JPH07300376A - Method for joining alumina to fe-ni-co alloy - Google Patents

Method for joining alumina to fe-ni-co alloy

Info

Publication number
JPH07300376A
JPH07300376A JP9649194A JP9649194A JPH07300376A JP H07300376 A JPH07300376 A JP H07300376A JP 9649194 A JP9649194 A JP 9649194A JP 9649194 A JP9649194 A JP 9649194A JP H07300376 A JPH07300376 A JP H07300376A
Authority
JP
Japan
Prior art keywords
alloy
alumina
joining
brazing material
main components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9649194A
Other languages
Japanese (ja)
Inventor
Shoichi Ikeda
正一 池田
Yoichiro Yoneda
陽一郎 米田
Hiroyuki Takeda
裕之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9649194A priority Critical patent/JPH07300376A/en
Publication of JPH07300376A publication Critical patent/JPH07300376A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a joined part high in joining strength and also excellent in the vacuum airtightness of the joining part without generating defects such as cracks by adopting a specific stress-relaxing material and a condition, when alumina and a Fe-Ni-Co alloy are joined to each other. CONSTITUTION:A brazing material 12 containing Ag and Cu as main components, a stress-relaxing material 13 comprising Cu or a Cu alloy, and a brazing material containing Ag and Cu as main components having a composition same, as an different from the above-described brazing material containing the Ag and the Cu as the main components are successively laminated between alumina 11 and a Fe-Ni-Co alloy 15 from the side of the alumina to the side of the Fe-Ni-Co alloy, and subsequently the brazing materials are thermally welded and Joined. Therein, the Joining is performed under such a condition as satisfying a relational expression [tKo: the thickness of the Fe-Ni-Co alloy, tCu: the thickness (mm) of the Cu or Cu alloy, (d): the maximum length (mm) of the joining surface].

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミナとFe−Ni
−Co合金を接合する技術に関し、詳細にはアルミナと
Fe−Ni−Co合金の間に強度及び真空気密性の良好
な接合部を形成し、且つこれを長期間に亘って維持する
ことができる様な接合方法に関するものであり、特に半
導体製造装置の分野等において好適に利用することがで
きる。
The present invention relates to alumina and Fe-Ni.
With respect to the technique of joining a —Co alloy, specifically, a joint having good strength and vacuum airtightness can be formed between alumina and an Fe—Ni—Co alloy, and this can be maintained for a long period of time. The present invention relates to such a joining method and can be suitably used particularly in the field of semiconductor manufacturing equipment.

【0002】[0002]

【従来の技術】アルミナと金属のように線膨張係数が異
なる材料を接合するに際しては、接合部に残留応力を生
じて接合部強度の信頼性を低下させる。そこで健全な接
合体を得るという観点から、従来、被接合材の間に応力
緩和材を配置する方法(特開昭61−215272)、
接合体の形状を工夫する方法(特開平4−7736
9)、或は接合後に接合体を加工する方法(特公平3−
71391)などが検討され、残留応力の緩和を図るこ
とが行われている。
2. Description of the Related Art When joining materials having different linear expansion coefficients, such as alumina and metal, residual stress is generated in the joining portion, and reliability of the joining portion strength is lowered. Therefore, from the viewpoint of obtaining a sound bonded body, a conventional method of disposing a stress relaxation material between the materials to be bonded (Japanese Patent Laid-Open No. 61-215272),
A method for devising the shape of the bonded body (Japanese Patent Laid-Open No. 4-7736).
9) or a method of processing the joined body after joining (Japanese Patent Publication No.
71391) and the like have been studied to alleviate residual stress.

【0003】[0003]

【発明が解決しようとする課題】しかしながらたとえ上
記の様な方法でアルミナとFe−Ni−Co合金を接合
したとしても、接合終了後の冷却過程で発生する残留応
力を十二分に低減することができず、接合直後から、或
は使用中にアルミナ側から割れを生じるというトラブル
は避け切れなかった。
However, even if the alumina and the Fe-Ni-Co alloy are joined by the above method, the residual stress generated in the cooling process after the joining is sufficiently reduced. However, the problem of cracking from the alumina side immediately after joining or during use was inevitable.

