JPH07240330A - Manufacture of rare-earth intermetallic compound magnet - Google Patents

Manufacture of rare-earth intermetallic compound magnet

Info

Publication number
JPH07240330A
JPH07240330A JP6031407A JP3140794A JPH07240330A JP H07240330 A JPH07240330 A JP H07240330A JP 6031407 A JP6031407 A JP 6031407A JP 3140794 A JP3140794 A JP 3140794A JP H07240330 A JPH07240330 A JP H07240330A
Authority
JP
Japan
Prior art keywords
intermetallic compound
rare earth
earth intermetallic
lubricant
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6031407A
Other languages
Japanese (ja)
Inventor
Keisuke Nakamura
啓介 中村
Akira Kikuchi
亮 菊地
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6031407A priority Critical patent/JPH07240330A/en
Publication of JPH07240330A publication Critical patent/JPH07240330A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide a means which can continuously mold powder for rare- earth intermetallic compound magnet without lowering the strength of molded bodies by dissolving such a problem that a metallic mold is damaged power adhering to the metallic mold at the time of molding. CONSTITUTION:A rare-earth intermetallic compound magnet manufacturing method comprises the step of pulverizing coarse particles of an Nd-Fe-B rare- earth intermetallic compound permanent magnetic alloy after adding and mixing a hydrocarbon-based lubricant and binder to and with the coarse particles and molding and sintering the pulverized fine particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類金属間化合物磁石
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth intermetallic compound magnet.

【0002】[0002]

【従来の技術】近年、電子機器や精密機械の小型化、軽
量化の市場動向に伴い、永久磁石においては従来のアル
ニコやフェライト磁石に代わり希土類磁石が多くの分野
で利用されるようになってきた。希土類磁石は一部の用
途を除いて粉末冶金法を利用し製造されている。希土類
磁石の中でもNd-Fe-B系希土類金属間化合物永久磁
石の需要が増加している。Nd-Fe-B系希土類金属間
化合物磁石を粉末冶金法により製造する方法は、所望の
組成に合金を溶解しインゴットを得、これを平均粒子径
が20〜500μm程度まで粗粉砕し、これをさらに1
〜20μm程度の粉末に微粉砕した後、成形し、焼結、
熱処理の工程を経る方法が一般的である。この工程の中
で、溶解鋳造インゴットから成形体を得るためには予め
機械的または化学的に20〜500μmにした粗粉を1
〜20μmにまで微粉砕した粉末を金型中に充填した
後、0.5〜5トン/cm2で加圧することにより成形体
を得る。一般に高い磁気特性を得るために成形時に磁界
を印加し成形体に異方性を付与する。
2. Description of the Related Art In recent years, along with the market trend of miniaturization and weight reduction of electronic devices and precision machines, rare earth magnets have been used in many fields in permanent magnets instead of conventional alnico and ferrite magnets. It was Rare earth magnets are manufactured using powder metallurgy except for some applications. Among rare earth magnets, the demand for Nd-Fe-B based rare earth intermetallic compound permanent magnets is increasing. A method of manufacturing an Nd-Fe-B system rare earth intermetallic compound magnet by powder metallurgy is to melt an alloy into a desired composition to obtain an ingot, which is roughly crushed to an average particle size of about 20 to 500 μm, 1 more
After finely pulverizing to a powder of about 20 μm, molding, sintering,
A method that goes through a heat treatment step is generally used. In this process, in order to obtain a molded body from the melt-casting ingot, 1 or less of coarse powder mechanically or chemically preliminarily made to 20 to 500 μm
The powder finely pulverized to ˜20 μm is filled in a mold and then pressed at 0.5 to 5 ton / cm 2 to obtain a molded body. Generally, in order to obtain high magnetic properties, a magnetic field is applied during molding to impart anisotropy to the molded body.

