JPH0723962B2 - Drum type photoconductor manufacturing method - Google Patents

Drum type photoconductor manufacturing method

Info

Publication number
JPH0723962B2
JPH0723962B2 JP56151148A JP15114881A JPH0723962B2 JP H0723962 B2 JPH0723962 B2 JP H0723962B2 JP 56151148 A JP56151148 A JP 56151148A JP 15114881 A JP15114881 A JP 15114881A JP H0723962 B2 JPH0723962 B2 JP H0723962B2
Authority
JP
Japan
Prior art keywords
conductive substrate
semiconductor
drum
semiconductor layer
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56151148A
Other languages
Japanese (ja)
Other versions
JPS57122446A (en
Inventor
舜平 山崎
Original Assignee
株式会社半導体エネルギ−研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギ−研究所 filed Critical 株式会社半導体エネルギ−研究所
Priority to JP56151148A priority Critical patent/JPH0723962B2/en
Publication of JPS57122446A publication Critical patent/JPS57122446A/en
Publication of JPH0723962B2 publication Critical patent/JPH0723962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 本発明は、ドラム上に感光体半導体層を積層することに
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to laminating a photosensitive semiconductor layer on a drum.

静電複写機に用いる感光体は、従来のプラズマ放電法で
は、平面上の基板上に設けることが行われている。しか
し、感光体のように半導体層を厚く設ける場合には、一
定厚の同一膜を形成する点で、平面の基板は満足できる
ものではなかった。
In the conventional plasma discharge method, the photoconductor used in the electrostatic copying machine is provided on a flat substrate. However, in the case of providing a semiconductor layer with a large thickness like a photoconductor, a flat substrate is not satisfactory in terms of forming the same film with a constant thickness.

従って、本発明の目的は、感光体の半導体層を均一な厚
さで形成する方法を提供することである。
Therefore, it is an object of the present invention to provide a method of forming a semiconductor layer of a photoreceptor with a uniform thickness.

このために、本発明のドラム形感光体の作製方法は、導
電性基体を円筒状のアルミニュームまたはその化合物に
より作製し、円筒状の反応炉内でプラズマ発生領域にて
前記円筒状導電性基体を回転させつつ、該円筒状導電性
基体の表面に珪化物を含む気体とホウ素またはインジュ
ームを含む気体とを前記プラズマ中に導入して第1半導
体層を導電性基体上に形成する工程と、珪化物を含む気
体を導入して真性または実質的に真性の第2半導体層を
第1半導体層上に全周にわたり形成する工程と、前記珪
化物を含む気体と窒化物気体または炭化物気体とを導入
して電荷透過性絶縁体層を第2半導体層上に形成する工
程とにより、前記被膜を導電性基体上に設けることを特
徴とする。
Therefore, in the method for producing a drum-shaped photoreceptor of the present invention, a conductive substrate is produced from a cylindrical aluminum or its compound, and the cylindrical conductive substrate is formed in a plasma generation region in a cylindrical reaction furnace. A step of introducing a gas containing a silicide and a gas containing boron or indium into the plasma on the surface of the cylindrical conductive substrate while rotating the substrate to form a first semiconductor layer on the conductive substrate. Introducing a gas containing a silicide to form an intrinsic or substantially intrinsic second semiconductor layer over the entire circumference of the first semiconductor layer; the gas containing a silicide and the nitride gas or the carbide gas; And the step of forming a charge-transmissive insulator layer on the second semiconductor layer by introducing the above method, the coating film is provided on the conductive substrate.

以下に本発明の実施例を図面に従って説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を適用させるべき静電複写機の要素を示
したものである。即ち第1図(A)において導電性基板
上に光導電性の半導体(1)が設けられている。さらに
この後、第1図(C)に示す如く、光(5)に局部的に
吸着した領域(6)、(6′)、(6″)の静電気は導
体(2)へと放出される。加えて光励起で発生した電気
・ホール対のうち図面では負の電子がこの正の静電気と
再結合して中和する。かくして半導体上に選択的に静電
気を分布せしめることができた。
FIG. 1 shows the elements of an electrostatic copying machine to which the present invention is applied. That is, in FIG. 1A, a photoconductive semiconductor (1) is provided on a conductive substrate. After this, as shown in FIG. 1 (C), static electricity in the regions (6), (6 ') and (6 ") locally absorbed by the light (5) is discharged to the conductor (2). In addition, in the drawing, the negative electrons of the electric-hole pairs generated by photoexcitation recombine with the positive static electricity and neutralize it, thus allowing the static electricity to be selectively distributed on the semiconductor.