【0004】本発明はかかる問題に鑑みてなされたもの
であって、アルミナとFe−Ni−Co合金の接合体を
製造するに際し、割れなどの欠陥を生じることがなく、
しかも接合強度が高く、接合部の真空気密性にも優れた
接合部を得ることができる様な接合方法の提供を目的と
するものである。
The present invention has been made in view of the above problems, and does not cause defects such as cracks in producing a joined body of alumina and an Fe-Ni-Co alloy,
Moreover, it is an object of the present invention to provide a joining method with which the joining strength is high and a joining portion excellent in vacuum tightness can be obtained.

【0005】[0005]

【課題を解決するための手段】上記目的を達成すること
のできた本発明接合方法の要旨を述べると、アルミナと
Fe−Ni−Co合金の間に、アルミナ側からFe−N
i−Co合金側に向けて、 (A)AgおよびCuを主成分とするろう材 (B)CuまたはCu合金からなる応力緩和材 (C)前記(A)のAgおよびCuを主成分とするろう
材と同一または異なる組成のAgおよびCuを主成分と
するろう材 を順次積層し、前記ろう材を加熱溶融させて接合するに
当たり、下記(1)式
The gist of the joining method of the present invention which has been able to achieve the above object is as follows. Between the alumina and the Fe-Ni-Co alloy, the Fe-N
Toward the i-Co alloy side, (A) a brazing material containing Ag and Cu as main components (B) a stress relaxation material made of Cu or a Cu alloy (C) containing Ag and Cu of (A) as main components When sequentially laminating brazing filler metal mainly composed of Ag and Cu having the same or different composition as the brazing filler metal and heating and melting the brazing filler metal to join them, the following formula (1) is used.

【0006】[0006]

【数2】 [Equation 2]

【0007】の関係を満足する様な条件を選択して接合
を行うものである。尚前記アルミナは予め何らかの表面
処理によって金属表面を形成したものであってもよく、
またこの様な表面処理を行なわない場合のいずれであっ
てもよい。
The joining is carried out by selecting the conditions that satisfy the above relationship. The alumina may have a metal surface previously formed by some surface treatment,
Further, it may be the case where such a surface treatment is not performed.

【0008】始めに上記(1)式で示される関係をグラ
フ化して説明するが、(1)式で示される関数には tKo:Fe−Ni−Co合金の厚さ tCu:CuまたはCu合金の厚さ d :接合面の最大長さ という3つの変数が含まれている。そこで本明細書では
Cuが1.0mmである場合を代表的に取り上げてグラ
フ化することとした(図1)。尚本発明における『接合
面の最大長さ』とは、接合面の平面視形状において最も
離反した二点間の距離を言い、具体例をもって示せば図
2に例示する種々の接合面における長さdである。
First, the relationship represented by the above formula (1) will be described in the form of a graph. The function represented by the formula (1) has the following formula: t Ko : Fe-Ni-Co alloy thickness t Cu : Cu or Cu Alloy Thickness d: Includes three variables: maximum joint length. Therefore, in this specification, the case where t Cu is 1.0 mm is taken up as a representative and graphed (FIG. 1). The "maximum length of the joint surface" in the present invention means the distance between the two points that are most distant from each other in the plan view shape of the joint surface, and the lengths of various joint surfaces illustrated in FIG. d.

【0009】[0009]

【作用】本発明における一方の接合対象であるアルミナ
は、必ずしも純アルミナである必要はなく、要はアルミ
ナが主体となるものであれば良く、例えば、SiO2
23 、MgO、CaO、TiO2 、ZrO2 、Hf
2 、SiC、TiC、ZrC、WC、VC、TaC、
Si34 、ZrN、TiN、TiB2 などとの複合物
質も本発明に適用することができる。
The alumina which is one of the objects to be bonded in the present invention does not necessarily have to be pure alumina, and the essential point is that the main component is alumina, for example, SiO 2 ,
Y 2 O 3 , MgO, CaO, TiO 2 , ZrO 2 , Hf
O 2 , SiC, TiC, ZrC, WC, VC, TaC,
A composite material with Si 3 N 4 , ZrN, TiN, TiB 2 or the like can also be applied to the present invention.