【0003】しかしながら、希土類金属間化合物永久磁
石粉末の成形においては成形時に金型内壁と原料粉末あ
るいは成形体との摩擦により原料粉末が金型内壁に付着
し、金型内壁に傷を発生し金型を損傷させる。これを避
けるためには、金型ダイスの交換を繁盛に行わなければ
ならず、成形作業能率の低下、金型消却費の増加をもた
らしていた。これを避けるために、一般に金型内壁に粉
末状あるいは液状の潤滑剤を塗布する方法が実施されて
いるが、この方法では潤滑効果の永続性が無いため、繁
盛に潤滑剤の塗布を行わなければならず成形効率が低下
するという欠点を有する。
However, in molding rare earth intermetallic compound permanent magnet powder, the raw material powder adheres to the inner wall of the mold due to friction between the inner wall of the mold and the raw material powder or the molded body during molding, and scratches occur on the inner wall of the mold. Damage the mold. In order to avoid this, the die dies must be exchanged vigorously, resulting in a decrease in molding work efficiency and an increase in die retirement costs. In order to avoid this, a method of applying a powdery or liquid lubricant to the inner wall of the mold is generally used, but this method does not have a permanent lubricating effect, so the lubricant must be applied vigorously. However, it has a drawback that the molding efficiency is lowered.

【0004】金型内壁を潤滑する方法に代わる手段とし
て、原料粉末に成形性改良のための潤滑剤を添加するこ
とが提案されている。例えば、特公平5−61340号
ではステアリン酸、ステアリン酸亜鉛、ビスアマイドの
少なくとも1種を、また特開平5−214406号では
固形パラフィン、樟脳のうち少なくとも1種を添加する
ことが提案されている。しかし、これらの提案は潤滑剤
を機械的な混合機で添加混合していたので以下のような
問題点がある。すなわち、機械的な混合機ではもともと
凝集性の高い潤滑剤を均一に分散させることが困難であ
り、そのため混合体に潤滑剤の凝集体が存在する。ま
た、希土類金属間化合物微粉末と潤滑剤の真比重が著し
く異なるため機械的混合においては潤滑剤を均一に分散
させることが困難である。したがって上記提案されてい
る、潤滑方法においては潤滑効果が不十分であり連続的
に成形を行うことは不可能である。また凝集した潤滑剤
が成形体中に存在すると磁気特性が劣化し品質の低下を
もたらすという欠点を有する。
As an alternative to the method of lubricating the inner wall of the mold, it has been proposed to add a lubricant for improving the moldability to the raw material powder. For example, Japanese Patent Publication No. 5-61340 proposes to add at least one kind of stearic acid, zinc stearate and bisamide, and JP-A No. 5-214406 proposes to add at least one kind of solid paraffin and camphor. However, these proposals have the following problems because the lubricant is added and mixed by a mechanical mixer. That is, it is difficult to uniformly disperse a lubricant having a high cohesive property with a mechanical mixer, and therefore, a lubricant aggregate exists in the mixture. In addition, since the true specific gravities of the rare earth intermetallic compound fine powder and the lubricant are significantly different, it is difficult to uniformly disperse the lubricant in mechanical mixing. Therefore, the lubrication method proposed above has an insufficient lubrication effect, and continuous molding is impossible. Further, if the agglomerated lubricant is present in the molded body, it has a drawback that the magnetic properties are deteriorated and the quality is deteriorated.

【0005】[0005]

【発明が解決しようとする課題】以上の問題点を解決す
る手段として、特開平4−191302号、特開平5−
94922号では、以上の潤滑剤を添加した混合体を気
流式粉砕機により微粉砕し、次いで成形、焼結を行う製
造方法を提案している。(以後、粗粉潤滑という)この
粗粉潤滑によれば、潤滑剤は気流式粉砕により極めて均
一に分散する。したがって、潤滑剤は比較的少量の添加
ですみ、潤滑剤の凝集を防止することが可能である。
As means for solving the above-mentioned problems, Japanese Patent Laid-Open No. 4-191302 and Japanese Patent Laid-Open No. 5-191302 are available.
Japanese Patent No. 94922 proposes a production method in which a mixture containing the above lubricant is finely pulverized by an air flow type pulverizer, and then molded and sintered. According to this coarse powder lubrication (hereinafter referred to as coarse powder lubrication), the lubricant is extremely uniformly dispersed by air flow type grinding. Therefore, it is possible to prevent the agglomeration of the lubricant by adding a relatively small amount of the lubricant.

