JP2005060830A - Method for producing soft magnetic sintered member - Google Patents

Method for producing soft magnetic sintered member Download PDF

Info

Publication number
JP2005060830A
JP2005060830A JP2004218375A JP2004218375A JP2005060830A JP 2005060830 A JP2005060830 A JP 2005060830A JP 2004218375 A JP2004218375 A JP 2004218375A JP 2004218375 A JP2004218375 A JP 2004218375A JP 2005060830 A JP2005060830 A JP 2005060830A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
raw material
material powder
sintered member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218375A
Other languages
Japanese (ja)
Other versions
JP4371935B2 (en
Inventor
Rei Hamano
礼 濱野
Kazuo Asaka
一夫 浅香
Chio Ishihara
千生 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2004218375A priority Critical patent/JP4371935B2/en
Publication of JP2005060830A publication Critical patent/JP2005060830A/en
Application granted granted Critical
Publication of JP4371935B2 publication Critical patent/JP4371935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a soft magnetic sintered member capable of attaining a high density ratio and excellent magnetic characteristics because excellent compressive performance during molding inhibits pores from irreversibly remaining, Si is uniformly applied to the surface of the soft magnetic raw material powder, and no large Kirkendall voids remain in the sites where an Si powder is present before Si is diffused into an Fe base during sintering. <P>SOLUTION: The method comprises using as a raw material powder a Si fine powder coated soft magnetic powder in a dry state at ordinary temperature obtained by a step of coating the surface of a soft magnetic powder of a mean particle diameter of 10 to 150 μm with 1.0 to 6.5 mass%, based on the soft magnetic powder, Si powder of a mean particle diameter of 1 to 45 μm, compression-molding the resulting powder into a specified shape, and sintering the resulting shaping. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、軟磁性焼結材料の製造方法に係り、とくに、優れた焼結体密度と各種磁気特性とを発揮する軟磁性焼結部材の製造技術に関する。   The present invention relates to a method for producing a soft magnetic sintered material, and more particularly to a technique for producing a soft magnetic sintered member that exhibits excellent sintered body density and various magnetic properties.

珪素鋼板に代表される軟磁性部材は、飽和磁束密度が大きく、また電気抵抗率が高く、さらに鉄損が小さいため、リレーやトランスなどの鉄芯(コア、ヨーク)等として広く使用されている。また、軟磁性材料を、電気エネルギーを駆動エネルギーに変換するアクチュエータの電磁駆動部品として用いた場合には、他の材料を使用する場合に比して上記変換効率を大幅に向上させることができる。   Soft magnetic members typified by silicon steel plates are widely used as iron cores (cores, yokes) for relays and transformers because of their high saturation magnetic flux density, high electrical resistivity, and low iron loss. . Further, when the soft magnetic material is used as an electromagnetic driving component of an actuator that converts electric energy into driving energy, the conversion efficiency can be greatly improved as compared with the case of using other materials.

一方、FeにSiを添加すると、飽和磁束密度が減少するが、固有抵抗が大きくなって鉄損を小さくすることができる。このため、Siを添加したFeは、とくに交流磁場の中で優れた磁気特性を発揮する。しかしながら、Fe中のSi含有量が多くなるにつれて硬くかつ脆い合金となる。よって、Siを過度に添加したものは、冷間圧延などの塑性加工が困難ないわゆる難加工性材料となる。   On the other hand, when Si is added to Fe, the saturation magnetic flux density is reduced, but the specific resistance is increased and the iron loss can be reduced. For this reason, Fe added with Si exhibits excellent magnetic properties particularly in an alternating magnetic field. However, the alloy becomes harder and more brittle as the Si content in Fe increases. Therefore, what added Si excessively becomes what is called a difficult-to-work material which is difficult to perform plastic working such as cold rolling.

そこで、ニアネットシェイプつまり最終製品形状とほぼ同じ形状が得られ、塑性加工が不要な粉末冶金法による軟磁性焼結部材の製造方法、すなわち、焼結後に所定の成分組成となるように通常150μm以下のFe粉末とSi粉末またはFe−Si系粉末とを混合し、圧粉成形した後、焼結することによってSi含有量の多いFe−Si系軟磁性焼結部材を得る方法が提案されている。しかしながら、Fe粉末とFe−Si系粉末とを混合して圧粉成形した後、焼結してSi含有量の多いFe−Si系軟磁性焼結部材を得る方法では、Fe−Si粉末が硬くなり、これによりFe−Si粉末においては、成形時に優れた圧縮性能を発揮することができない。このため、気孔が不可避的に残存して密度比を高くすることができない。また、Fe粉末とSi粉末とを混合した場合には、焼結時にSiがFe基地中に拡散し、Si粉末が存在した箇所にはカーケンダルボイドが残留して、密度比を高めることができず、本来の磁気特性が得られない、といった問題がある。   Therefore, a near-net shape, that is, a shape almost the same as the final product shape is obtained, and a soft magnetic sintered member manufacturing method by a powder metallurgy method that does not require plastic working, that is, usually 150 μm so as to have a predetermined component composition after sintering. The following Fe powder and Si powder or Fe-Si based powder are mixed, compacted, and then sintered to obtain a Fe-Si based soft magnetic sintered member with a large Si content. Yes. However, in a method in which Fe powder and Fe—Si based powder are mixed and compacted and then sintered to obtain a Fe—Si based soft magnetic sintered member having a high Si content, the Fe—Si powder is hard. Thus, the Fe—Si powder cannot exhibit excellent compression performance during molding. For this reason, pores inevitably remain and the density ratio cannot be increased. In addition, when Fe powder and Si powder are mixed, Si diffuses into the Fe matrix during sintering, and Kirkendall voids remain at the locations where Si powder is present, thereby increasing the density ratio. Therefore, there is a problem that the original magnetic characteristics cannot be obtained.

このような問題に対し特許文献1には、鉄粉を有機液体で被覆した後、その鉄粉より細かい平均粒径30μm以下の金属珪素粉と混合し、成形し、焼結することからなる軟質焼結磁性材の製造方法が提案されている。   In order to solve such a problem, Patent Document 1 discloses a soft material composed of iron powder coated with an organic liquid, mixed with metal silicon powder having an average particle size of 30 μm or less smaller than the iron powder, molded, and sintered. A method for producing a sintered magnetic material has been proposed.