第2図はこの原理を応用した回転ドラム形の半導体を用
いた光導電性半導体層を設けた電子式複写機の原理を示
している。
FIG. 2 shows the principle of an electronic copying machine provided with a photoconductive semiconductor layer using a rotating drum type semiconductor to which this principle is applied.

即ち回転ドラムの表面部分はPまたはN型の半導体と真
性または実質的に真性の半導体との多層構造が第1図と
同様に設けられている。
That is, the surface portion of the rotary drum is provided with a multi-layered structure of a P or N type semiconductor and an intrinsic or substantially intrinsic semiconductor as in FIG.

さらに静電気発生源(8)より放出された静電気は、ド
ラムの上面のエネルギバンド的に井戸型の半導体のクラ
スタまたは膜内に(3)の如く均一に分布される。さら
に、光源(7)より物体(例えば印刷された紙表面)
(11)の反射光(5)がスリット(9)を経てドラム上
を照射する。すると照射された表面領域の半導体中で光
起電力を発生し、その負の電荷の再結合及び正の電荷の
基板導体への放出により、その反射光(5)に従って静
電気(4)の濃淡ができる。
Further, the static electricity emitted from the static electricity generation source (8) is evenly distributed as shown in (3) in the energy band well-like semiconductor cluster or film on the upper surface of the drum. In addition, the light source (7) is used to produce objects (eg, printed paper surface).
The reflected light (5) from (11) passes through the slit (9) and illuminates the drum. Then, a photoelectromotive force is generated in the semiconductor in the irradiated surface region, and due to the recombination of the negative charges and the emission of the positive charges to the substrate conductor, the intensity of static electricity (4) is changed according to the reflected light (5). it can.

さらにこの回転ドラムの表面は(12)の部分にて炭素粉
またはそれと似質の混合物(1.0〜100μ)の粒径)の黒
粉体をドラム表面上に分布せしめる。するとこの粉体は
静電気の量に比例してドラム表面に付着する。いわゆる
「可視化」を行う。
Further, on the surface of this rotating drum, black powder of carbon powder or a mixture thereof (particle size of 1.0 to 100 μ)) is distributed on the drum surface at the portion (12). Then, this powder adheres to the drum surface in proportion to the amount of static electricity. So-called "visualization" is performed.

さらにこのドラムの回転(スピードは1〜10秒/回転)
と同じスピードにてこの黒粉体の表面に接して被複写体
例えば新しい紙(13)が移動し、この粉体を被複写体上
に付着せしめる。この後この紙(13)は焼付、定着を経
て複写が完成する。ドラムの表面に残存した粉体はブラ
シ(14)により完全に除去した後、最初の静電気発生源
に至る。
Further rotation of this drum (speed is 1-10 seconds / revolution)
At the same speed as the above, the copy object, for example, a new paper (13) is moved in contact with the surface of the black powder to adhere the powder onto the copy object. After this, this paper (13) is printed and fixed to complete copying. The powder remaining on the surface of the drum is completely removed by the brush (14) and then reaches the first static electricity generation source.

第3図は従来の非接合型の光導電性半導体(1)のエネ
ルギバンド図である。図面において静電気(3)、裏面
の導体(2)が設けられ、光照射に電子・ホールが形成
されるが、この半導体はCdS等の化合物半導体であり真
性であるため、フェルミレベル(22)が中央に存在して
いる。さらにこの半導体(1)の表面に静電気が吸着し
て安定状態になったエネルギバンド図が第3図(B)に
示されている。
FIG. 3 is an energy band diagram of a conventional non-junction type photoconductive semiconductor (1). In the drawing, static electricity (3) and conductor (2) on the back surface are provided, and electrons and holes are formed for light irradiation. However, since this semiconductor is a compound semiconductor such as CdS and is intrinsic, the Fermi level (22) is It exists in the center. Further, FIG. 3 (B) shows an energy band diagram in which static electricity is adsorbed on the surface of the semiconductor (1) to be in a stable state.

本発明のドラムを製造するプラズマCVD法を用いた製造
装置を第4図に示す。
FIG. 4 shows a manufacturing apparatus using the plasma CVD method for manufacturing the drum of the present invention.