【0010】また他方の接合対象であるFe−Ni−C
o合金としては、Fe−(25〜35重量%)Ni−
(13〜23重量%)Co合金が汎用されており、代表
的なものを非限定的に例示すると、Fe−32重量%N
i−17重量%Co合金、Fe−29重量%Ni−16
重量%Co合金、Fe−29重量%Ni−17重量%C
o合金、Fe−26重量%Ni−22重量%Co合金な
どを挙げることができる。
Fe-Ni-C which is the other bonding target
As an o alloy, Fe- (25 to 35% by weight) Ni-
(13 to 23% by weight) Co alloy is widely used, and a typical example is, without limitation, Fe-32% by weight N.
i-17 wt% Co alloy, Fe-29 wt% Ni-16
Wt% Co alloy, Fe-29 wt% Ni-17 wt% C
o alloy, Fe-26 weight% Ni-22 weight% Co alloy, etc. can be mentioned.

【0011】次にアルミナとFe−Co−Ni合金の間
に介在積層される前記(A)〜(C)の各物質について
説明する。(A)のAgおよびCuを主成分とするろう
材としては、Mo−Mn法やTiコーティング法によっ
てアルミナ接合面に表面処理を施して金属表面を形成
(金属化:メタライジング)した場合には汎用のAg−
Cu合金ろう材が全て使用可能である。特に代表的なも
のを非限定的に例示すると、72重量%Ag−28重量
%Cu合金ろう材、85重量%Ag−15重量%Cu合
金ろう材、50重量%Ag−50重量%Cu合金ろう
材、67重量%Ag−33重量%Cu合金ろう材などを
挙げることができる。また、前記表面処理を行なわない
場合には主成分とするAgおよびCuに活性金属(例え
ばTi、Zr、Beなど)を加えたろう材を使用するこ
とが好ましく、代表的なものを非限定的に例示すると、
72重量%Ag−27重量%Cu−1重量%Ti合金ろ
う材、70.5重量%Ag−27.5重量%Cu−2.
0重量%Ti合金ろう材、63重量%Ag−35.25
重量%Cu−1.75重量%Ti合金ろう材、59重量
%Ag−12.5重量%In−27.25重量%Cu−
1.25重量%Ti合金ろう材などが挙げられる。尚前
記Mo−Mn法とは、それ自身公知の方法であり、通常
3μm以下のMo粉末にMnを15〜20重量%含有さ
せ、有機系バインダーを用いてペースト状にしたものを
筆塗り、スプレー、スクリーン印刷等の各種方法でセラ
ミックス表面に塗布し、更に適度に加湿された水素ガス
中で1300〜1500℃に加熱焼結することにより、
セラミックス表面をメタライジングするものである。
Next, the respective substances (A) to (C) which are laminated by interposing between the alumina and the Fe-Co-Ni alloy will be described. As the brazing material containing Ag and Cu as the main components of (A), when a metal surface is formed by applying a surface treatment to the alumina bonding surface by a Mo-Mn method or a Ti coating method (metallization: metallizing) General-purpose Ag-
All Cu alloy brazing materials can be used. Non-limiting examples of particularly representative ones are 72 wt% Ag-28 wt% Cu alloy brazing filler metal, 85 wt% Ag-15 wt% Cu alloy brazing filler metal, 50 wt% Ag-50 wt% Cu alloy brazing filler metal. Material, 67 wt% Ag-33 wt% Cu alloy brazing material, and the like. Further, when the surface treatment is not performed, it is preferable to use a brazing filler metal in which an active metal (for example, Ti, Zr, Be, etc.) is added to Ag and Cu as main components, and representative ones are not limited. For example,
72 wt% Ag-27 wt% Cu-1 wt% Ti alloy brazing filler metal, 70.5 wt% Ag-27.5 wt% Cu-2.
0% by weight Ti alloy brazing material, 63% by weight Ag-35.25
% By weight Cu-1.75% by weight Ti alloy brazing material, 59% by weight Ag-12.5% by weight In-27.25% by weight Cu-
Examples include 1.25 wt% Ti alloy brazing material. The above-mentioned Mo-Mn method is a method known per se, and usually contains 15 to 20% by weight of Mn in Mo powder having a size of 3 μm or less, which is made into a paste by using an organic binder, and is then painted and sprayed. By coating the surface of the ceramics by various methods such as screen printing, and further by heating and sintering at 1300 to 1500 ° C. in appropriately humidified hydrogen gas,
Metallizing the surface of ceramics.