特許第2599284号公報Japanese Patent No. 2599284

しかしながら、上記特許文献1に記載された方法では、予め鉄粉を有機液体(実施例ではスピンドル油)で被覆した後、微粒の金属珪素粉末と混合するため、有機液体の粘性あるいは表面張力により鉄粉どうしが付着・凝集し易く、1個の鉄粉表面に均一かつきれいに金属珪素粉を被覆することが難しく、かつ、有機液体により金属珪素粉自体も凝集し易いことから、従来のようにカーケンダルボイドが残留し易い。また、上記方法には、混合粉末自体に有機液体を含むことから、粉末流動性、成形性の低下の問題もあり、効率的に生産できないという課題もある。さらに、このような有機液体を含有する原料粉末を高密度に成形した場合、油分の除去が不十分となるとともに残留した油分のCがFe基地に拡散することによる磁気特性の低下が生じ易いという問題もある。   However, in the method described in Patent Document 1, since iron powder is coated with an organic liquid (spindle oil in the embodiment) in advance and then mixed with fine metal silicon powder, iron is caused by the viscosity or surface tension of the organic liquid. Since powders tend to adhere and agglomerate, it is difficult to coat metal silicon powder uniformly and cleanly on one iron powder surface, and metal silicon powder itself tends to agglomerate with an organic liquid. Kendall voids are likely to remain. In addition, since the mixed powder itself contains an organic liquid, the above-described method has a problem that powder flowability and moldability are deteriorated, and there is a problem that it cannot be efficiently produced. Furthermore, when the raw material powder containing such an organic liquid is molded at a high density, the removal of oil is insufficient and the residual oil C is likely to be deteriorated due to diffusion to the Fe base. There is also a problem.

本発明は、上記事情に鑑みてなされたものであり、成形時の優れた圧縮性能が得られること、軟磁性原料粉末表面へのSiの被覆が均一であること、および焼結時にカーケンダルボイドが残留しないことにより、高い密度比を実現することができ、かつ優れた磁気特性が得られる軟磁性焼結部材の製造方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and can provide excellent compression performance at the time of molding, uniform coating of Si on the surface of the soft magnetic raw material powder, and Kirkendall void at the time of sintering. It is an object of the present invention to provide a method for producing a soft magnetic sintered member which can realize a high density ratio and can obtain excellent magnetic properties.

本発明の軟磁性焼結部材の製造方法は、平均粒径が10〜150μmの軟磁性原料粉末表面に、平均粒径が1〜45μmであって、上記軟磁性原料粉末に対し1.0〜6.5質量%のSi粉末を被覆する工程により得られ、常温で乾燥状態のSi微粉被覆軟磁性粉末を原料粉末として用い、所定の形状に圧粉成形した後、焼結することを特徴としている。   The method for producing a soft magnetic sintered member of the present invention has an average particle size of 1 to 45 μm on the surface of a soft magnetic raw material powder having an average particle size of 10 to 150 μm, and 1.0 to It is obtained by a process of coating 6.5% by mass of Si powder, and is characterized in that it is sintered after compacted into a predetermined shape by using Si fine powder-coated soft magnetic powder dried at room temperature as a raw material powder. Yes.

本発明の軟磁性焼結部材の製造方法においては、Siが微粉末として乾燥状態で、1個の軟磁性粉末表面に薄く被覆されているので、Si被覆軟磁性粉末の硬さは、Fe−Si粉末のような過度に硬い粉末と異なり、軟磁性粉末の硬さとほぼ同じであるとともに、その取り扱いは通常の粉末冶金法によるものと同等である。このため、原料粉末の流動性および成形時の圧縮性は損なわれず、高密度の圧粉成形が可能である。また、Siが微粉末として軟磁性原料粉末表面に薄く被覆されているので、焼結時にSiが基地中に拡散しても、粗大なカーケンダルボイドが残留しないため、高密度化が可能となる。さらに、Siが微粉末として軟磁性原料粉末表面に薄く被覆されているので、合金中のFe分の減少を抑制することができ、軟磁性焼結部材の優れた磁気特性が得られる。なお、本発明における乾燥状態とは、極微量、すなわち原料粉末に対して0.1質量%程度の液体成分を含んでいても上記効果が得られるのでかまわない。   In the method for producing a soft magnetic sintered member of the present invention, since Si is dried as a fine powder and thinly coated on one soft magnetic powder surface, the hardness of the Si-coated soft magnetic powder is Fe- Unlike an excessively hard powder such as Si powder, it is almost the same as the hardness of a soft magnetic powder, and its handling is equivalent to that by a normal powder metallurgy method. For this reason, the fluidity of the raw material powder and the compressibility during molding are not impaired, and high-density compacting is possible. In addition, since the soft magnetic raw material powder surface is thinly coated as a fine powder, even if Si diffuses into the matrix during sintering, a coarse Kirkendall void does not remain, thus enabling high density. . Furthermore, since the surface of the soft magnetic raw material powder is thinly coated as a fine powder, the decrease in the Fe content in the alloy can be suppressed, and the excellent magnetic properties of the soft magnetic sintered member can be obtained. In addition, the dry state in the present invention may be a trace amount, that is, even if it contains a liquid component of about 0.1% by mass with respect to the raw material powder, the above effect can be obtained.

ここで、軟磁性原料粉末の平均粒径が通常用いられる10〜150μmの場合には、Si粉末は、その平均粒径が1〜45μmの微細なものを用いる。ただし、Si粉末の平均粒径は、軟磁性原料粉末の平均粒径と同等か、それより小さいことが必要である。軟磁性原料粉末の平均粒径が10μmを下回ると、原料粉末の流動性が低下するとともに、成形性も低下して、高密度の圧粉成形が不可能となる。また、軟磁性原料粉末の平均粒径が10μmを下回ると、焼結後の収縮量も大きくなるため、複雑形状の成形を行う場合には、その形状の維持が困難となり、ニアネットシェイプの製品形状を得るという粉末冶金法の特徴が活かせなくなる。一方、軟磁性原料粉末の平均粒径が150μmを超えると、Siの拡散が不十分となり均一な相が得られない。さらに、Si粉末の平均粒径が45μmを超えると、焼結後に粗大なSiの消失孔が残留し、密度比が低下する。一方、Si粉末の平均粒径が1μmを下回ると、Si粉末は、工業的に割高となる。   Here, when the average particle diameter of the soft magnetic raw material powder is 10 to 150 μm, which is usually used, a fine Si powder having an average particle diameter of 1 to 45 μm is used. However, the average particle size of the Si powder needs to be equal to or smaller than the average particle size of the soft magnetic raw material powder. When the average particle size of the soft magnetic raw material powder is less than 10 μm, the flowability of the raw material powder is lowered, the moldability is also lowered, and high density compacting becomes impossible. Also, if the average particle size of the soft magnetic raw material powder is less than 10 μm, the amount of shrinkage after sintering also increases, so it becomes difficult to maintain the shape when forming a complex shape, and the product of the near net shape The characteristic of powder metallurgy that obtains the shape is lost. On the other hand, when the average particle diameter of the soft magnetic raw material powder exceeds 150 μm, the diffusion of Si is insufficient and a uniform phase cannot be obtained. Further, if the average particle size of the Si powder exceeds 45 μm, coarse Si disappearance holes remain after sintering, and the density ratio decreases. On the other hand, when the average particle size of the Si powder is less than 1 μm, the Si powder is industrially expensive.