即ち、真空可能な円筒形反応炉(50)に配設したドラム
(42)は直径20〜40cm、長さ25〜50cmを有しており、こ
のドラム(42)を0.1〜1回/秒の速度にて回転させ
た。ドラムの表面はアルミニュームまたはその化合物よ
りなり、表面の酸化アルミニュームを珪化物気体を被膜
化する前に真空中でプラズマスパッタにてAr、またはAr
およびH2との混合気体によりドラム表面の被形成面をク
リーニングして酸化物または汚物を除去した。この後、
珪化物気体であるSiH4、SiH2Cl2、SiCl4またはSiF4
(40)より導入する。さらにP型半導体を形成する場合
にはIII価の不純物であるB2H6、InCl3を同時にヘリュー
ム等により希釈して導入する。この後、プラズマを1〜
50MHzを高周波または1〜10GHzのマイクロ波の周波数で
100W〜1KWのパワー(高周波出力)を加え、第4図
(B)の如くドラム(42)と、ドラムの円筒形に合わせ
て円弧状にした電極(47)、(47′)との間にプラズマ
化を生ぜしめ、珪素を主成分とした元素がドラム上に被
着するようにこのドラムを200〜400℃に加熱しつつ、か
つDCプラズマCVDを行った。電極47、47′は、反応炉50
の内壁より離れてドラム42に向いているので、グロー放
電がドラム42上の導電性基体の表面近傍のみに発生す
る。このため、反応炉50の内壁には珪化物の被着が少な
く、単純なグロー放電法を利用した方法と比べて1/10以
下となり、材料の有効利用並びにコスト低下を図れた。
さらに、B2H6、InCl3の導入を中止し、真性または実質
的に真性の半導体層を形成させた。
That is, the drum (42) arranged in the cylindrical reactor (50) capable of vacuuming has a diameter of 20 to 40 cm and a length of 25 to 50 cm. Rotated at speed. The surface of the drum is made of aluminum or its compound. Before the surface of the aluminum oxide is coated with a silicide gas, it is plasma sputtered in vacuum with Ar or Ar.
The surface on which the drum surface was formed was cleaned with a mixed gas of H 2 and H 2 to remove oxides or dirt. After this,
SiH 4 is a silicide gas, the SiH 2 Cl 2, SiCl 4 or SiF 4 is introduced from (40). Further, when forming a P-type semiconductor, B 2 H 6 and InCl 3 which are trivalent impurities are simultaneously diluted and introduced with helium or the like. After this, plasma 1 ~
50MHz at high frequency or microwave frequency of 1-10GHz
A power (high-frequency output) of 100 W to 1 KW is applied, and as shown in FIG. 4 (B), between the drum (42) and the electrodes (47) and (47 ') which are arcuate to match the cylindrical shape of the drum. DC plasma CVD was performed while heating the drum to 200 to 400 ° C. so that an element containing silicon as a main component was deposited on the drum to generate plasma. Electrodes 47 and 47 'are in the reactor 50
Since it faces away from the inner wall of the drum 42 toward the drum 42, glow discharge is generated only near the surface of the conductive substrate on the drum 42. Therefore, the deposition of the silicide on the inner wall of the reaction furnace 50 is small, which is 1/10 or less as compared with the method using the simple glow discharge method, and the effective use of the material and the cost reduction can be achieved.
Furthermore, the introduction of B 2 H 6 and InCl 3 was stopped, and an intrinsic or substantially intrinsic semiconductor layer was formed.

反応炉内は珪化物気体特にシランを3〜30%、He97〜70
%とし、さらにB2H6またはInCl3を0.1〜5%導入する場
合はその量に相当する希釈材であるヘリュームを少なく
した。ヘリュームはすべての気体中最も軽く、かつ熱伝
導率がAr等に比べて約3倍も大きく、反応炉内の均熱化
にきわめて好ましい希釈ガスであった。
The reaction furnace contains 3 to 30% silicide gas, especially silane, and He 97 to 70%.
%, And when 0.1 to 5% of B 2 H 6 or InCl 3 was introduced, the amount of helium as a diluent corresponding to that amount was reduced. Helium was the lightest of all gases, and had a thermal conductivity about three times higher than that of Ar, etc., and was a very preferable dilution gas for soaking in the reaction furnace.