【0012】また(C)のAgおよびCuを主成分とす
るろう材としては、前述した汎用のAg−Cu合金ろう
材、および主成分のAgおよびCuに活性金属を加えた
ろう材が全て使用可能である。また、(A)で用いるA
gおよびCuを主成分とするろう材と(C)で用いるA
gおよびCuを主成分とするろう材は同一であっても異
なっていても良い。
As the brazing material containing Ag and Cu as the main components of (C), the above-mentioned general-purpose Ag-Cu alloy brazing material and the brazing materials containing active metals added to the main components Ag and Cu can all be used. Is. Also, A used in (A)
A brazing material containing g and Cu as main components and A used in (C)
The brazing materials containing g and Cu as the main components may be the same or different.

【0013】(B)のCuまたはCu合金からなる応力
緩和材は、CuまたはCu合金の柔軟性を利用するもの
であり、この柔軟性によって接合後の冷却過程で発生す
る残留応力を低減するものである。従ってこの様な柔軟
性を保持するものは全て使用でき、まずCuとしては、
無酸素銅、タフピッチ銅またはリン脱酸銅などの如何を
問わずに用いることができ、またCu合金としては、C
uの柔軟性に悪影響を与えない合金元素(例えばZn,
Sn,Pb,Fe,Al,Mn,Niなどが非限定的に
例示される)を含むものが全て使用できる。Cuまたは
Cu合金の厚さが大きい場合にはCuまたはCu合金自
体の変形が接合後に生じる残留応力に対して支配的にな
り、CuまたはCu合金が持つ大きな線膨張係数のた
め、大きな残留応力が接合体に生じる。健全な接合体を
得るためには接合面の最大長さ及びFe−Ni−Co合
金の厚さに対応して(1)式が成立する範囲内の厚さの
CuまたはCu合金を用いることが必要である。
The stress relaxation material (B) made of Cu or Cu alloy utilizes the flexibility of Cu or Cu alloy, and this flexibility reduces residual stress generated in the cooling process after joining. Is. Therefore, anything that retains such flexibility can be used. First, for Cu,
It can be used regardless of oxygen-free copper, tough pitch copper, phosphorus deoxidized copper, etc., and Cu alloy is C
Alloying elements that do not adversely affect the flexibility of u (eg Zn,
Any of those containing Sn, Pb, Fe, Al, Mn, Ni, etc. can be used. When the thickness of Cu or Cu alloy is large, the deformation of Cu or Cu alloy itself becomes dominant with respect to the residual stress generated after joining, and due to the large linear expansion coefficient of Cu or Cu alloy, large residual stress It occurs in the zygote. In order to obtain a sound bonded body, it is preferable to use Cu or a Cu alloy having a thickness within the range where the formula (1) is satisfied, corresponding to the maximum length of the bonding surface and the thickness of the Fe-Ni-Co alloy. is necessary.