次に、Si粉末の量が軟磁性原料粉末に対して1.0質量%に満たない場合には、固有抵抗を増加して鉄損を減少させる効果に乏しい。一方、Si粉末の量が軟磁性原料粉末に対して6.5質量%を超えると、飽和磁束密度が低下し、磁性体として十分な機能を維持できない。   Next, when the amount of the Si powder is less than 1.0% by mass with respect to the soft magnetic raw material powder, the effect of increasing the specific resistance and reducing the iron loss is poor. On the other hand, when the amount of the Si powder exceeds 6.5% by mass with respect to the soft magnetic raw material powder, the saturation magnetic flux density is lowered and a sufficient function as a magnetic body cannot be maintained.

このような軟磁性焼結部材の製造方法においては、軟磁性原料粉末の成分が、Feおよび不可避的不純物であること、または軟磁性原料粉末の成分が、P:0.2〜1.2質量%、残部:Feおよび不可避的不純物であることが望ましい。なお、軟磁性原料粉末は、合金粉末であっても混合粉末であってもよい。Feは、軟磁気特性を担う軟磁性焼結部材に必須の元素であり、Fe分が多いほど飽和磁束密度が高くなるため、純鉄粉末を用いることが好ましい。また、Pを含有することでFe分が減少する結果、飽和磁束密度は低下するが、PにはFe基地の結晶粒を粗大化する効果があるため、透磁率が向上するので、Fe−P粉末、純鉄粉とFe−P粉末の混合粉末、および純鉄粉表面にFe−P粉末を部分的に拡散付着させた部分拡散合金粉末、等を用いることも好ましい。ただし、P量が0.2質量%に満たない場合には透磁率改善の効果が乏しく、一方1.2質量%を超える場合には基地の脆化が著しくなるため好ましくない。   In such a method for producing a soft magnetic sintered member, the components of the soft magnetic raw material powder are Fe and inevitable impurities, or the components of the soft magnetic raw material powder are P: 0.2 to 1.2 mass. %, Balance: Fe and inevitable impurities are desirable. The soft magnetic raw material powder may be an alloy powder or a mixed powder. Fe is an essential element for the soft magnetic sintered member responsible for soft magnetic properties, and the saturation magnetic flux density increases as the Fe content increases, so it is preferable to use pure iron powder. Moreover, as a result of the Fe content being reduced by containing P, the saturation magnetic flux density is reduced. However, since P has the effect of coarsening the Fe-based crystal grains, the permeability is improved, so Fe-P It is also preferable to use powder, mixed powder of pure iron powder and Fe-P powder, partially diffused alloy powder in which Fe-P powder is partially diffused and adhered to the surface of pure iron powder, and the like. However, when the amount of P is less than 0.2% by mass, the effect of improving the magnetic permeability is poor, whereas when it exceeds 1.2% by mass, the base becomes brittle, which is not preferable.

上記のようなSi微粉末被覆軟磁性粉末は、Si粉末が軟磁性原料粉末表面に常温で固体状のバインダを介して被覆されることで、より均一に軟磁性原料粉末表面にSi微粉末を被覆することができる。また、上記のようなSi微粉末被覆軟磁性粉末は、水またはエタノール中にSi微粉末を分散させた分散液を用い、この分散液と軟磁性原料粉末とを混合、乾燥することで、より均一に軟磁性原料粉末表面にSi微粉末を被覆することができる。このようなSi微粉末分散液と軟磁性原料粉末とを混合、乾燥する方法としては、(1)軟磁性原料粉末を上記分散液に浸漬し、流動させながら水またはエタノールを蒸発または揮発させて乾燥する方法、(2)軟磁性原料粉末に、Si微粉末分散液を少量ずつ徐々に添加しつつ、流動させながら水またはエタノールを蒸発または揮発させて乾燥する方法、および(3)軟磁性原料粉末に、Si微粉末分散液を噴霧しつつ、流動させながら水またはエタノールを蒸発または揮発させて乾燥する方法が挙げられる。上記(1)〜(3)の方法においては、(3)、(2)、(1)の順により均一なSi微粉末の被覆が得られるが、(3)、(2)、(1)の順に工程および装置が複雑化するため、これらの方法は、生産規模等により適宜選択することが望ましい。   The Si fine powder-coated soft magnetic powder as described above is obtained by coating the surface of the soft magnetic raw material powder with a solid binder at room temperature, so that the Si fine powder is more uniformly applied to the surface of the soft magnetic raw material powder. Can be coated. In addition, the Si fine powder-coated soft magnetic powder as described above is obtained by using a dispersion in which Si fine powder is dispersed in water or ethanol, and mixing and drying the dispersion and the soft magnetic raw material powder. The surface of the soft magnetic raw material powder can be uniformly coated with the Si fine powder. As a method for mixing and drying such a Si fine powder dispersion and soft magnetic raw material powder, (1) immersing the soft magnetic raw material powder in the dispersion and evaporating or volatilizing water or ethanol while flowing. A method of drying, (2) a method of drying by gradually evaporating or volatilizing water or ethanol while flowing while gradually adding Si fine powder dispersion to soft magnetic raw material powder, and (3) soft magnetic raw material There is a method in which water or ethanol is evaporated or volatilized while being sprayed and sprayed with a Si fine powder dispersion, and then dried. In the methods (1) to (3), a uniform coating of fine Si powder can be obtained in the order of (3), (2), and (1). However, (3), (2), and (1) Since the process and the apparatus become complicated in the order, it is desirable to select these methods as appropriate depending on the production scale and the like.