さらにはHeはイオン化する時の電離電圧が21eVもあり、
他の気体の12〜15eVに比べてきわめて大きく、結果とし
てプラズマ状態の持続に対してもその寄与が大であっ
た。
Furthermore, He has an ionization voltage of 21 eV when it is ionized,
It was much larger than that of other gases, 12 to 15 eV, and as a result, it made a large contribution to sustaining the plasma state.

さらにこの形成される被膜を半導体ではなく半絶縁体と
するためには同様にアンモニアを添加した。するとSi3N
4-x(0<x<4)が形成され、窒素が10〜50原子%添
加されるとその膜はEgが2.0〜3.0eVと珪素の1.0〜1.8eV
よりも大きくすることができ、耐磨耗性も向上した。本
発明の静電複写機は結果として、従来より公知の単純な
珪素ではなく、窒素が10〜50原子%添加され、特にこの
半導体の静電気が吸着する表面またはその近傍に窒素の
添加量を大とした。
Further, in order to make the formed film not a semiconductor but a semi-insulator, ammonia was similarly added. Then Si 3 N
When 4- x (0 <x <4) is formed and nitrogen is added 10 to 50 atomic%, the film has Eg of 2.0 to 3.0 eV and silicon of 1.0 to 1.8 eV.
Can be made larger and the abrasion resistance is also improved. As a result, the electrostatic copying machine of the present invention is added with 10 to 50 atomic% of nitrogen, not with the conventionally known simple silicon, and the amount of nitrogen added is particularly large on or near the surface of the semiconductor where the static electricity is adsorbed. And

かくして、第5図に示す如く、導体基板(2)上にP型
半導体(21)、真性または実質的に真性の半導体(23)
よりなる半導体層(1)を形成した。この上面に電流を
流し得る厚さの絶縁または半絶縁膜(26)ここでは窒化
珪素を10〜100A(オングストローム)特に30〜50A(オ
ングストローム)を漸次積層し、光導電性半導体または
半絶縁体の層とした。この上面に半導体のクラスタ(5
0)をエネルギ的に井戸型を構成するようにして同じ反
応炉にて作製した。さらにその上面に電流を流し得る厚
さの第2の絶縁または半絶縁膜(27)を(26)と同様の
作製方法により形成した。半導体のクラスタ(50)は50
A(オングストローム)〜5μmの直径をもつ塊状の半
導体であり、また各クラスタ間は互いに電気的に絶縁さ
れている。平均膜厚が50〜2000A(オングストローム)
の厚さを有するこのクラスタはシランのみを膜(26)上
にティポジットしてもよく、またはこの珪素に0.1〜10
原子%の窒素を添加したそのクラスタの外周辺を窒化し
た低級窒化物であってもよい。いずれにしても一度半導
体表面よりこの低い(狭い)エネルギバンドを有する井
戸(50)内に静電荷を蓄積させた場合でも、面方向に拡
散しない程度に絶縁性があることが必要である。この意
味で半導体をクラスタ構造とし、またその周辺を絶縁性
にするための窒素を添加することは有効であった。
Thus, as shown in FIG. 5, a P-type semiconductor (21), an intrinsic or substantially intrinsic semiconductor (23) is formed on the conductor substrate (2).
To form a semiconductor layer (1). An insulating or semi-insulating film (26) with a thickness that allows a current to flow on this upper surface (26) Here, silicon nitride is gradually laminated in the range of 10 to 100 A (angstrom), particularly 30 to 50 A (angstrom), and a photoconductive semiconductor or semi-insulator is formed. Layered. The semiconductor cluster (5
0) was produced in the same reaction furnace so as to form an energy well type. Further, a second insulating or semi-insulating film (27) having a thickness allowing an electric current to flow is formed on the upper surface thereof by the same manufacturing method as in (26). 50 semiconductor clusters (50)
It is a lump-shaped semiconductor having a diameter of A (angstrom) to 5 μm, and the respective clusters are electrically insulated from each other. Average film thickness 50-2000A (angstrom)
This cluster, having a thickness of, may deposit only silane on the film (26), or 0.1-10
It may be a lower nitride obtained by nitriding the outer periphery of the cluster to which atomic% of nitrogen is added. In any case, even if electrostatic charges are once stored in the well (50) having the energy band lower (narrower) than the semiconductor surface, it is necessary to have an insulating property so as not to diffuse in the plane direction. In this sense, it was effective to make the semiconductor a cluster structure and to add nitrogen to make its periphery insulating.