【0006】以上のように粗粉潤滑は極めて有効な技術
であるが、以下のような問題点を有する。すなわち、潤
滑剤が均一に分散する結果として成形体の強度が低下し
て、成形体に剥がれまたは亀裂が発生し、所望寸法精度
の焼結体を得ることが極めて困難になる。本発明は、上
記従来技術の欠点を解消し効率良く希土類金属間化合物
永久磁石粉末の成形を連続的に行うことを目的とする。
本発明は、成形時の金型への粉末の付着による金型損傷
を解消し、成形体強度の低下を引き起こすこと無く、希
土類金属間化合物磁石の連続成形を行う手段を提供する
ものである。
Although coarse powder lubrication is an extremely effective technique as described above, it has the following problems. That is, as a result of the uniform dispersion of the lubricant, the strength of the molded body is lowered, and peeling or cracking occurs in the molded body, making it extremely difficult to obtain a sintered body with desired dimensional accuracy. An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to efficiently perform continuous molding of rare earth intermetallic compound permanent magnet powder.
The present invention provides a means for continuously molding a rare earth intermetallic compound magnet without eliminating damage to the mold due to adhesion of powder to the mold during molding and without lowering the strength of the molded body.

【0007】[0007]

【課題を解決するための手段】本発明は、希土類金属間
化合物永久磁石合金粗粉に炭化水素系潤滑剤および粘結
剤を添加混合後に気流粉砕により微粉砕し、成形、焼結
することにより上記従来技術の課題を解決した。
According to the present invention, a rare earth intermetallic compound permanent magnet alloy coarse powder is mixed with a hydrocarbon lubricant and a binder, and then finely pulverized by air flow pulverization, followed by molding and sintering. The above-mentioned problems of the prior art have been solved.

【0008】以下本発明を詳述する。本発明において
は、まず希土類金属間化合物永久磁石合金粗粉に炭化水
素系潤滑剤および粘結剤を添加混合する。混合は、V型
混合機、ヘンシエルミキサ−、ボ−ルミル等を利用し乾
式で行う。ここで、炭化水素系潤滑剤としては流動パラ
フィン、天然パラフィン、マイクロクリスタリンワック
ス、ポリエチレンワックス、合成パラフィン、塩素化ナ
フタリン等が有効である。また粘結防止剤として多価ア
ルコ−ルおよびその誘導体の1種または2種以上が有効
である。これらの添加混合体を次いでジェットミル等の
気流粉砕法にて1〜20μmに微粉砕する。微粉砕工程
において、炭化水素系潤滑剤は粉末表面に溶融固着し微
粉末表面に均一に塗布される。この溶融塗布された潤滑
剤は微粉末粒子間および粒子と金型内壁との摩擦を低減
する。
The present invention will be described in detail below. In the present invention, first, a hydrocarbon-based lubricant and a binder are added to and mixed with the rare earth intermetallic compound permanent magnet alloy coarse powder. Mixing is performed by a dry method using a V-type mixer, a Henschel mixer, a ball mill or the like. Here, as the hydrocarbon-based lubricant, liquid paraffin, natural paraffin, microcrystalline wax, polyethylene wax, synthetic paraffin, chlorinated naphthalene, etc. are effective. As the anti-caking agent, one kind or two or more kinds of polyvalent alcohol and its derivatives are effective. These added mixtures are then finely pulverized to 1 to 20 μm by an air flow pulverization method such as a jet mill. In the pulverizing step, the hydrocarbon lubricant is melted and fixed on the surface of the powder and uniformly applied on the surface of the fine powder. The melt-coated lubricant reduces friction between fine powder particles and between the particles and the inner wall of the mold.

