JPH07247178A - Method for cementing ti or ti-alloy with alumina - Google Patents

Method for cementing ti or ti-alloy with alumina

Info

Publication number
JPH07247178A
JPH07247178A JP3867294A JP3867294A JPH07247178A JP H07247178 A JPH07247178 A JP H07247178A JP 3867294 A JP3867294 A JP 3867294A JP 3867294 A JP3867294 A JP 3867294A JP H07247178 A JPH07247178 A JP H07247178A
Authority
JP
Japan
Prior art keywords
alloy
alumina
cementing
brazing material
maximum length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3867294A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takeda
裕之 武田
Yoichiro Yoneda
陽一郎 米田
Yoshitsune Tochio
善恒 杤尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3867294A priority Critical patent/JPH07247178A/en
Publication of JPH07247178A publication Critical patent/JPH07247178A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cemented part free from the generation of defects, e.g. cracks, having high cementing strength and excellent in vacuum tightness at the cemented part by cementing Ti or Ti-allOy with alumina.through a soldering material layer having a specific constitution. CONSTITUTION:Between Ti or Ti-alloy and alumina, a soldering material consisting of Ag-Cu-Ti alloy, a stress-buffering material consisting of Cu or Cu allay, a soldering material consisting of Ag-Cu alloy and a soldering material consisting of Fe-Ni-Co alloy and Ag-Cu alloy same or different from the above- mentioned Ag-Cu alloy are layered in the above cited order from the alumina side to the Ti or Ti alloy side and the soldering materials are melted by heating to cementing them. In this cementing, (1) in the case where the maximum length of the cemented faces is longer than 34mm, the cementing is performed under the condition in which equation I is satisfied and (2) in the case where it is 34 mm or shorter than 34mm, cementing is performed under the condition in which equation II is satisfied. In equations I and II, tFeNiCo is the length of Fe-Ni-Co alloy (mm); tT<i> is the thickness of a Ti matrix phase (mm); d is the maximum length of the cemented faces (mm).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体製造用装
置等において使用する素材の内、TiもしくはTi合金
(以下Ti母材と言うこともある)とアルミナとを接合
する技術に関し、詳細にはTi母材とアルミナの間に強
度及び真空気密性の良好な接合部を形成することができ
る様な接合方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for joining Ti or a Ti alloy (hereinafter also referred to as a Ti base material) and alumina among materials used in, for example, a semiconductor manufacturing apparatus, in detail. Relates to a joining method capable of forming a joint having good strength and vacuum tightness between a Ti base material and alumina.

【0002】[0002]

【従来の技術】Ti母材とアルミナのように熱膨張係数
が異なる材料を接合するに際しては、健全な接合体を得
るという観点から、従来、被接合材の間に応力緩和材を
配置する方法(特開昭61−215272)、接合体の
形状を工夫する方法(特開平4−77369)、或は接
合後に接合体を加工する方法(特公平3−71391)
などが検討され、残留応力の緩和を図ることが行われて
いる。
2. Description of the Related Art When joining materials having different thermal expansion coefficients, such as a Ti base material and alumina, from the viewpoint of obtaining a sound joined body, conventionally, a stress relaxation material is arranged between the materials to be joined. (JP-A-61-215272), a method for devising the shape of the bonded body (JP-A-4-77369), or a method for processing the bonded body after bonding (Japanese Patent Publication No. 3-71391).
Etc. have been studied to reduce residual stress.

【0003】特にTi母材とアルミナの接合では、図1
に示すようにアルミナ側にCu材を積層すると共にTi
母材側にFe−Ni−Co合金を積層して各層間をろう
材により接合することが提案されている(特開平5−2
86777)。
In particular, when joining the Ti base material and alumina, as shown in FIG.
As shown in Fig. 3, the Cu material is laminated on the alumina side and Ti
It has been proposed to stack an Fe-Ni-Co alloy on the base material side and join each layer with a brazing material (Japanese Patent Laid-Open Publication No. 5-2.
86777).

【0004】[0004]

【発明が解決しようとする課題】しかしながらたとえ上
記の様な方法でTi母材とアルミナを接合したとして
も、上記積層体では、接合終了後の冷却過程で発生する
残留応力を十二分に低減することができず、使用中にア
ルミナ側から割れを生じるというトラブルは避け切れな
かった。
However, even if the Ti base material and the alumina are bonded by the above-mentioned method, the residual stress generated in the cooling process after the bonding is sufficiently reduced in the above-mentioned laminated body. However, the problem of cracking from the alumina side during use was inevitable.