【0014】以上述べてきたように、本発明ではアルミ
ナとFe−Ni−Co合金との間に、AgおよびCuを
主成分とするろう材、応力緩和材としてのCuまたはC
u合金、前記ろう材と同一もしくは異なる組成のAgお
よびCuを主成分とするろう材を順次積層し、前記ろう
材を加熱溶融させて接合するが、この場合、健全な接合
体を得るためのCuまたはCu合金の厚さ及びFe−N
i−Co合金の厚さは、接合面の最大長さに応じて定め
られる。そのための条件を研究した結果、健全な接合体
を得るための条件として、接合面の最大長さ、Cuまた
はCu合金の厚さ、Fe−Ni−Co合金の厚さの3つ
変数に対して前記(1)式が成立することが分かった。
(1)式を満足していない条件で接合体を製作したとき
は、接合後に発生する残留応力が大きく、アルミナ側に
割れが発生する。逆に(1)式を満足する条件で接合体
を製作すれば、残留応力を低減することができ、アルミ
ナ側に割れを生じない健全な接合体が得られる。
As described above, in the present invention, between the alumina and the Fe-Ni-Co alloy, a brazing material containing Ag and Cu as main components, and Cu or C as a stress relaxation material.
A u alloy and a brazing material mainly composed of Ag and Cu having the same or different composition as the brazing material are sequentially laminated, and the brazing material is heated and melted to be joined. In this case, in order to obtain a sound joined body. Cu or Cu alloy thickness and Fe-N
The thickness of the i-Co alloy is determined according to the maximum length of the joint surface. As a result of studying the conditions therefor, as the conditions for obtaining a sound bonded body, three conditions of the maximum length of the bonding surface, the thickness of Cu or Cu alloy, and the thickness of Fe-Ni-Co alloy were determined. It was found that the above formula (1) holds.
When the bonded body is manufactured under the condition that the formula (1) is not satisfied, the residual stress generated after the bonding is large and the alumina side is cracked. On the contrary, if the bonded body is manufactured under the condition that the formula (1) is satisfied, the residual stress can be reduced, and a sound bonded body which does not cause cracks on the alumina side can be obtained.

【0015】[0015]

【実施例】次に本発明の実施例について比較例と対比し
て説明する。実施例1 (図3参照) 厚さ6.5mmのFe−Ni−Co合金(Fe−29重
量%Ni−17重量%Co合金)製円筒15とアルミナ
11製円盤との接合において、アルミナ11側から順に
AgおよびCuを主成分とするろう材(71重量%Ag
−28重量%Cu−1重量%Ti合金ろう材)12、無
酸素銅13(厚さ:1.0mm)、AgおよびCuを主
成分とするろう材(72重量%Ag−28重量%Cu合
金ろう材)14を積層して配置し、真空炉中で850℃
に加熱することにより、前記各ろう材を溶融させて接合
を行った。接合した試験片について、外観観察および超
音波探傷により無酸素銅13とアルミナ11との接合界
面の検査を実施した。試験結果を表1に示す。
EXAMPLES Next, examples of the present invention will be described in comparison with comparative examples. Example 1 (see FIG. 3) In the joining of a 6.5 mm thick Fe-Ni-Co alloy (Fe-29 wt% Ni-17 wt% Co alloy) cylinder 15 to an alumina 11 disc, the alumina 11 side was used. Brazing filler metal mainly containing Ag and Cu (from 71 wt% Ag
-28 wt% Cu-1 wt% Ti alloy brazing material) 12, oxygen-free copper 13 (thickness: 1.0 mm), brazing material containing Ag and Cu as main components (72 wt% Ag-28 wt% Cu alloy) (Brazing material) 14 are laminated and arranged in a vacuum furnace at 850 ° C.
The above brazing filler metals were melted by heating to the above to join them. With respect to the joined test piece, the joint interface between the oxygen-free copper 13 and the alumina 11 was inspected by visual observation and ultrasonic flaw detection. The test results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】表1の実施例で示すように、CuまたはC
u合金の厚さ、Fe−Ni−Co合金の厚さおよび接合
面の最大長さの関係が(1)式を満たす場合には接合後
に生じる残留応力が低減され、その結果アルミナ側に割
れが生じない健全な接合体が得られる。一方比較例に示
すように、CuまたはCu合金の厚さ、Fe−Ni−C
o合金の厚さおよび接合面の最大長さの関係が(1)式
を満足していない場合には接合後に生じる残留応力が大
きいためアルミナ中に割れを生じ、健全な接合体は得ら
れない。
As shown in the examples of Table 1, Cu or C
When the relationship between the thickness of the u alloy, the thickness of the Fe-Ni-Co alloy, and the maximum length of the joint surface satisfies the expression (1), the residual stress generated after joining is reduced, and as a result, cracks occur on the alumina side. A healthy joint that does not occur can be obtained. On the other hand, as shown in the comparative example, the thickness of Cu or Cu alloy, Fe-Ni-C
o If the relationship between the thickness of the alloy and the maximum length of the joint surface does not satisfy the expression (1), the residual stress generated after joining is large and cracks occur in the alumina, so a sound joint cannot be obtained. .