上記のような分散液を用いるSi微粉末の軟磁性原料粉末表面への被覆は、ファンデルワールス力による被覆であり、十分実用に耐えるものである。さらに、上記Si微粉末分散液中にバインダ成分を添加して乾燥させた場合には、Si微粉末の軟磁性原料粉末表面への被覆がバインダによっても行われるため、好適である。バインダ成分は、常温で固体であるとともに焼結時の昇温過程で揮発し、最終製品に残留しないものであれば足りる。常温で液体のものは、鉄粉どうし、またはSi微粉末どうしが凝集し易く、好ましくない。このような、常温で固体であるとともに焼結時の昇温過程で揮発し、最終製品に残留しないものとして、例えば、PVP、PVA等を用いることが好ましく、その他に各鉄粉メーカーで無偏析処理のため使用されているバインダも使用可能である。ただし、バインダ成分としてPVPを用いた場合には、成形密度を6.9g/cm程度より高くすると、単なる焼結時の昇温過程では揮発除去し難いため、焼結時の昇温過程において400〜500℃程度で一旦10〜60分程度保持して十分にバインダ成分を揮発除去することが必要である。成形密度が上記より低い場合や、バインダ成分としてPVPよりも低い温度で熱分解が始まり揮発除去が容易なPVAを用いる場合には、上記バインダ除去過程はとくに必要ない。また、バインダ成分の添加量としては、0.5質量%以下が好ましい。0.5質量%を超えて添加すると、成形体密度の低下により、焼結後の密度が低下して磁気特性を低下させる。また、0.5質量%を超えて添加すると、バインダ成分の揮発除去が困難となり、残留したバインダ成分がCとしてFe基地に拡散し、磁気特性を低下させるおそれがある。 The coating of the Si fine powder using the dispersion liquid as described above on the surface of the soft magnetic raw material powder is a coating by van der Waals force, and is sufficiently practical. Further, when the binder component is added to the Si fine powder dispersion and dried, the surface of the soft magnetic raw material powder is coated with the binder by the binder, which is preferable. The binder component is sufficient if it is solid at room temperature, volatilizes during the heating process during sintering, and does not remain in the final product. Liquids at room temperature are not preferable because iron powders or Si fine powders easily aggregate. It is preferable to use, for example, PVP, PVA, etc., as it is solid at room temperature and volatilizes in the heating process during sintering, and does not remain in the final product. Binders used for processing can also be used. However, when PVP is used as the binder component, if the molding density is higher than about 6.9 g / cm 3 , it is difficult to volatilize and remove in the temperature rising process at the time of sintering. It is necessary to sufficiently volatilize and remove the binder component by holding it at about 400 to 500 ° C. for about 10 to 60 minutes. When the molding density is lower than the above, or when PVA is used as the binder component, since thermal decomposition starts at a temperature lower than PVP and is easy to volatilize and remove, the binder removal process is not particularly necessary. Moreover, as addition amount of a binder component, 0.5 mass% or less is preferable. When added in excess of 0.5 mass%, the density after sintering is reduced due to a decrease in the density of the compact, and the magnetic properties are deteriorated. Moreover, when added over 0.5 mass%, it is difficult to volatilize and remove the binder component, and the remaining binder component may diffuse into the Fe base as C, possibly degrading the magnetic properties.

さらに、上記分散液が、分散剤、界面活性剤および防錆剤の少なくとも1種を含む場合には、以下に示す種々の効果を発揮するため、さらに優れた圧縮性能や磁気特性等を得る効果が大きい。具体的には、分散剤を用いた場合には、Si微粉末の溶液中への分散性が高められ、Si微粉末の沈降が防止される。このため、Si微粉末の軟磁性原料粉末への均一な被覆を実現することができる。また、界面活性剤を用いた場合には、軟磁性原料粉末表面とSi微粉末分散液との濡れ性が高められることにより、Si微粉末の軟磁性原料粉末への均一な被覆を実現することができる。さらに、防錆剤を用いた場合には、分散媒が水である場合に、軟磁性原料粉末の発錆が抑制される。   Further, when the dispersion contains at least one of a dispersant, a surfactant, and a rust preventive agent, the following various effects are exhibited, and thus an effect of obtaining further excellent compression performance, magnetic properties, etc. Is big. Specifically, when a dispersant is used, the dispersibility of the Si fine powder in the solution is enhanced, and sedimentation of the Si fine powder is prevented. For this reason, the uniform coating | cover to the soft-magnetic raw material powder of Si fine powder is realizable. In addition, when a surfactant is used, the wettability between the surface of the soft magnetic raw material powder and the Si fine powder dispersion is enhanced, thereby realizing uniform coating of the Si fine powder on the soft magnetic raw material powder. Can do. Further, when a rust inhibitor is used, rusting of the soft magnetic raw material powder is suppressed when the dispersion medium is water.

上記により得られたSi微粉末被覆軟磁性粉末を原料として用い、所定の形状に圧粉成形した後、焼結することにより、密度比が高く、しかも磁気特性に優れた軟磁性焼結部材を製造することができる。なお、圧粉成形においては、通常の粉末冶金法で行われるように、原料粉末に成形潤滑剤を添加する内部潤滑法、または金型壁面に潤滑剤を塗布する金型潤滑法等の潤滑手段を用いることができる。一般の粉末冶金法で用いられる成形潤滑剤は、焼結時の昇温過程で揮発除去され、最終製品には残留しない。なお、焼結は、不活性ガス雰囲気、減圧雰囲気、真空雰囲気、アンモニア分解ガス雰囲気のいずれかの雰囲気の下で行う。浸炭性ガス雰囲気は、磁気特性を低下させるCが基地中に拡散するので好ましくない。   By using the Si fine powder-coated soft magnetic powder obtained above as a raw material, compacting into a predetermined shape and then sintering, a soft magnetic sintered member having a high density ratio and excellent magnetic properties is obtained. Can be manufactured. In compaction molding, as in the normal powder metallurgy method, lubrication means such as an internal lubrication method in which a molding lubricant is added to the raw powder, or a mold lubrication method in which a lubricant is applied to the mold wall surface Can be used. Molding lubricants used in general powder metallurgy are volatilized and removed during the heating process during sintering and do not remain in the final product. Sintering is performed under any of an inert gas atmosphere, a reduced pressure atmosphere, a vacuum atmosphere, and an ammonia decomposition gas atmosphere. A carburizing gas atmosphere is not preferable because C, which lowers the magnetic properties, diffuses into the base.

本発明の軟磁性焼結部材の製造方法では、微細なSi粉末を軟磁性原料粉末表面に乾燥状態で被覆された粉末を原料粉末として用いるので、成形時の優れた圧縮性能により気孔が不可避的に残存せず、またSiの拡散に起因する粗大なカーケンダルボイドが存在しない。よって、本発明の製造方法では、高密度かつ優れた磁気特性を兼備する軟磁性焼結部材が得られる。   In the method for producing a soft magnetic sintered member of the present invention, since fine Si powder is coated on the surface of the soft magnetic raw material powder in the dry state as the raw material powder, pores are inevitable due to excellent compression performance at the time of molding. In addition, there is no coarse Kirkendall void due to Si diffusion. Therefore, in the manufacturing method of the present invention, a soft magnetic sintered member having high density and excellent magnetic properties can be obtained.

