, wherein the barrier layer has a thickness of 5 nm or more. 前記活性層と前記p型窒化物半導体層の間にGaN層が形成された、請求項1〜8いずれか記載の窒化物半導体発光ダイオード。   The nitride semiconductor light-emitting diode according to claim 1, wherein a GaN layer is formed between the active layer and the p-type nitride semiconductor layer. 前記活性層と前記p型窒化物半導体層の間に形成されたGaN層の層厚は5nm以上である、請求項9記載の窒化物半導体発光ダイオード。   The nitride semiconductor light-emitting diode according to claim 9, wherein the GaN layer formed between the active layer and the p-type nitride semiconductor layer has a thickness of 5 nm or more. 請求項1〜10いずれか記載の窒化物半導体発光ダイオードの製造方法において、
前記複数の層からなる発光層は、各層ごと有機金属気相成長法によりトリメチルガリウムに対するトリメチルインジウムの供給量を変化させることにより形成される、窒化物半導体発光ダイオードの製造方法。
In the manufacturing method of the nitride semiconductor light emitting diode according to claim 1,
The light emitting layer composed of the plurality of layers is formed by changing the supply amount of trimethylindium with respect to trimethylgallium by metal organic vapor phase epitaxy for each layer.
請求項1〜10いずれか記載の窒化物半導体発光ダイオードの製造方法において、
前記複数の層からなる発光層は、各層ごと有機金属気相成長法により成長温度が一定で形成される、請求項11記載の窒化物半導体発光ダイオードの製造方法。
In the manufacturing method of the nitride semiconductor light emitting diode according to claim 1,
12. The method for manufacturing a nitride semiconductor light emitting diode according to claim 11, wherein the light emitting layer composed of the plurality of layers is formed with a constant growth temperature by metal organic vapor phase epitaxy.
請求項1〜10いずれか記載の窒化物半導体発光ダイオードの製造方法において、
前記活性層とp型窒化物半導体層の間に形成されたGaN層は、前記複数の層からなる発光層と同じ成長温度で形成される、請求項11または12記載の窒化物半導体発光ダイオードの製造方法。
In the manufacturing method of the nitride semiconductor light emitting diode according to claim 1,
The nitride semiconductor light emitting diode according to claim 11 or 12, wherein the GaN layer formed between the active layer and the p-type nitride semiconductor layer is formed at the same growth temperature as the light emitting layer composed of the plurality of layers. Production method.
JP2009076144A 2009-03-26 2009-03-26 Nitride semiconductor light emitting diode and manufacturing method thereof Active JP5306873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009076144A JP5306873B2 (en) 2009-03-26 2009-03-26 Nitride semiconductor light emitting diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009076144A JP5306873B2 (en) 2009-03-26 2009-03-26 Nitride semiconductor light emitting diode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010232290A true JP2010232290A (en) 2010-10-14
JP5306873B2 JP5306873B2 (en) 2013-10-02

Family

ID=43047875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009076144A Active JP5306873B2 (en) 2009-03-26 2009-03-26 Nitride semiconductor light emitting diode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5306873B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098850A1 (en) 2011-01-21 2012-07-26 パナソニック株式会社 Gallium nitride compound semiconductor light emitting element and light source provided with said light emitting element
JP2013183032A (en) * 2012-03-02 2013-09-12 Toshiba Corp Semiconductor light-emitting element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076144A (en) * 2007-09-21 2009-04-09 Nec Electronics Corp Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076144A (en) * 2007-09-21 2009-04-09 Nec Electronics Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098850A1 (en) 2011-01-21 2012-07-26 パナソニック株式会社 Gallium nitride compound semiconductor light emitting element and light source provided with said light emitting element
US8994031B2 (en) 2011-01-21 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Gallium nitride compound semiconductor light emitting element and light source provided with said light emitting element
JP2013183032A (en) * 2012-03-02 2013-09-12 Toshiba Corp Semiconductor light-emitting element

Also Published As

Publication number Publication date
JP5306873B2 (en) 2013-10-02

Similar Documents

Publication Publication Date Title
TWI466330B (en) Group iii nitride semiconductor light-emitting device
US9373750B2 (en) Group III nitride semiconductor light-emitting device
JP5533744B2 (en) Group III nitride semiconductor light emitting device
JP5996846B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
JP4940317B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4881491B2 (en) Semiconductor light emitting device
JP2008226906A (en) Nitride semiconductor light-emitting element
JP2008244307A (en) Semiconductor light-emitting element and nitride semiconductor light-emitting element
JP5744615B2 (en) Nitride semiconductor light emitting diode device
US10580936B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
JP2008130877A (en) Method for fabricating nitride semiconductor light emitting element
WO2014061692A1 (en) Nitride semiconductor light emitting element
JP4668225B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP2010263189A (en) Nitride semiconductor light-emitting diode
JP2012248763A (en) Manufacturing method of group iii nitride semiconductor light-emitting element
JP2010003913A (en) Nitride semiconductor light-emitting diode element and method of manufacturing the same
US8816354B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
JP5306873B2 (en) Nitride semiconductor light emitting diode and manufacturing method thereof
JP2011066047A (en) Nitride semiconductor light emitting element
JP5135465B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2011035156A (en) Method for manufacturing group iii nitride semiconductor light emitting device
JP5420515B2 (en) Nitride semiconductor light emitting device
US9508895B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
JP2011029218A (en) Nitride semiconductor light emitting element structure, and method of forming the same
JP5458162B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5306873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350