さらに本発明においてはこの半導体のクラスタまたは膜
の表面に電流を流し得る厚さの絶縁物、ここでは窒化珪
素(Si3N4)をバリア層(27)として30〜100A(オング
ストローム)の厚さに形成させた。この窒化珪素はエネ
ルギバンド巾が5.0eVであり、これは酸化珪素に比べて
硬く耐磨耗性に優れているに加えて、その厚さを30〜10
0A(オングストローム)と厚くしても電流を流すことが
できる。このため酸化珪素の保護膜に比べて寿命が長い
という特徴を有する。
Further, in the present invention, an insulator having a thickness capable of passing a current on the surface of the cluster or film of the semiconductor, here, silicon nitride (Si 3 N 4 ) is used as the barrier layer (27) to have a thickness of 30 to 100 A (angstrom). Formed. This silicon nitride has an energy band width of 5.0 eV, which is harder and more abrasion resistant than silicon oxide, and has a thickness of 30 to 10
Even if it is as thick as 0 A (angstrom), current can flow. Therefore, it has a feature that it has a longer life than a silicon oxide protective film.

本発明においては、第4図の反応炉においてシランの導
入を中止してアンモニアのみを導入しプラズマ化し、こ
の半導体または半絶縁体の表面を固相−気相反応で窒化
して絶縁膜(27)を形成してもよい。この保護膜(27)
を炭化珪素であってもよい。炭化珪素の場合は、メタ
ン、エタン、プロパンのような炭化物気体を導入する。
In the present invention, the introduction of silane is stopped in the reaction furnace of FIG. 4 and only ammonia is introduced to form a plasma, and the surface of this semiconductor or semi-insulator is nitrided by a solid phase-gas phase reaction to form an insulating film (27 ) May be formed. This protective film (27)
May be silicon carbide. In the case of silicon carbide, a carbide gas such as methane, ethane or propane is introduced.

本発明によれば、半導体層を基体上に厚く均一に設ける
ことができる。さらにこのドラム上での半導体または半
絶縁体の被膜化をドラムを回転しながらDCプラズマを利
用して減圧CVD法を用いた為、材料の反応炉の壁への付
着によるロスを少なくした等の特徴を有するもので、工
業的にきわめて重要である。さらに、アルミニュームま
たはその化合物の導電性基体を電力供給電極とすれば、
導電性基体上にプラズマスパッタが生じて、プラズマス
パッタより導電性基体表面のクリーニングができる。
According to the present invention, the semiconductor layer can be provided thickly and uniformly on the substrate. Furthermore, since the semiconductor or semi-insulating film on this drum was formed by the low pressure CVD method using DC plasma while rotating the drum, the loss due to the adhesion of the material to the wall of the reaction furnace was reduced. It has characteristics and is extremely important industrially. Furthermore, if a conductive substrate of aluminum or its compound is used as the power supply electrode,
Plasma sputtering occurs on the conductive substrate, and the surface of the conductive substrate can be cleaned by plasma sputtering.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明になる静電気の局部的な帯電の原理を示
す略図である。 第2図はドラム式の静電複写機の原理を示す略図であ
る。 第3図は従来の複写機用半導体のエネルギバンド図を示
である。 第4図は本発明の感光体を作るためのプラズマCVD法を
用いた製造装置の原理を示す略図である。 第5図は本発明の感光体のエネルギバンド構造を示す図
である。
FIG. 1 is a schematic diagram showing the principle of localized electrostatic charging according to the present invention. FIG. 2 is a schematic diagram showing the principle of a drum type electrostatic copying machine. FIG. 3 is an energy band diagram of a conventional semiconductor for a copying machine. FIG. 4 is a schematic diagram showing the principle of a manufacturing apparatus using the plasma CVD method for producing the photoconductor of the present invention. FIG. 5 is a diagram showing the energy band structure of the photoconductor of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】反応炉内でプラズマを発生させる一方の電
極となるように導電性基体を円筒状のアルミニュームま
たはその化合物により作製し、反応炉の内壁よりも導電
性基体の側に、導電性基体の表面に相対して電極を配置
し、前記導電性基体と電極の間にプラズマを発生させ、
前記導電性基体を回転させつつ、珪化物を含む気体とホ
ウ素またはインジュームを含む気体とを前記プラズマ中
に導入して第1半導体層を導電性基体上に形成する工程
と、珪化物を含む気体を導入して真性または実質的に真
性の第2半導体層を第1半導体層上に形成する工程と、
前記珪化物を含む気体と炭化物気体とを導入して電荷透
過性絶縁体層を第2半導体層上に形成する工程とからな
ることを特徴とするドラム形感光体の作製方法。
1. A conductive substrate is made of cylindrical aluminum or a compound thereof so as to serve as one electrode for generating plasma in a reaction furnace, and conductive is provided on the side of the conductive substrate with respect to the inner wall of the reaction furnace. An electrode is arranged opposite to the surface of the conductive substrate, plasma is generated between the conductive substrate and the electrode,
Forming a first semiconductor layer on the conductive substrate by introducing a gas containing a silicide and a gas containing boron or indium into the plasma while rotating the conductive substrate; and including a silicide. Introducing a gas to form an intrinsic or substantially intrinsic second semiconductor layer on the first semiconductor layer;
A process for producing a drum type photosensitive member, comprising the steps of introducing a gas containing a silicide and a carbide gas to form a charge permeable insulator layer on the second semiconductor layer.
JP56151148A 1981-09-24 1981-09-24 Drum type photoconductor manufacturing method Expired - Lifetime JPH0723962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151148A JPH0723962B2 (en) 1981-09-24 1981-09-24 Drum type photoconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151148A JPH0723962B2 (en) 1981-09-24 1981-09-24 Drum type photoconductor manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8680180A Division JPS5711351A (en) 1980-06-25 1980-06-25 Electrostatic copying machine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP5287274A Division JP2617417B2 (en) 1993-10-25 1993-10-25 Electrophotographic photoreceptor
JP6126805A Division JP2662707B2 (en) 1994-05-16 1994-05-16 Manufacturing method of drum type photoreceptor