【0018】実施例2(図4参照) いずれも外径84mm、内径70mmの円筒形状である
アルミナ21とFe−Ni−Co合金(Fe−32重量
%Ni−17重量%Co合金)25の接合において、ア
ルミナ接合面にMo−Mn法によるメタライジングを行
なった後、アルミナ側から順にAgおよびCuを主成分
とするろう材(72重量%Ag−28重量%Cu合金ろ
う材)22、厚さ1.0mmのタフ・ピッチ銅23、A
gおよびCuを主成分とするろう材(72重量%Ag−
28重量%Cu合金ろう材)24を積層して配置し、8
50℃、Ar雰囲気中で加熱溶融し接合した。接合した
試験片について、外観観察および超音波探傷によりタフ
・ピッチ銅23とアルミナ21との接合界面の検査を実
施した。試験結果を表2に示す。
Example 2 (see FIG. 4) Bonding of alumina 21 and Fe-Ni-Co alloy (Fe-32 wt% Ni-17 wt% Co alloy) 25 each having a cylindrical shape with an outer diameter of 84 mm and an inner diameter of 70 mm In the above, after brazing the alumina bonding surface by the Mo-Mn method, a brazing material containing Ag and Cu as main components in order from the alumina side (72 wt% Ag-28 wt% Cu alloy brazing filler metal) 22, thickness 1.0mm tough pitch copper 23, A
A brazing material containing g and Cu as main components (72 wt% Ag-
28 wt% Cu alloy brazing filler metal) 24 are stacked and arranged, and
It was heated and melted in an Ar atmosphere at 50 ° C. to be joined. With respect to the joined test piece, the joint interface between the tough pitch copper 23 and the alumina 21 was inspected by visual observation and ultrasonic flaw detection. The test results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】表2の実施例に示すように、CuまたはC
u合金の厚さ、Fe−Ni−Co合金の厚さと接合面の
最大長さの関係が(1)式を満たす場合には、接合後に
生じる残留応力が十分に低減され、その結果アルミナ側
に割れを生じない健全な接合体が得られる。一方、比較
例に示すようにCuまたはCu合金の厚さ、Fe−Ni
−Co合金厚さと接合面の最大長さの関係が(1)式を
満足していない場合には接合部に生じる残留応力が大き
く、結果としてアルミナ側に割れを生じ健全な接合体は
得られない。
As shown in the examples of Table 2, Cu or C
When the relationship between the thickness of the u alloy, the thickness of the Fe-Ni-Co alloy and the maximum length of the joint surface satisfies the expression (1), the residual stress generated after the joint is sufficiently reduced, and as a result, the residual stress on the alumina side is reduced. A sound joined body that does not crack can be obtained. On the other hand, as shown in the comparative example, the thickness of Cu or Cu alloy, Fe-Ni
-If the relationship between the thickness of the Co alloy and the maximum length of the joint surface does not satisfy Eq. (1), the residual stress generated in the joint is large, and as a result cracks occur on the alumina side and a sound joint is obtained. Absent.

【0021】実施例3(図5参照) ともに断面形状が一辺28mmの正方形であるアルミナ
31と厚さ3.5mmのFe−Ni−Co合金(Fe−
29重量%Ni−16重量%Co合金)35との接合に
おいて、アルミナ接合面にTiコーティングを施した
後、アルミナ側から順にAgおよびCuを主成分とする
ろう材(72重量%Ag−28重量%Cu合金ろう材)
32、リン脱酸銅33、AgおよびCuを主成分とする
ろう材(72重量%Ag−28重量%Cu合金ろう材)
34を積層して配置し、上記ろう材を真空炉中で850
℃に加熱溶融することにより接合体を得た。アルミナ3
1とリン脱酸銅33との接合界面の検査を外観検査およ
び超音波探傷によって行なった。試験結果を表3に示
す。
Example 3 (see FIG. 5) In each case, alumina 31 having a square cross section of 28 mm on a side and Fe--Ni--Co alloy (Fe--
29 wt% Ni-16 wt% Co alloy) 35, after applying a Ti coating on the alumina joining surface, a brazing material containing Ag and Cu as main components in order from the alumina side (72 wt% Ag-28 wt% % Cu alloy brazing material)
32, phosphorous deoxidized copper 33, a brazing material containing Ag and Cu as main components (72% by weight Ag-28% by weight Cu alloy brazing material)
34 are stacked and arranged, and the brazing material is placed in a vacuum furnace for 850
A joined body was obtained by heating and melting at ℃. Alumina 3
The joint interface between 1 and phosphorous deoxidized copper 33 was inspected by visual inspection and ultrasonic flaw detection. The test results are shown in Table 3.