【0009】添加する潤滑剤の形態は特に制約は無い
が、効率よく均一な分散を行うためには粉末状の潤滑剤
が好ましい。炭化水素系の潤滑剤の添加量が0.05w
t%未満では十分な潤滑効果が得られない。また添加量
が5.0wt%を越えると焼結体中の許容範囲以上のC
が残留し磁気特性を著しく低下させる。さらに添加量が
0.5〜2.0wt%であれば高い成形体強度を得るこ
とができる。したがって、炭化水素系潤滑剤の添加量は
0.05〜5.0wt%、さらに好ましくは0.5〜2.0
wt%である。粘結剤として使用される多価アルコ−ル
またはその誘導体の沸点または分解温度は300℃以下
であることが好ましい。特にエチレングリコ−ル、ジエ
チレングリコ−ル、ポリエチレングリコ−ル等を混合す
ることにより成形体強度が改善されるとともに、成形体
離型時の抜き圧が低下する。 これら多価アルコ−ルま
たはその誘導体の成形体強化剤は潤滑剤を塗布した微粉
粒子間あるいは成形体と金型内壁間に存在することによ
り、成形体の補強および抜き圧の低化をもたらす。これ
らの添加量は0.01〜2wt%さらに好ましくは0.0
1〜0.2%とするのが良い。これら強化剤は一般には
有機溶媒への溶解量が極めて少ないため2wt%以上の
添加は成形体の脱脂を困難にし磁気特性の低下をもたら
す。
The form of the lubricant to be added is not particularly limited, but a powdery lubricant is preferable for efficient and uniform dispersion. Addition amount of hydrocarbon lubricant is 0.05w
If it is less than t%, a sufficient lubricating effect cannot be obtained. Further, if the addition amount exceeds 5.0 wt%, C exceeding the allowable range in the sintered body is obtained.
Remain and deteriorate magnetic properties remarkably. Further, if the addition amount is 0.5 to 2.0 wt%, high strength of the molded body can be obtained. Therefore, the addition amount of the hydrocarbon lubricant is 0.05 to 5.0 wt%, more preferably 0.5 to 2.0.
wt%. The boiling point or decomposition temperature of the polyvalent alcohol or its derivative used as the binder is preferably 300 ° C or lower. Particularly by mixing ethylene glycol, diethylene glycol, polyethylene glycol and the like, the strength of the molded body is improved and the depressurizing pressure at the time of releasing the molded body is reduced. The presence of the polyvalent alcohol or its derivative in the compact strengthening agent, when present between the fine powder particles coated with the lubricant or between the compact and the inner wall of the mold, reinforces the compact and lowers the drawing pressure. The addition amount of these is 0.01 to 2 wt%, more preferably 0.0.
It is good to set it to 1 to 0.2%. Since these reinforcing agents generally have an extremely small amount of dissolution in an organic solvent, addition of 2 wt% or more makes degreasing of a molded body difficult and causes deterioration of magnetic properties.

【0010】成形は、無磁場または磁場中で行われる。
得られた成形体は有機溶剤中に所定時間浸漬することに
より脱脂処理する。有機溶剤として、トルエン、シクロ
ヘキサン、ノルマルヘキサン、ケロシン、キシレン、ミ
ネラルタ−ペン、などが好ましい。これらの有機溶媒中
に所定時間成形体を浸漬することにより、添加量の約9
0%の潤滑剤が除去される。潤滑剤の脱脂速度を促進す
るために、有機溶剤を加熱、攪拌、超音波振動を付与す
ることは有効である。
The molding is performed without a magnetic field or in a magnetic field.
The obtained molded body is degreased by being immersed in an organic solvent for a predetermined time. As the organic solvent, toluene, cyclohexane, normal hexane, kerosene, xylene, mineral tape, etc. are preferable. By immersing the molded body in these organic solvents for a predetermined time, the added amount of about 9
0% of lubricant is removed. In order to accelerate the degreasing speed of the lubricant, it is effective to heat, stir and apply ultrasonic vibration to the organic solvent.

【0011】予め、有機溶剤に浸漬された成形体は真空
あるいはアルゴン等の不活性雰囲気中で焼結される。有
機溶剤による前処理を行わない成形体を焼結する場合に
は、焼結工程に脱脂工程を必要とする。すなわち100
〜500℃で成形体を加熱保持し潤滑剤および粘結剤を
成形体より除去した後、1000〜1200℃にて本焼
結を行う必要がある。したがって、焼結工程には16〜
24時間を必要とし、工業上極めて生産効率が悪い。本
発明による、有機溶剤による前処理を行った成形体は焼
結工程中に脱脂工程を必要とせず、焼結温度で一定時間
成形体を保持することにより焼結を行うことが可能であ
り、また焼結炉にワックストラップや脱脂室などの特殊
な装置を必要としないため、焼結炉の設備費が著しく軽
減されるため工業上の利点は極めて大である。
The molded body previously immersed in the organic solvent is sintered in vacuum or in an inert atmosphere such as argon. In the case of sintering a molded body that is not pretreated with an organic solvent, a degreasing step is required in the sintering step. Ie 100
After the molded body is heated and held at ˜500 ° C. to remove the lubricant and the binder from the molded body, it is necessary to perform the main sintering at 1000 to 1200 ° C. Therefore, 16 to
It takes 24 hours, and the production efficiency is extremely poor in industry. According to the present invention, the green body pretreated with an organic solvent does not need a degreasing step during the sintering step, and it is possible to perform the sintering by holding the green body for a certain time at the sintering temperature, Further, since the sintering furnace does not require a special device such as a wax trap or a degreasing chamber, the facility cost of the sintering furnace is remarkably reduced, which is extremely advantageous in industry.