【0005】本発明はかかる問題点に鑑みてなされたも
のであって、Ti母材とアルミナの接合体を製造するに
際し、割れなどの欠陥を生じることがなく、しかも接合
強度が高く、接合部の真空気密性にも優れた接合部を得
ることができる様な接合方法の提供を目的とするもので
ある。
The present invention has been made in view of the above problems, and in producing a joined body of a Ti base material and alumina, defects such as cracks do not occur, and the joining strength is high and the joining portion is high. It is an object of the present invention to provide a joining method capable of obtaining a joined portion having excellent vacuum airtightness.

【0006】[0006]

【課題を解決するための手段】上記目的を達成すること
のできた本発明接合方法の要旨を述べると、アルミナと
Ti母材の間に、アルミナ側からTi母材側に向けて、 (A)Ag−Cu−Ti合金からなるろう材 (B)CuまたはCu合金からなる応力緩和材 (C)Ag−Cu合金からなるろう材 (D)Fe−Ni−Co合金 (E)前記(C)のAg−Cu合金と同一または異なっ
たAg−Cu合金からなるろう材 を順次積層し、前記ろう材を加熱溶融させて接合するに
当たり、(1)接合面の最大長さが34mmより長い場
合は、下記(1)式
The gist of the joining method of the present invention which has been able to achieve the above object is as follows. Between the alumina and the Ti base material, from the alumina side toward the Ti base material side, (A) Brazing material made of Ag-Cu-Ti alloy (B) Stress relaxation material made of Cu or Cu alloy (C) Brazing material made of Ag-Cu alloy (D) Fe-Ni-Co alloy (E) Of (C) When a brazing material composed of an Ag-Cu alloy that is the same as or different from the Ag-Cu alloy is sequentially laminated, and when the brazing material is heated and melted and bonded (1) when the maximum length of the bonding surface is longer than 34 mm, Formula (1) below

【0007】[0007]

【数3】 の関係を満足する様な条件を、また(2)接合面の最大
長さが34mm以下の場合は、下記(2)式
[Equation 3] If the maximum length of the joint surface is 34 mm or less, the condition (2) below should be satisfied.

【0008】[0008]

【数4】 の関係を満足する様な条件を選択して接合を行うもので
ある。
[Equation 4] The joining is performed by selecting the conditions that satisfy the relationship of.

【0009】上記(1)式及び(2)式で示される関係
をグラフ化して説明すると、(1)式で示す関係は接合
面の最大長さ(d)によって異なるので、d=50mm
の場合を代表的に取り上げて図2に示した。また(2)
式で示す関係はd値に関係なく図3に示す通りとなる。
尚本発明における『接合面の最大長さ』とは、接合面の
平面視形状において最も離反した二点間の距離を言い、
具体例をもって示せば図4に例示する種々の接合面にお
ける長さdである。
The relationship expressed by the equations (1) and (2) will be described in the form of a graph. Since the relationship expressed by the equation (1) varies depending on the maximum length (d) of the joint surface, d = 50 mm.
The above case is representatively shown in FIG. Also (2)
The relationship represented by the formula is as shown in FIG. 3 regardless of the d value.
The "maximum length of the joint surface" in the present invention means the distance between the two most separated points in the plan view shape of the joint surface,
To give a concrete example, it is the length d at various joint surfaces illustrated in FIG.

【0010】[0010]