【0022】[0022]

【表3】 [Table 3]

【0023】表3の実施例に示すように、CuまたはC
u合金の厚さ、Fe−Ni−Co合金の厚さ、接合面の
最大長さの関係が(1)式の関係を満たす場合には、ア
ルミナ側に割れが発生せず、健全な接合体が得られてい
ることが分かる。一方比較例に示すように、Cuまたは
Cu合金の厚さ、Fe−Ni−Co合金の厚さ、接合面
の最大長さの関係が(1)式を満たさない場合にはアル
ミナ側に割れが発生するため、健全な接合体が得られな
い。
As shown in the examples of Table 3, Cu or C
When the relationship between the thickness of the u alloy, the thickness of the Fe-Ni-Co alloy, and the maximum length of the bonding surface satisfies the relationship of formula (1), no cracks occur on the alumina side and a sound bonded body is obtained. It can be seen that is obtained. On the other hand, as shown in the comparative example, when the relationship between the thickness of Cu or Cu alloy, the thickness of Fe-Ni-Co alloy, and the maximum length of the joint surface does not satisfy the expression (1), cracks occur on the alumina side. Therefore, a healthy bonded body cannot be obtained.

【0024】[0024]

【発明の効果】以上詳述したように、本発明に示す方法
でアルミナとFe−Ni−Co合金との接合を行なった
場合には接合部に生じる残留応力を低減することがで
き、結果として割れや界面剥離のない健全な接合体が得
られる。
As described in detail above, when the alumina and the Fe-Ni-Co alloy are joined by the method shown in the present invention, the residual stress generated at the joint can be reduced, and as a result, A sound bonded body without cracking or interfacial peeling can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る(1)式の関係を示すグラフ。FIG. 1 is a graph showing the relationship of equation (1) according to the present invention.

【図2】本発明に係る接合面形状と接合面の最大長さと
の関係を示す模式図。
FIG. 2 is a schematic diagram showing the relationship between the shape of the joint surface and the maximum length of the joint surface according to the present invention.

【図3】本発明の実施例および比較例に係る接合方法を
示す模式図。
FIG. 3 is a schematic diagram showing a joining method according to examples and comparative examples of the present invention.

【図4】本発明の実施例および比較例に係る接合方法を
示す模式図。
FIG. 4 is a schematic diagram showing a joining method according to an example and a comparative example of the present invention.

【図5】本発明の実施例および比較例に係る接合方法を
示す模式図。
FIG. 5 is a schematic diagram showing a joining method according to an example and a comparative example of the present invention.

【符号の説明】[Explanation of symbols]

11 アルミナ 12、14 AgおよびCuを主成分とするろう材 13 無酸素銅 15 Fe−Ni−Co合金 21 アルミナ 22、24 AgおよびCuを主成分とするろう材 23 タフ・ピッチ銅 25 Fe−Ni−Co合金 31 アルミナ 32、34 AgおよびCuを主成分とするろう材 33 リン脱酸銅 35 Fe−Ni−Co合金 11 Alumina 12, 14 Brazing material containing Ag and Cu as main components 13 Oxygen-free copper 15 Fe-Ni-Co alloy 21 Alumina 22, 24 Brazing material containing Ag and Cu as main components 23 Tough pitch copper 25 Fe-Ni -Co alloy 31 Alumina 32, 34 Brazing material containing Ag and Cu as main components 33 Phosphorus deoxidized copper 35 Fe-Ni-Co alloy