【0012】また本発明による粘結剤は微粉表面に均質
な保護膜を形成するため微粉の酸化防止に効果があり、
脱脂洗浄後の焼結体の酸素量が0.6wt%以下に抑制
される。脱脂洗浄後の焼結体の炭素量が0.15wt%
を越えると磁気特性が著しく低下する。またC量の下限
については磁気特性上の制約はないが、潤滑剤および粘
結剤の主元素が炭素であるため、脱脂洗浄を十分に行っ
ても、実質的に0.03〜0.10wt%の炭素が焼結体
中に残存することは避けられない。なお焼結体中に残存
する炭素量は潤滑剤および粘結剤の添加量および組み合
わせに依存する。本発明による粘結剤は有機溶媒中の溶
解量が極めて小さいため、大部分が焼結工程で分解飛散
する、したがって分解温度あるいは沸点が300℃以上
の粘結剤を使用することは磁気特性上好ましくない。
Further, the binder according to the present invention forms a uniform protective film on the surface of the fine powder and is effective in preventing the fine powder from being oxidized.
The oxygen content of the sintered body after degreasing and cleaning is suppressed to 0.6 wt% or less. Carbon content of sintered body after degreasing is 0.15wt%
If it exceeds, the magnetic properties will be significantly deteriorated. Although there is no restriction on the lower limit of the amount of C in terms of magnetic properties, since the main element of the lubricant and the binder is carbon, it is substantially 0.03 to 0.10 wt% even after sufficient degreasing and cleaning. It is inevitable that% of carbon remains in the sintered body. The amount of carbon remaining in the sintered body depends on the amount and combination of the lubricant and the binder. Since the binder according to the present invention has an extremely small amount of dissolution in an organic solvent, most of it decomposes and scatters in the sintering process. Therefore, using a binder having a decomposition temperature or a boiling point of 300 ° C. or higher is magnetic. Not preferable.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
る。なお本発明は以下実施例にのみ限定されるものでは
ない。
EXAMPLES The present invention will be specifically described below with reference to examples. The present invention is not limited to the following examples.

【0014】(実施例1)平均粒径40μmのNd-F
e-B系永久磁石合金粗粉にマイクロクリスタリンワッ
クスを2wt%と分子量100のポリエチレングリコ−
ルを0.5wt%添加し、V型混合機にて10分間混合
した。混合後、この粗粉をジェットミル粉砕し平均粒径
3.5μmの微粉を得た。得られた微粉を磁場中成形し
た時の潤滑効果と成形体強度を潤滑剤および粘結剤を添
加しない微粉と比較した結果を表1に示す。本発明によ
る微粉は10000回以上連続的に成形し成形体および
金型に傷の発生が観られなかったのに対し、無添加の微
粉は20回連続成形行うと成形体に傷が発生し以後成形
が継続出来なかった。また、成形体強度は本発明の微粉
によると約2倍に増大していることが分かる。
(Example 1) Nd-F having an average particle size of 40 μm
e-B permanent magnet alloy coarse powder with 2% by weight of microcrystalline wax and 100% molecular weight polyethylene glycol
Of 0.5 wt% was added and mixed in a V-type mixer for 10 minutes. After mixing, the coarse powder was pulverized by a jet mill to obtain fine powder having an average particle size of 3.5 μm. Table 1 shows the results of comparison of the lubricating effect and the strength of the molded body when the obtained fine powder was molded in a magnetic field, compared with the fine powder to which no lubricant or binder was added. The fine powder according to the present invention was continuously molded 10,000 times or more, and no damage was found on the molded body and the mold. On the other hand, the additive-free fine powder was continuously molded 20 times. Molding could not be continued. Also, it can be seen that the strength of the molded body is increased by about 2 times according to the fine powder of the present invention.