【作用】本発明における一方の接合対象であるTi母材
は、純TiまたはTi合金であり、Ti合金としてはそ
の種類を特定するものではなく、要はTi基でありさす
れば良く、Al,V,Cr,Fe,Mg,Sn,Mo,
Zr,Cu,Niなどの如何なる合金元素を含んでいる
ものであっても良いが、中でも最も代表的なものを非限
定的に例示しておくと、Ti−6重量%Al−4重量%
V,Ti−5重量%Al−2重量%Cr−1重量%F
e,Ti−5重量%Al−2.5重量%Sn,Ti−2
重量%Cu,Ti−2.5重量%Cu,Ti−15重量
%Mo−5重量%Zr,Ti−11.5重量%Mo−6
重量%Zr−4.5重量%Sn,Ti−52.5重量%
Ni−1.56重量%Fe−1.79重量%Moなどを
挙げることができる。
The Ti base material, which is one of the objects to be joined in the present invention, is pure Ti or a Ti alloy, and the type of Ti alloy is not specified. The point is that a Ti base is essential. V, Cr, Fe, Mg, Sn, Mo,
Although it may contain any alloying element such as Zr, Cu or Ni, the most typical one among them is, without limitation, Ti-6 wt% Al-4 wt%.
V, Ti-5 wt% Al-2 wt% Cr-1 wt% F
e, Ti-5 wt% Al-2.5 wt% Sn, Ti-2
Wt% Cu, Ti-2.5 wt% Cu, Ti-15 wt% Mo-5 wt% Zr, Ti-11.5 wt% Mo-6
Wt% Zr-4.5 wt% Sn, Ti-52.5 wt%
Ni-1.56 weight% Fe-1.79 weight% Mo etc. can be mentioned.

【0011】他方の接合対象であるアルミナは、必ずし
も純アルミナである必要はなく、要はアルミナが主体と
なるものであれば良く、例えば、SiO2 、Y23
MgO、CaO、TiO2 、ZrO2 、HfO2 、Si
C、TiC、ZrC、WC、VC、TaC、Si3
4 、ZrN、TiN、TiB2 などとの複合物質も本発
明に適用することができる。次にアルミナとTi母材の
間に介在積層される前記(A)〜(E)の各物質につい
て説明する。
The alumina to be joined on the other side does not necessarily have to be pure alumina, and the essential point is that alumina is the main component. For example, SiO 2 , Y 2 O 3 ,
MgO, CaO, TiO 2 , ZrO 2 , HfO 2 , Si
C, TiC, ZrC, WC, VC, TaC, Si 3 N
Composite materials with 4 , ZrN, TiN, TiB 2 and the like can also be applied to the present invention. Next, each of the substances (A) to (E) that are interposed and laminated between the alumina and the Ti base material will be described.

【0012】(A)のAg−Cu−Ti合金からなるろ
う材としては、汎用のAg−Cu−Ti合金ろう材は全
て使用可能であり、代表的なものを非限定的に例示する
と、例えば72重量%Ag−27重量%Cu−1重量%
Ti合金ろう材、70.5重量%Ag−27.5重量%
Cu−2重量%Ti合金ろう材、68.8重量%Ag−
26.7重量%Cu−4.5重量%Ti合金ろう材、6
3重量%Ag−35.25重量%Cu−1.75重量%
Ti合金ろう材などを挙げることができる。
As the brazing material composed of the Ag-Cu-Ti alloy of (A), all of the general-purpose Ag-Cu-Ti alloy brazing materials can be used. 72 wt% Ag-27 wt% Cu-1 wt%
Ti alloy brazing material, 70.5% by weight Ag-27.5% by weight
Cu-2 wt% Ti alloy brazing material, 68.8 wt% Ag-
26.7 wt% Cu-4.5 wt% Ti alloy brazing filler metal, 6
3% by weight Ag-35.25% by weight Cu-1.75% by weight
Examples thereof include a Ti alloy brazing material.

【0013】(B)のCuまたはCu合金からなる応力
緩和材は、CuまたはCu合金の柔軟性を利用するもの
であり、この様な柔軟性を保持するものは全て使用でき
る。従ってまずCuとしては、無酸素Cu、タフピッチ
Cuまたはリン脱酸Cuなどの如何を問わずに用いるこ
とができ、またCu合金としては、Cuの柔軟性に悪影
響を与えない合金元素(例えばZn,Sn,Pb,F
e,Al,Mn,Niなどが非限定的に例示される)を
含むものが全て使用できる。Cuの厚さは0.1mm以
上、1mm以下が望ましい。Cuの厚さが、0.1mm
未満の場合には、応力緩和の効果が少なく、アルミナに
割れを生じることがある。一方Cuの厚さが1mmを超
えると、Cuの強度が接合強度に対し支配的になってし
まうため、全体的な接合強度が低くなってしまう。
The stress relaxation material (B) made of Cu or Cu alloy utilizes the flexibility of Cu or Cu alloy, and any material having such flexibility can be used. Therefore, first, Cu can be used regardless of whether it is oxygen-free Cu, tough pitch Cu, phosphorus deoxidized Cu, or the like, and as a Cu alloy, an alloying element (for example, Zn, Sn, Pb, F
e, Al, Mn, Ni, etc. are non-limiting examples). The thickness of Cu is preferably 0.1 mm or more and 1 mm or less. Cu thickness is 0.1mm
If it is less than the above range, the effect of stress relaxation is small and the alumina may be cracked. On the other hand, if the thickness of Cu exceeds 1 mm, the strength of Cu becomes dominant over the bonding strength, so that the overall bonding strength becomes low.