表1に示す平均粒径のFe−P粉末(P量が0質量%の試料番号01〜20の試料の場合は純鉄粉末)と、同表に示す平均粒径のSi粉末とを用い、同表に示す配合比でSi粉末を被覆したものを原料粉末として用い、成形圧力:686MPaで試験片形状に圧粉成形して、成形体(φ30mm×φ20mm×t5mm)を作製した。この成形体について成形体密度を測定した結果を表1に併記する。   Fe-P powder having an average particle size shown in Table 1 (pure iron powder in the case of samples Nos. 01 to 20 having a P content of 0% by mass) and Si powder having an average particle size shown in the same table were used. A material coated with Si powder at the blending ratio shown in the table was used as a raw material powder, and compacted into a test piece shape at a molding pressure of 686 MPa to prepare a compact (φ30 mm × φ20 mm × t5 mm). Table 1 also shows the results of measuring the density of the molded body.

次いで、上記のように作製した成形体を10−3Torrの減圧ガス雰囲気中で1200℃×60分間焼結し、試料番号01〜26の試料を得た。これらの試料について、焼結後の密度を測定した結果を表1に併記する。また、これらの試料について、磁化力2000A/mの時の直流磁束密度B、最大透磁率の各磁気特性、および電気特性である比抵抗を測定した結果を表1に併記する。 Subsequently, the molded body produced as described above was sintered at 1200 ° C. for 60 minutes in a reduced-pressure gas atmosphere of 10 −3 Torr, and samples Nos. 01 to 26 were obtained. The results of measuring the density after sintering of these samples are also shown in Table 1. Table 1 also shows the results of measuring the DC magnetic flux density B when the magnetizing force is 2000 A / m, the magnetic characteristics of the maximum permeability, and the specific resistance, which is an electrical characteristic, for these samples.

なお、表1中、被覆工程の記号で、(A)は乾式混合による被覆工程、(B)はSi粉末を水中に分散させた分散液中に軟磁性原料粉末を浸漬して流動させながら水を揮発乾燥させた被覆工程、(C)はSi粉末を水中に分散させた分散液を少量ずつ軟磁性原料粉末に滴下しつつ流動させながら水を揮発させて乾燥させた被覆工程、(D)は、Si粉末を水中に分散させた分散液を軟磁性原料粉末に噴霧しつつ流動させながら水を揮発させて乾燥させた被覆工程、および(E)は上記(D)の被覆工程において分散液中にバインダ成分として原料粉末を100質量%として0.25質量%のPVPを添加したものを用いた被覆工程である。   In Table 1, symbols of the coating process, (A) is a coating process by dry mixing, and (B) is water while immersing the soft magnetic raw material powder in a dispersion in which Si powder is dispersed in water. (C) is a coating process in which water is volatilized and dried while dripping a dispersion obtained by dispersing Si powder in water little by little into the soft magnetic raw material powder, and (D) Is a coating process in which water is volatilized and dried while spraying a dispersion liquid in which Si powder is dispersed in water on a soft magnetic raw material powder, and (E) is a dispersion liquid in the coating process of (D) above. It is a coating process using what added 0.25 mass% of PVP to 100 mass% as raw material powder as a binder component.

Figure 2005060830
Figure 2005060830

表1の試料番号01〜05の試料を比較することで、同じ平均粒径の軟磁性粉末(純鉄粉)に対するSi粉末の平均粒径の影響を調べることができる。これらの試料により、Si粉末の平均粒径が大きくなるにつれて、焼結体密度が低下し、直流磁束密度および最大透磁率も低下する傾向を示しており、平均粒径が45μmを超える試料番号05の試料では急激に直流磁束密度および最大透磁率が減少していることが判る。この結果により、Si粉末の平均粒径については、45μm以下のものが各種磁気特性に優れているといえる。   By comparing the samples of sample numbers 01 to 05 in Table 1, the influence of the average particle size of the Si powder on the soft magnetic powder (pure iron powder) having the same average particle size can be examined. With these samples, as the average particle size of the Si powder increases, the sintered body density tends to decrease, and the DC magnetic flux density and the maximum magnetic permeability tend to decrease. Sample No. 05 with an average particle size exceeding 45 μm It can be seen that the DC magnetic flux density and the maximum permeability are drastically decreased in the sample of (1). From this result, it can be said that the average particle diameter of the Si powder is not more than 45 μm and is excellent in various magnetic properties.

表1の試料番号02の試料と試料番号06〜10の試料とを比較することで、同じ平均粒径のSi粉末に対する純鉄粉末の平均粒径の影響を調べることができる。表1により、軟磁性粉末の粒径が増加するにつれて、焼結体密度、直流磁束密度、および最大透磁率はともに減少する傾向を示し、軟磁性粉末の平均粒径が5μmの試料番号06の試料が最も良好な各種特性を示す。また、試料番号06の試料は、軟磁性原料粉末の粒径が小さ過ぎることにより、成形性が悪く、成形体密度が極めて低い値となっているが、表面積が大きいために焼結による緻密化が急激に進行し、焼結体密度が最も高くなっていることが判る。この急激な緻密化の進行により、試料番号06の試料では試料の変形が生じた。このことより、軟磁性原料粉末の粒径があまりに小さ過ぎると、ニアネットシェイプの製品が得られるという粉末冶金法のメリットが活かせないことが判る。なお、軟磁性原料粉末の平均粒径が10μmの試料番号07の試料では、焼結による緻密化は生じるものの、試料番号06のような極端な変形は認められなかった。一方、軟磁性原料粉末の平均粒径が150μmを超える試料番号10の試料では、逆に成形体密度は高く、成形性は優れているが、粉末の表面積が小さく焼結による緻密化が進行しない結果、焼結体密度があまり高くなく、各種磁気特性も著しく低い。したがって、軟磁性原料粉末の平均粒径については、10〜150μmのものが好適であるといえる。   By comparing the sample of sample number 02 and the samples of sample numbers 06 to 10 in Table 1, the influence of the average particle size of the pure iron powder on the Si powder having the same average particle size can be examined. According to Table 1, as the particle size of the soft magnetic powder increases, the sintered body density, the DC magnetic flux density, and the maximum magnetic permeability tend to decrease, and the average particle size of the soft magnetic powder is 5 μm for sample number 06. The sample shows the best properties. In addition, the sample of sample number 06 has poor moldability due to the too small particle size of the soft magnetic raw material powder, and the molded body density is extremely low. It can be seen that abruptly proceeds and the sintered body density is the highest. Due to this rapid progress of densification, the sample No. 06 was deformed. From this, it can be seen that if the particle size of the soft magnetic raw material powder is too small, the advantage of the powder metallurgy method that a near net shape product can be obtained cannot be utilized. In the sample of sample number 07 whose soft magnetic raw material powder had an average particle size of 10 μm, although densification due to sintering occurred, extreme deformation as in sample number 06 was not observed. On the other hand, in the sample of Sample No. 10 in which the average particle diameter of the soft magnetic raw material powder exceeds 150 μm, the compact density is high and the moldability is excellent, but the powder has a small surface area and does not proceed with densification by sintering. As a result, the sintered body density is not so high, and various magnetic properties are remarkably low. Accordingly, it can be said that the average particle diameter of the soft magnetic raw material powder is preferably 10 to 150 μm.