【0015】[0015]

【表1】 [Table 1]

【0016】(実施例2)Nd-Fe-B系永久磁石合金
粗粉にパラフィンワックスを1wt%およびジエチレン
グリコ−ルを2wt%添加し、ジェットミル粉砕により
平均粒径4.2μmの微粉を得た。本発明による微粉の
潤滑性と成形体強度を無添加粉およびワックスのみ添加
粉と比較検討した結果を表2に示す。パラフィンワック
スおよびジエチレングリコ−ル無添加粉においては、2
0回成形時に成形体に傷が発生したのに対しパラフィン
ワックスとジエチレングリコ−ルを複合添加した微粉で
は10000回連続成形行っても成形体に傷等の発生が
認められなかった。またパラフィンワックスのみ添加し
た微粉では2000回まで連続的に成形が可能であるが
離型抵抗が徐々に増加し、2000回で離型が不可能と
なった。
(Example 2) Paraffin wax (1 wt%) and diethylene glycol (2 wt%) were added to Nd-Fe-B system permanent magnet alloy coarse powder, and fine powder having an average particle size of 4.2 µm was obtained by pulverizing with a jet mill. . Table 2 shows the results of a comparative study of the lubricity and compact strength of the fine powder according to the present invention with the non-added powder and the wax-added powder. For paraffin wax and diethylene glycol-free powder, 2
While the molded body was scratched at the time of molding 0 times, the fine powder to which the paraffin wax and diethylene glycol were added together did not show any scratches on the molded body even after continuous molding at 10,000 times. Further, with fine powder containing only paraffin wax, continuous molding was possible up to 2000 times, but the mold release resistance gradually increased, and mold release became impossible after 2000 times.

【0017】[0017]

【表2】 [Table 2]

【0018】(実施例3)平均粒径40μmのNd-F
e-B系粗粉に天然ワックス1wt%および分子量20
0のポリエチレングリコ−ルを0.2wt%添加混合
し、ジェットミル粉砕し平均粒径3.8μmの微粉を得
た。この微粉を磁場中成形した後、成形体をトルエン中
に2時間浸漬した後、1000℃にて2時間成形後、室
温まで急冷した。焼結体の磁気特性と残存C量およびO
量を浸漬処理を行わなかった焼結体との比較で示す。
(Example 3) Nd-F having an average particle size of 40 μm
Natural wax 1 wt% and molecular weight 20 on e-B coarse powder
0.2 wt% of polyethylene glycol of 0 was added and mixed, and the mixture was pulverized by a jet mill to obtain fine powder having an average particle diameter of 3.8 μm. After molding this fine powder in a magnetic field, the molded body was immersed in toluene for 2 hours, molded at 1000 ° C. for 2 hours, and then rapidly cooled to room temperature. Magnetic Properties of Sintered Body and Remaining C Content and O
The amount is shown in comparison with the sintered body which was not subjected to the immersion treatment.

【0019】[0019]

【表3】 [Table 3]

【0020】(実施例4)平均粒径30μmのNd-F
e-B系永久磁石粗粉にマイクロワックスを0.01〜6
wt%およびエチレングリコ−ルを0.2wt%添加混
合しジェットミル粉砕し得られた微粉を磁場中成形した
後、シクロヘキサン中に成形体を3時間浸漬し、110
0℃で2時間真空焼結した。添加量と連続成形性、焼結
体保磁力、C量の関係を表4に示す。
(Example 4) Nd-F having an average particle size of 30 μm
Micro wax to e-B system permanent magnet coarse powder 0.01 to 6
wt% and 0.2 wt% of ethylene glycol were added and mixed, and finely obtained by jet mill grinding and molding in a magnetic field. Then, the compact was immersed in cyclohexane for 3 hours, and
Vacuum sintering was performed at 0 ° C. for 2 hours. Table 4 shows the relationship among the amount added, the continuous formability, the coercive force of the sintered body, and the amount of C.