【0014】(C)および(E)のAg−Cu合金から
なるろう材としては、汎用のAg−Cu合金ろう材は全
て使用可能であり、代表的なものを非限定的に例示する
と、例えば72重量%Ag−28重量%Cu合金ろう
材、85重量%Ag−15重量%Cu合金ろう材、50
重量%Ag−50重量%Cu合金ろう材、67重量%A
g−33重量%Cu合金ろう材などを挙げることができ
る。(C)で用いるAg−Cu合金と(E)で用いるA
g−Cu合金は、同一であっても異なっていても良い。
As the brazing material composed of the Ag-Cu alloys of (C) and (E), all the general-purpose Ag-Cu alloy brazing materials can be used. 72 wt% Ag-28 wt% Cu alloy brazing filler metal, 85 wt% Ag-15 wt% Cu alloy brazing filler metal, 50
Wt% Ag-50 wt% Cu alloy brazing filler metal, 67 wt% A
An example is a g-33 wt% Cu alloy brazing material. Ag-Cu alloy used in (C) and A used in (E)
The g-Cu alloy may be the same or different.

【0015】(D)のFe−Ni−Co合金はTi母材
よりも熱膨張係数が小さいため、Ti母材に接して配置
することにより、Ti母材の熱収縮を減少させる方向に
作用する。この様な条件を満足するFe−Ni−Co合
金としては、Fe−(25〜35重量%)Ni−(13
〜23重量%)Co合金が汎用されており、代表的なも
のを非限定的に例示すると、Fe−32重量%Ni−1
7重量%Co合金、Fe−29重量%Ni−16重量%
Co合金、Fe−29重量%Ni−17重量%Co合
金、Fe−26重量%Ni−22重量%Co合金などを
挙げることができる。
Since the Fe-Ni-Co alloy (D) has a smaller coefficient of thermal expansion than the Ti base material, when it is placed in contact with the Ti base material, the thermal contraction of the Ti base material is reduced. . An Fe-Ni-Co alloy satisfying such conditions is Fe- (25 to 35% by weight) Ni- (13
-23% by weight) Co alloy is widely used, and a typical example is, without limitation, Fe-32% by weight Ni-1.
7 wt% Co alloy, Fe-29 wt% Ni-16 wt%
Examples include Co alloys, Fe-29 wt% Ni-17 wt% Co alloys, Fe-26 wt% Ni-22 wt% Co alloys, and the like.

【0016】この様なFe−Ni−Co合金を用いるに
当たっては、Ti母材の厚さに対応してFe−Ni−C
o合金の厚さを定めることが必要であり、そのための条
件式を種々研究した結果、前記(1)式および(2)式
で示されることが分かった。(1)式および(2)式は
接合面の最大長さ(d)によってd値=34mmを境界
に区別されており、d値が34mmより長い場合には、
(1)式の条件を満足する厚さのFe−Ni−Co合金
を接合する。この様にしておけば、アルミナとTi母材
との熱膨張係数差で発生する残留応力を低減することが
できる。この条件を満足していないと、アルミナ側に残
留する応力を十分に低減することができず、あるいはF
e−Ni−Co合金とアルミナとの熱膨張係数差により
発生する残留応力が大きくなりアルミナ側に割れを生じ
てしまう。
When using such an Fe-Ni-Co alloy, Fe-Ni-C is used in accordance with the thickness of the Ti base material.
It is necessary to determine the thickness of the o alloy, and as a result of various studies on the conditional expressions therefor, it was found that the expressions are represented by the above expressions (1) and (2). The expressions (1) and (2) are distinguished by the maximum length (d) of the joint surface at the boundary of d value = 34 mm. When the d value is longer than 34 mm,
An Fe-Ni-Co alloy having a thickness satisfying the condition of formula (1) is joined. By doing so, the residual stress generated due to the difference in thermal expansion coefficient between the alumina and the Ti base material can be reduced. If this condition is not satisfied, the residual stress on the alumina side cannot be reduced sufficiently, or F
The residual stress generated due to the difference in coefficient of thermal expansion between the e-Ni-Co alloy and alumina becomes large, and cracks occur on the alumina side.