表1の試料番号02の試料と試料番号11〜16の試料とを比較することで、Si粉末の添加量の影響を調べることができる。表1により、Si粉末添加量が5.0質量%の試料番号14の試料において焼結体密度が最も高くなり、直流磁束密度および最大透磁率も最大となっていることが判る。また、Si粉末添加量が1.0〜6.5質量%の範囲で高い直流磁束密度および優れた磁気特性を示すことが判る。したがって、Si粉末の添加量については、1.0〜6.5質量%のものが好適であるといえる。   By comparing the sample of sample number 02 and the samples of sample numbers 11 to 16 in Table 1, the influence of the addition amount of Si powder can be examined. From Table 1, it can be seen that the sintered body density is highest in the sample of Sample No. 14 in which the Si powder addition amount is 5.0% by mass, and the DC magnetic flux density and the maximum magnetic permeability are also the maximum. It can also be seen that high DC magnetic flux density and excellent magnetic properties are exhibited when the Si powder addition amount is in the range of 1.0 to 6.5 mass%. Therefore, it can be said that the addition amount of Si powder is preferably 1.0 to 6.5% by mass.

表1の試料番号02の試料と試料番号17〜20の試料とを比較することで、Si粉末の被覆方法が各種特性に与える影響について調べることができる。表1により、(A):単純な乾式混合による被覆工程(試料番号17)では、被覆が不十分となり、Si微粉末の凝集が発生したことにより、カーケンダルボイドが発生して焼結体密度および各種磁気特性が低い。これに対し、本発明の(B):Si微粉末分散液中に軟磁性原料粉末を浸漬して乾燥する被覆工程(試料番号18)、(C):Si微粉末分散液を軟磁性原料粉末に少量ずつ滴下しつつ乾燥する被覆工程(試料番号19)、(D):Si微粉末分散液を噴霧乾燥する被覆工程(試料番号02)、および(E):分散剤および界面活性剤を添加したSi微粉末分散液を噴霧乾燥する被覆工程(試料番号20)は、いずれも上記(A):単純な乾式混合による被覆工程よりも、(B)、(C)、(D)、(E)の順に、Si微粉末の被覆が一層改善され、焼結体密度が向上するとともに、磁気特性が向上していることが判る。   By comparing the sample of sample number 02 and the samples of sample numbers 17 to 20 in Table 1, the influence of the Si powder coating method on various properties can be examined. According to Table 1, (A): In the coating process by simple dry mixing (Sample No. 17), the coating was insufficient, and aggregation of the Si fine powder occurred, resulting in Kirkendall voids and the sintered body density. And various magnetic properties are low. On the other hand, (B) of the present invention: a coating step (sample number 18) in which soft magnetic raw material powder is dipped in a Si fine powder dispersion and dried, (C): Si fine powder dispersion is soft magnetic raw material powder (D): Coating step (Spray No. 02) for spray-drying a fine Si powder dispersion, and (E): Adding a dispersant and a surfactant. The coating step (sample number 20) for spray-drying the Si fine powder dispersion thus performed is more than the above (A): coating step by simple dry mixing (B), (C), (D), (E It can be seen that the coating of the Si fine powder is further improved in the order of), the density of the sintered body is improved, and the magnetic properties are improved.

表1の試料番号02の試料と試料番号21〜26の試料とを比較することで、P量の影響を調べることができる。表1により、Pを添加することで最大透磁率が向上しており、P量が増加するにつれて最大透磁率は増大することが判る。ただし、Fe−P粉末中のP量が1.0質量%を超えると最大透磁率は逆に減少する傾向を示し、P量が1.2質量%を超えると急激にその値が低下している。以上より、Pを含有させる場合、0.2質量%の添加で最大透磁率向上の効果が認められるが、Fe−P粉末として付与するP量が1.2質量%を超えると、逆に透磁率の低下が著しいため、その添加は1.2質量%以下に止めるべきである。   By comparing the sample of sample number 02 and the samples of sample numbers 21 to 26 in Table 1, the influence of the P amount can be examined. Table 1 shows that the maximum magnetic permeability is improved by adding P, and the maximum magnetic permeability increases as the amount of P increases. However, when the amount of P in the Fe-P powder exceeds 1.0% by mass, the maximum magnetic permeability tends to decrease conversely, and when the amount of P exceeds 1.2% by mass, the value rapidly decreases. Yes. From the above, when P is contained, the effect of improving the maximum magnetic permeability is recognized by addition of 0.2% by mass. However, when the amount of P applied as Fe-P powder exceeds 1.2% by mass, the permeability is reversed. Due to the significant decrease in magnetic susceptibility, the addition should be stopped below 1.2% by weight.

PVPの濃度を変えた水溶液中に、平均粒径が10μmのSi粉末を2質量%分散させた分散液を用意し、その分散液を平均粒径が65μmで、P量が0.6質量%のFe−P粉末に噴霧しつつ流動させながら水を揮発乾燥させて得られた、表2に示すバインダ成分量の異なるSi微粉被覆軟磁性粉末を用い、第1実施例と同じ条件で成形、焼結して試料27〜30を作製した。これらの試料について第1実施例と同様に直流磁束密度、最大透磁率、および比抵抗を測定した結果を表2に併記する。   A dispersion is prepared by dispersing 2% by mass of Si powder having an average particle size of 10 μm in an aqueous solution having a different concentration of PVP. The dispersion has an average particle size of 65 μm and a P content of 0.6% by mass. Using the Si fine powder-coated soft magnetic powder having different binder component amounts shown in Table 2 obtained by volatilizing and drying water while spraying and flowing on the Fe-P powder, molding under the same conditions as in the first example, Sintering produced Samples 27-30. The results of measuring the DC magnetic flux density, maximum magnetic permeability, and specific resistance of these samples in the same manner as in the first example are also shown in Table 2.