【0021】[0021]

【表4】 [Table 4]

【0022】(実施例5)平均粒径30μmのNd-F
e-B系永久磁石粗粉に流動パラフィンを1wt%添加
混合しジェットミル粉砕し得られた微粉にステアリン酸
カルシウムを0.005〜0.3wt%追加混合した原料
微粉末を磁場中成形した後、ケロシン中に成形体を3時
間浸漬し、1100℃で2時間真空焼結した。ステアリ
ン酸カルシウム添加量と連続成形性、成形体強度、焼結
体保磁力、C量の関係を表5に示す。
(Example 5) Nd-F having an average particle size of 30 μm
1 wt% of liquid paraffin was added to e-B type permanent magnet coarse powder and mixed and jet milled to obtain fine powder, and 0.005 to 0.3 wt% of calcium stearate was additionally mixed. The molded body was immersed in kerosene for 3 hours and vacuum-sintered at 1100 ° C. for 2 hours. Table 5 shows the relationship among the amount of calcium stearate added, continuous formability, compact strength, sintered body coercive force, and C content.

【表5】 [Table 5]

【0023】[0023]

【発明の効果】本発明によれば、成形時の金型の損傷お
よび成形体の剥がれおよび亀裂が解消され、希土類永久
磁石合金粉末の成形を半永久的に連続に行うことが可能
であり、また高価な脱ワックス機構を有する専用焼結炉
を使用すること無く磁気特性の低下の無い永久磁石を得
ることが可能である。
According to the present invention, damage to a mold and peeling and cracking of a molded body at the time of molding can be eliminated, and molding of rare earth permanent magnet alloy powder can be carried out semipermanently and continuously. It is possible to obtain a permanent magnet without deterioration of magnetic properties without using an exclusive sintering furnace having an expensive dewaxing mechanism.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Nd-Fe-B系希土類金属間化合物永久
磁石合金粗粉に炭化水素系潤滑剤および粘結剤を添加混
合後に気流粉砕法により微粉砕した後に成形、焼結をす
ることを特徴とする希土類金属間化合物磁石の製造方
法。
1. A Nd-Fe-B-based rare earth intermetallic compound permanent magnet alloy coarse powder is mixed with a hydrocarbon-based lubricant and a binder, and then finely pulverized by an air flow pulverization method, followed by molding and sintering. A method of manufacturing a rare earth intermetallic compound magnet.
【請求項2】 Nd-Fe-B系希土類金属間化合物永久
磁石合金粗粉に炭化水素系潤滑剤および粘結剤を添加混
合後に気流粉砕法により微粉砕した後に成形し、この成
形体から潤滑剤を除去する前処理を施した後に焼結する
ことを特徴とする希土類金属間化合物永久磁石の製造方
法。
2. A Nd-Fe-B-based rare earth intermetallic compound permanent magnet alloy coarse powder is mixed with a hydrocarbon-based lubricant and a binder, then finely pulverized by an air flow pulverization method, and then molded, and lubricated from this molded body. A method for producing a rare earth intermetallic compound permanent magnet, which comprises performing a pretreatment for removing an agent and then sintering.
【請求項3】 炭化水素系潤滑剤の添加量が0.05〜
5.0wt%である請求項1または請求項2に記載の希
土類金属間化合物永久磁石の製造方法。
3. The addition amount of the hydrocarbon lubricant is 0.05 to 5.
It is 5.0 wt%, The manufacturing method of the rare earth intermetallic compound permanent magnet of Claim 1 or Claim 2.
【請求項4】 炭化水素系潤滑剤の添加量が0.5〜2.
0wt%である請求項1または2に記載の希土類金属間
化合物磁石の製造方法。
4. The addition amount of the hydrocarbon lubricant is 0.5 to 2.
It is 0 wt%, The manufacturing method of the rare earth intermetallic compound magnet of Claim 1 or 2.
【請求項5】 粘結剤の添加量が0.01〜2wt%で
ある請求項1ないし4のいづれかに記載の希土類金属間
化合物磁石の製造方法。
5. The method for producing a rare earth intermetallic compound magnet according to claim 1, wherein the amount of the binder added is 0.01 to 2 wt%.
【請求項6】 粘結剤の添加量が0.02〜0.1wt%
である請求項1ないし4のいづれかに記載の希土類金属
間化合物永久磁石の製造方法。
6. The amount of the binder added is 0.02 to 0.1 wt%.
The method for producing a rare earth intermetallic compound permanent magnet according to any one of claims 1 to 4.
【請求項7】 上記粘結剤が多価アルコ−ルまたはその
誘導体の1種または2種以上であることを特徴とする請
求項1ないし6のいづれかに記載の希土類金属間化合物
永久磁石の製造方法。
7. The production of a rare earth intermetallic compound permanent magnet according to claim 1, wherein the binder is one kind or two or more kinds of polyvalent alcohol or its derivative. Method.
【請求項8】 上記粘結剤がエチレングリコ−ル、ジエ
チレングリコ−ル、ポリエチレングリコ−ルの1種また
は2種以上であることを特徴とする請求項1ないし6の
いづれかに記載の希土類金属間化合物永久磁石。
8. The rare earth metal-intermetallic compound according to claim 1, wherein the binder is one kind or two or more kinds of ethylene glycol, diethylene glycol and polyethylene glycol. Compound permanent magnet.
【請求項9】 成形体から潤滑剤を除去する前処理が、
成形体を有機溶剤中に所定時間浸漬することを特徴とす
る請求項2ないし8項のいづれかに記載の希土類金属間
化合物永久磁石の製造方法。
9. The pretreatment for removing the lubricant from the molded body,
9. The method for producing a rare earth intermetallic compound permanent magnet according to claim 2, wherein the molded body is dipped in an organic solvent for a predetermined time.
JP6031407A 1994-03-01 1994-03-01 Manufacture of rare-earth intermetallic compound magnet Pending JPH07240330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6031407A JPH07240330A (en) 1994-03-01 1994-03-01 Manufacture of rare-earth intermetallic compound magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6031407A JPH07240330A (en) 1994-03-01 1994-03-01 Manufacture of rare-earth intermetallic compound magnet