【0017】一方接合面の最大長さが34mm以下の場
合は、アルミナ側に残留する応力は接合面の最大長さに
影響されず、アルミナ側に残留する応力を低減し、アル
ミナの割れを防止するには、Ti母材とFe−Ni−C
o合金の厚さの関係を(2)式で示す条件を満足するよ
うに設定するのが適切であることを究明した。
On the other hand, when the maximum length of the joint surface is 34 mm or less, the stress remaining on the alumina side is not affected by the maximum length of the joint surface, the stress remaining on the alumina side is reduced, and cracking of alumina is prevented. To achieve this, Ti base material and Fe-Ni-C
It has been clarified that it is appropriate to set the relationship of the thickness of the o alloy so as to satisfy the condition represented by the formula (2).

【0018】[0018]

【実施例】次に本発明の実施例について比較例と比較し
て説明する。実施例1 (図5参照) 直径50mm,内径40mmの円筒形状である純Ti円
筒21と直径50mmの円盤形状であるアルミナ27と
の接合において、アルミナ27側から順にAg−Cu−
Ti合金ろう材(72重量%Ag−27重量%Cu−1
重量%Ti合金ろう材)26、無酸素Cu25、Ag−
Cu合金ろう材(72重量%Ag−28重量%Cu合金
ろう材)24、Fe−29重量%Ni−17重量%Co
合金23、およびAg−Cu合金ろう材(72重量%A
g−28重量%Cu合金ろう材)22を積層して配置
し、真空炉中で850℃に加熱することにより、前記各
ろう材を溶融させて接合を行った。接合した試験片につ
いて、外観観察および超音波探傷により無酸素Cu25
とアルミナ27との接合界面の検査を実施した。試験結
果を表1に示す。
EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples. Example 1 (see FIG. 5) In joining a pure Ti cylinder 21 having a cylindrical shape with a diameter of 50 mm and an inner diameter of 40 mm and an alumina 27 having a disk shape with a diameter of 50 mm, Ag—Cu— in order from the alumina 27 side.
Ti alloy brazing material (72 wt% Ag-27 wt% Cu-1
Wt% Ti alloy brazing material) 26, oxygen-free Cu 25, Ag-
Cu alloy brazing material (72% by weight Ag-28% by weight Cu alloy brazing material) 24, Fe-29% by weight Ni-17% by weight Co
Alloy 23, and Ag-Cu alloy brazing filler metal (72 wt% A
g-28 wt% Cu alloy brazing material) 22 was laminated and arranged, and each brazing material was melted and joined by heating to 850 ° C. in a vacuum furnace. Oxygen-free Cu25 was applied to the joined test pieces by visual observation and ultrasonic flaw detection.
The joint interface between alumina and alumina 27 was inspected. The test results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1の実施例で示すように、Ti母材とF
e−Ni−Co合金の厚さおよび接合面の最大長さ
(d)の関係が(1)式の条件を満足する場合は、接合
後のアルミナ中の残留応力が低減され、その結果アルミ
ナ側に割れを生じない健全な接合体を提供できた。一方
比較例で示す様に、Ti母材とFe−Ni−Co合金の
厚さおよび接合面の最大長さ(d)の関係が(1)式の
条件を満足しない場合には、残留応力が十分に軽減され
ないため、アルミナ側に割れがみられ、健全な接合体に
はなっていないことが分かった。
As shown in the examples of Table 1, Ti base material and F
When the relationship between the thickness of the e-Ni-Co alloy and the maximum length (d) of the joint surface satisfies the condition of expression (1), the residual stress in the alumina after joining is reduced, and as a result, the alumina side It was possible to provide a sound joined body that does not crack. On the other hand, as shown in the comparative example, when the relationship between the thickness of the Ti base material and the Fe-Ni-Co alloy and the maximum length (d) of the joint surface does not satisfy the condition of the expression (1), the residual stress is Since it was not sufficiently reduced, cracks were seen on the alumina side, and it was found that a sound bonded body was not obtained.