Publications (2)

Publication Number Publication Date
JPS57122446A JPS57122446A (en) 1982-07-30
JPH0723962B2 true JPH0723962B2 (en) 1995-03-15

Family

ID=15512415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151148A Expired - Lifetime JPH0723962B2 (en) 1981-09-24 1981-09-24 Drum type photoconductor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0723962B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666806A (en) * 1985-09-30 1987-05-19 Xerox Corporation Overcoated amorphous silicon imaging members
JP3155413B2 (en) * 1992-10-23 2001-04-09 キヤノン株式会社 Light receiving member forming method, light receiving member and deposited film forming apparatus by the method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145537A (en) * 1978-05-04 1979-11-13 Canon Inc Preparation of electrophotographic image forming material
JPS54145539A (en) * 1978-05-04 1979-11-13 Canon Inc Electrophotographic image forming material
JPS56115573A (en) * 1980-02-15 1981-09-10 Matsushita Electric Ind Co Ltd Photoconductive element

Also Published As

Publication number Publication date
JPS57122446A (en) 1982-07-30

Similar Documents

Publication Publication Date Title
US4572881A (en) Printing member for electrostatic photocopying
JPH0723962B2 (en) Drum type photoconductor manufacturing method
US5303007A (en) Printing apparatus for electrostatic photocopying
US4889782A (en) Electrostatic photocopying machine
JP2662707B2 (en) Manufacturing method of drum type photoreceptor
US4666803A (en) Photoconductive member for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
JP2617417B2 (en) Electrophotographic photoreceptor
JP2585964B2 (en) Photoconductor production method
US5103262A (en) Printing member for electrostatic photocopying
US5070364A (en) Printing member for electrostatic photocopying
JP2573150B2 (en) Electronic photosensitive device
JPH0629977B2 (en) Electrophotographic photoconductor
JPH09120173A (en) Production of photoreceptor
US4999270A (en) Printing member for electrostatic photocopying
US5008171A (en) Printing member for electrostatic photocopying
JPS6017451A (en) Manufacture of copying machine
US5545503A (en) Method of making printing member for electrostatic photocopying
US5242775A (en) Photosensitive device and manufacturing method for the same
US4971872A (en) Electrostatic photocopying machine
JPS6017452A (en) Manufacture of copying machine
JPS62178974A (en) Electrophotographic sensitive body
US5144367A (en) Printing member for electrostatic photocopying
US5143808A (en) Printing member for electrostatic photocopying
JPS62178975A (en) Electrophotographic sensitive body
JPH0755809B2 (en) Method for forming high carbon content amorphous silicon film