Publications (1)

Publication Number Publication Date
JPH07240330A true JPH07240330A (en) 1995-09-12

Family

ID=12330414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6031407A Pending JPH07240330A (en) 1994-03-01 1994-03-01 Manufacture of rare-earth intermetallic compound magnet

Country Status (1)

Country Link
JP (1) JPH07240330A (en)

Similar Documents

Publication Publication Date Title
US8420160B2 (en) Method for producing sintered NdFeB magnet
KR102045399B1 (en) Manufacturing method of rare earth sintered magnet
JP7223182B2 (en) grain boundary engineering
JP2007266038A (en) Manufacturing method of rare-earth permanent magnet
JP5209349B2 (en) Manufacturing method of NdFeB sintered magnet
CN103996478A (en) Method for manufacturing neodymium iron boron magnet
JP2013153172A (en) Manufacturing method of neodymium-iron-boron sintered magnet
JPH05156307A (en) Lubrication of cold press machine die
JPH04500887A (en) Improved magnetic materials and their manufacturing methods
JPH07263265A (en) Rare-earth intermetallic-compound permanent magnet and its manufacture
JP4353402B2 (en) Rare earth permanent magnet manufacturing method
JPH09104902A (en) Powder compacting method
JPH07240331A (en) Manufacture of rare-earth intermetallic compound magnet
RU2525867C1 (en) METHOD TO PRODUCE SINTERED HIGHLY ENERGY-INTENSIVE PERMANENT MAGNET FROM ALLOY BASED ON Nd-Fe-B
JPH07240330A (en) Manufacture of rare-earth intermetallic compound magnet
JP3436404B2 (en) Method for manufacturing rare earth intermetallic compound magnet
JP4662009B2 (en) Rare earth permanent magnet manufacturing method
JP2005060830A (en) Method for producing soft magnetic sintered member
JP3459477B2 (en) Production method of raw material powder for rare earth magnet
KR102261143B1 (en) Manufacturing method of rare earth sintered magnet
JP4716020B2 (en) Method for producing rare earth permanent magnet and method for mixing raw material powder and lubricant
JP2004266093A (en) Method of manufacturing rare earth bonded magnet
JPH04191302A (en) Manufacture of rare earth metal-iron based permanent magnet
JPH0922828A (en) Manufacture of bond type permanent magnet
JP4716022B2 (en) Rare earth permanent magnet manufacturing method