【0021】実施例2(図6参照) いずれも直径34mm,内径20mmの円筒形状である
純Ti円筒31とアルミナ円筒37の接合において、ア
ルミナ37側から順にAg−Cu−Ti合金ろう材(7
0.5重量%Ag−27.5重量%Cu−2重量%Ti
合金ろう材)36、タフピッチCu35、Ag−Cu合
金ろう材(72重量%Ag−28重量%Cu合金ろう
材)34、Fe−32重量%Ni−17重量%Co合金
33、およびAg−Cu合金ろう材(72重量%Ag−
28重量%Cu合金ろう材)32を積層して配置し、8
50℃、Ar雰囲気中で加熱接合した。接合した試験片
について、外観観察および超音波探傷によりタフピッチ
Cu35とアルミナ37との接合界面の検査を実施し
た。試験結果を表2に示す。
Example 2 (see FIG. 6) In joining a pure Ti cylinder 31 and an alumina cylinder 37, each of which has a diameter of 34 mm and an inner diameter of 20 mm, the Ag-Cu-Ti alloy brazing filler metal (7
0.5 wt% Ag-27.5 wt% Cu-2 wt% Ti
Alloy brazing material) 36, tough pitch Cu 35, Ag-Cu alloy brazing material (72 wt% Ag-28 wt% Cu alloy brazing material) 34, Fe-32 wt% Ni-17 wt% Co alloy 33, and Ag-Cu alloy Brazing material (72 wt% Ag-
28 wt% Cu alloy brazing material) 32 is laminated and arranged,
Heat bonding was performed at 50 ° C. in an Ar atmosphere. With respect to the joined test piece, the joint interface between the tough pitch Cu 35 and the alumina 37 was inspected by visual observation and ultrasonic flaw detection. The test results are shown in Table 2.

【0022】[0022]

【表2】 [Table 2]

【0023】表2の実施例で示すように、Ti母材とF
e−Ni−Co合金の厚さの関係が(2)式の条件を満
足する場合は、接合後のアルミナ中に残留する応力が低
減され、アルミナ側に割れのない健全な接合体を提供す
ることが可能であった。一方比較例で示すように、Ti
母材とFe−Ni−Co合金の厚さの関係が(2)式の
条件を満足しない場合には、残留応力が十分に軽減され
ないためアルミナ側に割れが見られ、健全な接合体は得
られなかった。
As shown in the examples of Table 2, Ti base material and F
When the thickness relationship of the e-Ni-Co alloy satisfies the condition of the expression (2), the stress remaining in the alumina after bonding is reduced, and a healthy bonded body without cracks on the alumina side is provided. It was possible. On the other hand, as shown in the comparative example, Ti
When the relationship between the thickness of the base material and the thickness of the Fe-Ni-Co alloy does not satisfy the condition of the expression (2), the residual stress is not sufficiently reduced, so cracks are seen on the alumina side, and a sound bonded body is obtained. I couldn't do it.

【0024】実施例3(図7参照) いずれも接合面が一辺40mmの正方形であるTi−6
重量%Al−4重量%V合金ブロック41とアルミナブ
ロック47を接合するに当たり、アルミナ47側から順
にAg−Cu−Ti合金ろう材(72重量%Ag−27
重量%Cu−1重量%Ti合金ろう材)46、リン脱酸
Cu45、Ag−Cu合金ろう材(72重量%Ag−2
8重量%Cu合金ろう材)44、Fe−29重量%Ni
−16重量%Co合金43、およびAg−Cu合金ろう
材(72重量%Ag−28重量%Cu合金ろう材)42
を積層して配置し、真空炉中850℃に加熱することに
より前記各ろう材を溶融させて接合体を得た。得られた
試験片について、外観観察および超音波探傷によりリン
脱酸Cu45とアルミナ47との接合界面の検査を実施
した。試験結果を表3に示す。
Example 3 (see FIG. 7) In each case, Ti-6 is a square having a joint surface of 40 mm on a side.
When joining the wt% Al-4 wt% V alloy block 41 and the alumina block 47, an Ag—Cu—Ti alloy brazing filler metal (72 wt% Ag-27) is sequentially placed from the alumina 47 side.
Wt% Cu-1 wt% Ti alloy brazing filler metal) 46, phosphorus deoxidized Cu 45, Ag-Cu alloy brazing filler metal (72 wt% Ag-2)
8 wt% Cu alloy brazing material) 44, Fe-29 wt% Ni
-16 wt% Co alloy 43, and Ag-Cu alloy brazing filler metal (72 wt% Ag-28 wt% Cu alloy brazing filler metal) 42
Were laminated and arranged, and each brazing material was melted by heating at 850 ° C. in a vacuum furnace to obtain a joined body. With respect to the obtained test piece, the joint interface between the phosphorous deoxidized Cu 45 and the alumina 47 was inspected by visual observation and ultrasonic flaw detection. The test results are shown in Table 3.