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アルミナとFe−Ni−Co合金の間
に、アルミナ側からFe−Ni−Co合金側に向けて、
AgおよびCuを主成分とするろう材、CuまたはCu
合金からなる応力緩和材、前記AgおよびCuを主成分
とするろう材と同一または異なった組成のAgおよびC
uを主成分とするろう材を順次積層し、前記ろう材を加
熱溶融させて接合する方法において、 下記(1)式 【数1】 の関係を満足する様な条件下に接合することを特徴とす
る接合方法。
1. Between the alumina and the Fe-Ni-Co alloy, from the alumina side toward the Fe-Ni-Co alloy side,
A brazing material mainly composed of Ag and Cu, Cu or Cu
Stress relaxation material composed of alloy, Ag and C having the same or different composition as the brazing material containing Ag and Cu as the main components.
In a method of sequentially laminating brazing filler metal containing u as a main component and heating and melting the brazing filler metal, the following formula (1) The joining method is characterized in that the joining is carried out under the conditions satisfying the relationship.
JP9649194A 1994-05-10 1994-05-10 Method for joining alumina to fe-ni-co alloy Withdrawn JPH07300376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9649194A JPH07300376A (en) 1994-05-10 1994-05-10 Method for joining alumina to fe-ni-co alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9649194A JPH07300376A (en) 1994-05-10 1994-05-10 Method for joining alumina to fe-ni-co alloy

Publications (1)

Publication Number Publication Date
JPH07300376A true JPH07300376A (en) 1995-11-14

Family

ID=14166557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9649194A Withdrawn JPH07300376A (en) 1994-05-10 1994-05-10 Method for joining alumina to fe-ni-co alloy

Country Status (1)

Country Link
JP (1) JPH07300376A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806380B2 (en) 2013-05-31 2017-10-31 General Electric Company High temperature electrochemical cell structures, and methods for making
CN115229378A (en) * 2022-08-09 2022-10-25 哈尔滨工业大学(威海) High-entropy alloy brazing filler metal and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806380B2 (en) 2013-05-31 2017-10-31 General Electric Company High temperature electrochemical cell structures, and methods for making
CN115229378A (en) * 2022-08-09 2022-10-25 哈尔滨工业大学(威海) High-entropy alloy brazing filler metal and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0147360B1 (en) Method for bonding ceramics and metals
US4624897A (en) Clad brazing filler for bonding ceramic to metal, glass, or other ceramic and composites using such filler
EP0135937B1 (en) Method of bonding alumina to metal
WO1996009266A1 (en) Bonded body of aluminum and silicon nitride and production method thereof
US3226822A (en) Art of bonding ceramic to metal
EP0146493A2 (en) Method for bonding ceramics and metals
JPH04228480A (en) Composite being stable at high temperature and preparation thereof
US6663982B1 (en) Silver-hafnium braze alloy
JP3095490B2 (en) Ceramic-metal joint
JPH0777989B2 (en) Method for manufacturing ceramic-metal bonded body
JPH07300376A (en) Method for joining alumina to fe-ni-co alloy
JP2519578B2 (en) Method of joining metal member and ceramics or cermet member
JP2892172B2 (en) Metal foil clad ceramic product and method of manufacturing the same
JP3302714B2 (en) Ceramic-metal joint
Do Nascimento et al. Brazing Al2O3 to sintered Fe-Ni-Co alloys
Schilm et al. Joining technologies for a temperature-stable integration of a LTCC-based pressure sensor
JP4331370B2 (en) Method for manufacturing HIP joined body of beryllium and copper alloy and HIP joined body
JP3370060B2 (en) Ceramic-metal joint
JPH07247178A (en) Method for cementing ti or ti-alloy with alumina
JP3153872B2 (en) Metal-nitride ceramic bonding structure
JPH061670A (en) Joined body of ceramic member and metal member
JPH05286777A (en) Bonding method of ceramics with ti or ti alloy
JPH01141882A (en) Method for bonding ceramic to metallic member
JP2984395B2 (en) Nitride ceramic joined body and joining method thereof
JPH07187839A (en) Nitride ceramics-metal joined body and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731