Figure 2005060830
Figure 2005060830

表2より、バインダ成分を0.5質量%以下添加することにより、Si微粉末の被覆が一層改善されて、焼結体密度が向上するとともに、直流磁束密度および最大透磁率が向上していることが判る。比抵抗はほぼ一定であり、バインダ量による影響は見られない。一方、バインダ成分量が0.5質量%を超えると、成形体密度が低下する結果、焼結体密度が低下して、直流磁気特性および最大透磁率の低下が生じることが判る。よってバインダ成分の添加はSi微粉末の被覆の改善に効果があり、磁気特性を改善できるが、その成分量は0.5質量%以下に止めるべきである。   From Table 2, by adding 0.5 mass% or less of the binder component, the coating of the Si fine powder is further improved, the sintered body density is improved, and the DC magnetic flux density and the maximum magnetic permeability are improved. I understand that. The specific resistance is almost constant, and the influence of the binder amount is not seen. On the other hand, when the amount of the binder component exceeds 0.5% by mass, it is found that the density of the compact is reduced, resulting in a decrease in the density of the sintered body, resulting in a decrease in DC magnetic characteristics and maximum magnetic permeability. Therefore, the addition of the binder component is effective in improving the coating of the Si fine powder and can improve the magnetic properties, but the amount of the component should be kept to 0.5% by mass or less.

本発明は、電気エネルギーを駆動エネルギーに変換するアクチュエータの電磁駆動部品や各種センサー部品等のように、近年益々優れた磁気特性が要求される部材の製造技術として活用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used as a manufacturing technique for members that are increasingly required to have more excellent magnetic properties in recent years, such as electromagnetically driven parts and various sensor parts of actuators that convert electrical energy into drive energy.

Claims (9)

平均粒径が10〜150μmの軟磁性原料粉末表面に、平均粒径が1〜45μmであって、前記軟磁性原料粉末に対し1.0〜6.5質量%のSi粉末を被覆する工程により得られ、常温で乾燥状態のSi微粉被覆軟磁性粉末を原料粉末として用い、所定の形状に圧粉成形した後、焼結することを特徴とする軟磁性焼結部材の製造方法。   The surface of the soft magnetic material powder having an average particle size of 10 to 150 μm is coated with 1.0 to 6.5% by mass of Si powder having an average particle size of 1 to 45 μm and the soft magnetic material powder. A method for producing a soft magnetic sintered member, characterized in that a Si fine powder-coated soft magnetic powder dried at room temperature is used as a raw material powder, compacted into a predetermined shape, and then sintered. 前記軟磁性原料粉末の成分が、Feおよび不可避的不純物であることを特徴とする請求項1に記載の軟磁性焼結部材の製造方法。   The method of manufacturing a soft magnetic sintered member according to claim 1, wherein the components of the soft magnetic raw material powder are Fe and inevitable impurities. 前記軟磁性原料粉末が、P:0.2〜1.2質量%、残部:Feおよび不可避的不純物となる成分を有する合金粉末または混合粉末であることを特徴とする請求項1に記載の軟磁性焼結部材の製造方法。   2. The soft magnetic material powder according to claim 1, wherein the soft magnetic raw material powder is an alloy powder or a mixed powder having components of P: 0.2 to 1.2 mass%, balance: Fe and inevitable impurities. Manufacturing method of magnetic sintered member. 前記Si粉末を被覆する工程が、前記軟磁性原料粉末表面にバインダを介して前記Si粉末を被覆する工程であることを特徴とする請求項1〜3のいずれかに記載の軟磁性焼結部材の製造方法。   The soft magnetic sintered member according to any one of claims 1 to 3, wherein the step of coating the Si powder is a step of coating the surface of the soft magnetic raw material powder with the Si powder via a binder. Manufacturing method. 前記Si粉末を被覆する工程が、水またはエタノール中にSi粉末を分散させた分散液を用い、軟磁性原料粉末を前記分散液に浸漬し、流動させながら水またはエタノールを蒸発または揮発させて乾燥する工程であることを特徴とする請求項1〜3のいずれかに記載の軟磁性焼結部材の製造方法。   The step of coating the Si powder uses a dispersion in which Si powder is dispersed in water or ethanol, dipping the soft magnetic raw material powder in the dispersion and evaporating or volatilizing the water or ethanol while flowing to dry. The method for producing a soft magnetic sintered member according to any one of claims 1 to 3, wherein the method comprises: 前記Si粉末を被覆する工程が、軟磁性原料粉末に、水またはエタノール中にSi粉末を分散させた分散液を少量ずつ徐々に添加しつつ、流動させながら水またはエタノールを蒸発または揮発させて乾燥する工程であることを特徴とする請求項1〜3のいずれかに記載の軟磁性焼結部材の製造方法。   The step of coating the Si powder is performed by gradually evaporating or volatilizing water or ethanol while flowing while gradually adding a dispersion obtained by dispersing the Si powder in water or ethanol to the soft magnetic raw material powder. The method for producing a soft magnetic sintered member according to any one of claims 1 to 3, wherein the method comprises: 前記Si粉末を被覆する工程が、軟磁性原料粉末に、水またはエタノール中にSi粉末を分散させた分散液を噴霧しつつ、流動させながら水またはエタノールを蒸発または揮発させて乾燥する工程であることを特徴とする請求項1〜3のいずれかに記載の軟磁性焼結部材の製造方法。   The step of coating the Si powder is a step of drying by evaporating or volatilizing water or ethanol while spraying a dispersion obtained by dispersing the Si powder in water or ethanol on the soft magnetic raw material powder. The method for producing a soft magnetic sintered member according to any one of claims 1 to 3. 前記分散液にバインダ成分を添加するとともに、前記乾燥工程後にSi微粉末が軟磁性原料粉末表面にバインダを介して被覆されていることを特徴とする請求項5〜7のいずれかに記載の軟磁性焼結部材の製造方法。   The soft binder according to any one of claims 5 to 7, wherein a binder component is added to the dispersion, and a fine Si powder is coated on the surface of the soft magnetic raw material powder via the binder after the drying step. Manufacturing method of magnetic sintered member. 前記分散液が、分散剤、界面活性剤および防錆剤の少なくとも1種を含むことを特徴とする請求項5〜8のいずれかに記載の軟磁性焼結部材の製造方法。   The method for producing a soft magnetic sintered member according to any one of claims 5 to 8, wherein the dispersion contains at least one of a dispersant, a surfactant, and a rust inhibitor.
JP2004218375A 2003-07-31 2004-07-27 Method for producing a soft magnetic sintered member Active JP4371935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218375A JP4371935B2 (en) 2003-07-31 2004-07-27 Method for producing a soft magnetic sintered member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003283302 2003-07-31
JP2004218375A JP4371935B2 (en) 2003-07-31 2004-07-27 Method for producing a soft magnetic sintered member