【0025】[0025]

【表3】 [Table 3]

【0026】表3の実施例で示すように、Ti母材とF
e−Ni−Co合金の厚さおよび接合面の最大長さ
(d)の関係が(1)式の条件を満足する場合は、接合
後のアルミナ中の残留応力が低減され、アルミナ側に割
れの無い健全な接合体を提供することが可能であった。
一方比較例で示すように、Ti母材とFe−Ni−Co
合金の厚さおよび接合面の最大長さ(d)の関係が
(1)式の条件を満足しない場合には、残留応力が十分
に軽減されないため、アルミナ側に割れがみられ、健全
な接合はなされなかった。
As shown in the examples of Table 3, Ti base material and F
When the relationship between the thickness of the e-Ni-Co alloy and the maximum length (d) of the joint surface satisfies the condition of formula (1), the residual stress in the alumina after joining is reduced and cracks occur on the alumina side. It was possible to provide a sound joined body that does not have any.
On the other hand, as shown in the comparative example, the Ti base material and Fe-Ni-Co
When the relationship between the thickness of the alloy and the maximum length (d) of the joint surface does not satisfy the condition of the expression (1), the residual stress is not sufficiently reduced, so that cracks are seen on the alumina side and a sound joint is obtained. It wasn't done.

【0027】[0027]

【発明の効果】以上詳述したように、本発明によれば、
アルミナとTiまたはTi合金とを接合した際の残留応
力を低減することができ、割れや界面剥離の無い健全な
接合体を提供することが可能になる。
As described in detail above, according to the present invention,
Residual stress when alumina and Ti or a Ti alloy are bonded can be reduced, and a sound bonded body without cracks or interfacial peeling can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る接合方法を示す模式図。FIG. 1 is a schematic diagram showing a joining method according to the present invention.

【図2】本発明に係る接合面の最大長さが50mmの場
合の(1)式の関係を示すグラフ。
FIG. 2 is a graph showing the relationship of expression (1) when the maximum length of the joint surface according to the present invention is 50 mm.

【図3】本発明に係る(2)式の関係を示すグラフ。FIG. 3 is a graph showing the relationship of equation (2) according to the present invention.

【図4】本発明に係る接合面の形状と接合面の最大長さ
との関係を示す模式図。
FIG. 4 is a schematic diagram showing the relationship between the shape of the joint surface and the maximum length of the joint surface according to the present invention.

【図5】本発明の実施例および比較例に係る接合方法を
示す模式図。
FIG. 5 is a schematic diagram showing a joining method according to an example and a comparative example of the present invention.

【図6】本発明の実施例および比較例に係る接合方法を
示す模式図。
FIG. 6 is a schematic diagram showing a joining method according to examples and comparative examples of the present invention.

【図7】本発明の実施例および比較例に係る接合方法を
示す模式図。
FIG. 7 is a schematic diagram showing a joining method according to examples and comparative examples of the present invention.

【符号の説明】[Explanation of symbols]

11 Ti母材 12,14 Ag−Cuろう材 13 Fe−Ni−Co合金 15 Cu 16 Ag−Cu−Tiろう材 17 アルミナ 21 純Ti 22,24 Ag−Cuろう材 23 Fe−Ni−Co合金 25 無酸素Cu 26 Ag−Cu−Tiろう材 27 アルミナ 31 純Ti 32,34 Ag−Cuろう材 33 Fe−Ni−Co合金 35 タフピッチCu 36 Ag−Cu−Tiろう材 37 アルミナ 41 Ti−6重量%Al−4重量%V 42,44 Ag−Cuろう材 43 Fe−Ni−Co合金 45 りん脱酸Cu 46 Ag−Cu−Tiろう材 47 アルミナ 11 Ti base material 12,14 Ag-Cu brazing material 13 Fe-Ni-Co alloy 15 Cu 16 Ag-Cu-Ti brazing material 17 Alumina 21 Pure Ti 22,24 Ag-Cu brazing material 23 Fe-Ni-Co alloy 25 Oxygen-free Cu 26 Ag-Cu-Ti brazing material 27 Alumina 31 Pure Ti 32,34 Ag-Cu brazing material 33 Fe-Ni-Co alloy 35 Tough pitch Cu 36 Ag-Cu-Ti brazing material 37 Alumina 41 Ti-6 wt% Al-4 wt% V 42,44 Ag-Cu brazing material 43 Fe-Ni-Co alloy 45 Phosphorus deoxidized Cu 46 Ag-Cu-Ti brazing material 47 Alumina

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 TiもしくはTi合金とアルミナとの間
に、アルミナ側からTiもしくはTi合金側に向けて、
Ag−Cu−Ti合金からなるろう材、CuまたはCu
合金からなる応力緩和材、Ag−Cu合金からなるろう
材、Fe−Ni−Co合金、前記Ag−Cu合金と同一
または異なったAg−Cu合金からなるろう材を順次積
層し、前記ろう材を加熱溶融させて接合する方法におい
て、 (1)接合面の最大長さが34mmより長い場合は、下
記(1)式 【数1】 の関係を満足する様な条件下に、また (2)接合面の最大長さが34mm以下の場合は、下記
(2)式 【数2】 の関係を満足する様な条件下に接合することを特徴とす
る接合方法。
1. Between Ti or Ti alloy and alumina, from the alumina side to the Ti or Ti alloy side,
Brazing material made of Ag-Cu-Ti alloy, Cu or Cu
A stress relaxation material made of an alloy, a brazing material made of an Ag-Cu alloy, a Fe-Ni-Co alloy, and a brazing material made of an Ag-Cu alloy which is the same as or different from the Ag-Cu alloy are sequentially laminated to form the brazing material. In the method of joining by heating and melting, (1) when the maximum length of the joining surface is longer than 34 mm, the following (1) formula Under the conditions that satisfy the relationship of (2) and (2) the maximum length of the joint surface is 34 mm or less, the following (2) equation (2) The joining method is characterized in that the joining is carried out under the conditions satisfying the relationship.
JP3867294A 1994-03-09 1994-03-09 Method for cementing ti or ti-alloy with alumina Withdrawn JPH07247178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3867294A JPH07247178A (en) 1994-03-09 1994-03-09 Method for cementing ti or ti-alloy with alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3867294A JPH07247178A (en) 1994-03-09 1994-03-09 Method for cementing ti or ti-alloy with alumina

Publications (1)

Publication Number Publication Date
JPH07247178A true JPH07247178A (en) 1995-09-26

Family

ID=12531771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3867294A Withdrawn JPH07247178A (en) 1994-03-09 1994-03-09 Method for cementing ti or ti-alloy with alumina

Country Status (1)

Country Link
JP (1) JPH07247178A (en)

Similar Documents

Publication Publication Date Title
EP0135937B1 (en) Method of bonding alumina to metal
EP0147360B1 (en) Method for bonding ceramics and metals
EP0726239A2 (en) Joined ceramic structures and a process for the production thereof
JPS62104696A (en) Metallic ceramics junction body and metallic ceramics coupling body formed by using said body
JPS61111981A (en) Method of bonding ceramic part and metal part
JPS60166165A (en) Joining method of metal and ceramics
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPH07247178A (en) Method for cementing ti or ti-alloy with alumina
JPH0630829B2 (en) Active metal brazing material
JP4331370B2 (en) Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body
JPH08119761A (en) Soldering material for bonding and bonded part bonded with the soldering material for bonding
JPH07300376A (en) Method for joining alumina to fe-ni-co alloy
JP3501834B2 (en) Manufacturing method of joined body of ceramic material and metal material
JPH01308884A (en) Material-bonding process and bonded product
JPH061670A (en) Joined body of ceramic member and metal member
JPH0940476A (en) Joined body of aluminum alloy member and ceramic member
JPH05286777A (en) Bonding method of ceramics with ti or ti alloy
JP3215554B2 (en) Method of joining materials with different coefficients of thermal expansion
JPH0469035B2 (en)
JPH0243704B2 (en) SERAMITSUKUSUTOKINZOKUTONOSETSUGOHOHO
JPH1081573A (en) Production of bonded body of age-hardening aluminum alloy member to ceramic member
JPH0649620B2 (en) Method for joining ceramic member and metal member
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPS6197174A (en) Diffusion bonding method for ceramics and metals
JPH05194050A (en) Combination of metal with ceramic and method for joining the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605