Publications (2)

Publication Number Publication Date
JP2005060830A true JP2005060830A (en) 2005-03-10
JP4371935B2 JP4371935B2 (en) 2009-11-25

Family

ID=34380219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218375A Active JP4371935B2 (en) 2003-07-31 2004-07-27 Method for producing a soft magnetic sintered member

Country Status (1)

Country Link
JP (1) JP4371935B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143091A1 (en) * 2007-05-21 2008-11-27 Mitsubishi Steel Mfg. Co., Ltd. Sintered soft magnetic powder molded body
WO2008149825A1 (en) * 2007-05-31 2008-12-11 Jfe Steel Corporation Metallic powder for powder magnetic core and process for producing powder magnetic core
JP2009021490A (en) * 2007-07-13 2009-01-29 Hitachi Powdered Metals Co Ltd Sintered soft magnetic substance and sintered movable iron core using the same, and manufacturing method of them
JP2010192890A (en) * 2009-01-22 2010-09-02 Ngk Insulators Ltd Compact inductor and method of manufacturing the same
US8337638B2 (en) 2008-04-18 2012-12-25 Toyota Jidosha Kabushiki Kaisha Powder for dust core and method for producing the same
WO2014000916A1 (en) * 2012-06-27 2014-01-03 Robert Bosch Gmbh Soft-magnetic component and method for the production thereof
CN114160788A (en) * 2021-10-28 2022-03-11 广东聚石科技研究有限公司 Insulation coated iron powder for soft magnetic composite material and preparation method and application thereof
WO2023068010A1 (en) * 2021-10-18 2023-04-27 株式会社レゾナック Soft magnetic sintered member and method for manufacturing soft magnetic sintered member

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172956B2 (en) 2007-05-21 2012-05-08 Mitsubishi Steel Mfg. Co., Ltd. Sintered soft magnetic powder molded body
TWI397086B (en) * 2007-05-21 2013-05-21 Mitsubishi Steel Mfg Sintered soft magnetic powder material
EP2863400A3 (en) * 2007-05-21 2015-06-03 Mitsubishi Steel MFG. CO., LTD. Sintered soft magnetic powder molded body
EP2157586A1 (en) * 2007-05-21 2010-02-24 Mitsubishi Steel MFG. CO., LTD. Sintered soft magnetic powder molded body
EP2157586A4 (en) * 2007-05-21 2013-07-24 Mitsubishi Steel Mfg Sintered soft magnetic powder molded body
WO2008143091A1 (en) * 2007-05-21 2008-11-27 Mitsubishi Steel Mfg. Co., Ltd. Sintered soft magnetic powder molded body
WO2008149825A1 (en) * 2007-05-31 2008-12-11 Jfe Steel Corporation Metallic powder for powder magnetic core and process for producing powder magnetic core
JP4721457B2 (en) * 2007-07-13 2011-07-13 日立粉末冶金株式会社 Sintered soft magnetic body, sintered movable iron core using the same, and manufacturing method thereof
JP2009021490A (en) * 2007-07-13 2009-01-29 Hitachi Powdered Metals Co Ltd Sintered soft magnetic substance and sintered movable iron core using the same, and manufacturing method of them
US8337638B2 (en) 2008-04-18 2012-12-25 Toyota Jidosha Kabushiki Kaisha Powder for dust core and method for producing the same
JP2010192890A (en) * 2009-01-22 2010-09-02 Ngk Insulators Ltd Compact inductor and method of manufacturing the same
WO2014000916A1 (en) * 2012-06-27 2014-01-03 Robert Bosch Gmbh Soft-magnetic component and method for the production thereof
WO2023068010A1 (en) * 2021-10-18 2023-04-27 株式会社レゾナック Soft magnetic sintered member and method for manufacturing soft magnetic sintered member
CN114160788A (en) * 2021-10-28 2022-03-11 广东聚石科技研究有限公司 Insulation coated iron powder for soft magnetic composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4371935B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP5504278B2 (en) Method for producing diffusion-alloyed iron or iron-based powder, diffusion-alloyed powder, composition comprising the diffusion-alloyed powder, and molded and sintered parts produced from the composition
KR102045399B1 (en) Manufacturing method of rare earth sintered magnet
KR101213856B1 (en) Sintered soft magnetic powder molded body
JP4548795B2 (en) Method for manufacturing sintered soft magnetic member
WO2014157517A1 (en) Powder magnetic core for reactor
JP2010285633A (en) Method of producing powder mixture for powder metallurgy, and method of producing sintered body
JP5189691B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP2008507623A (en) A method for preparing a feedstock of nano-sized metal powder and a method for producing a sintered body using the feedstock.
JP2007092162A (en) Highly compressive iron powder, iron powder for dust core using the same and dust core
JP4371935B2 (en) Method for producing a soft magnetic sintered member
JP2010189769A (en) Method of preparing iron-based component by compaction with elevated pressure
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
CN105873697B (en) Soft magnetic powder mixture
JP4750471B2 (en) Low magnetostrictive body and dust core using the same
JP2011171346A (en) Iron-based soft magnetic powder for dust core, method of manufacturing the same, and dust core
JP2008214664A (en) Method for manufacturing sintered body, and sintered body
Mani et al. Structural and magnetic characterization of spark plasma sintered Fe-50Co alloys
JP2005079511A (en) Soft magnetic material and its manufacturing method
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP2009021490A (en) Sintered soft magnetic substance and sintered movable iron core using the same, and manufacturing method of them
JP2006332420A (en) Production method for sintered soft magnetic member
JPH07263265A (en) Rare-earth intermetallic-compound permanent magnet and its manufacture
JPH1046201A (en) Additive for powder metallurgy and production of sintered compact
JP2003082401A (en) Sintered soft magnetic body, and production method therefor
JP2019151910A (en) Method for producing composite sintered member and composite sintered member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350