JPS6017452A - Manufacture of copying machine - Google Patents

Manufacture of copying machine

Info

Publication number
JPS6017452A
JPS6017452A JP13073984A JP13073984A JPS6017452A JP S6017452 A JPS6017452 A JP S6017452A JP 13073984 A JP13073984 A JP 13073984A JP 13073984 A JP13073984 A JP 13073984A JP S6017452 A JPS6017452 A JP S6017452A
Authority
JP
Japan
Prior art keywords
semiconductor
layer
film
charge
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13073984A
Other languages
Japanese (ja)
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13073984A priority Critical patent/JPS6017452A/en
Publication of JPS6017452A publication Critical patent/JPS6017452A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To execute at a high speed a transfer plural times by the same charge, by constituting so that a cluster of a semiconductor or a layer of a film is placed between two (half) insulating films, and forming a layer for catching and accumulating a charge. CONSTITUTION:A semiconductor layer 1 consisting of a P type semiconductor 21 and an intrinsic semiconductor 23 is formed on an electric conductor substrate 2, and on this upper face, a (half) insulating film 26 (example: a silicon nitride film) of a thickness which is capable of making a current flow is laminated, and it is formed as a layer of a photoconductive semiconductor or a half insulator. On this upper face, a cluster 50 of a semiconductor is manufactured so as to constitute a well type in respect of energy, and also, on its upper face, the second (half) insulating film 27 is manufactured. A few carriers in electron hole pair generated by an optical irradiation 20 are recoupled to the injected charge. Or a powder 53 is attracted by this electrostatic charge and attracted to the surface of the insulating film 27 in proportion to quantity of the electrostatic charge. Also, it is unnecessary to accumulate the electrostatic charge again at every time of printing, and with respect to a copying machine which executes printing plural times, a desirable result is obtained.

Description

【発明の詳細な説明】 この発明は複写機における選択的に静電気を帯電させる
板またはドラム上の半導体の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for fabricating a semiconductor on a selectively electrostatically charged plate or drum in a copying machine.

本発明は、静電複写機において同一パターンを多数回繰
り返し複写印刷する場合特に有効であって、導電性基板
またはドラム上に感光性半導体層と、この半導体層上に
エネルギハンド的に井戸構成を有する電荷を捕獲蓄積さ
せる層とを積層せしめることを特徴とする。
The present invention is particularly effective when copying and printing the same pattern many times using an electrostatic copying machine. It is characterized by laminating layers that capture and store charges.

本発明は2つの絶縁または半絶縁膜により半導体のクラ
スタまたは膜の層を挟む構成として電荷を捕獲蓄積させ
る層を形成したもので、かかる層に蓄積させた電荷によ
り黒粉体を吸着し、この吸着された粉体を被複写体に転
写する。さらにごの後同じ電荷により再び黒粉体を吸引
し、また被転写体に転写するという如く、同一電荷によ
り複数回の複写を高速で行わんとしたものである。
The present invention has a structure in which a semiconductor cluster or film layer is sandwiched between two insulating or semi-insulating films to form a layer for trapping and accumulating charges, and the charges accumulated in such layers adsorb black powder. The adsorbed powder is transferred to the object to be copied. After that, the same charge is used to attract the black powder again and transfer it to the object to be transferred, so that multiple copies can be made at high speed using the same charge.

本発明はか(の如く基板またはドラムがパターンを不揮
発に記憶し、この記憶情報を用いて複写を行わんとした
ものである。
The present invention is intended to store patterns in a non-volatile manner on a substrate or drum, and to perform copying using this stored information.

本発明は導電性基板上にPまたはN型の半4体の第1の
層を設け、該層上に真作または実質的に真性半導体また
は半絶縁体の第2の層を形成したものである。本発明は
かかる半導体または半絶縁体層上に静電荷を流し得る厚
さの絶縁または半絶縁膜に挟まれて半導体のクラスタま
たは膜をサンドウィンチ化した電荷捕獲層を設け、該層
に帯電した静電荷と選択的に光励起された電荷とを再結
合せしめ、またこの静電荷または光励起された多数キャ
リアを裏面の導体に放電せしめることを特徴とする。
The present invention provides a first layer of P or N type semi-quadratures on a conductive substrate, and a second layer of pure or substantially intrinsic semiconductor or semi-insulator is formed on the layer. be. The present invention provides a charge trapping layer formed by sandwiching semiconductor clusters or films sandwiched between insulating or semi-insulating films having a thickness that allows electrostatic charge to flow on such a semiconductor or semi-insulating layer, and charges the layer. It is characterized by recombining static charges and selectively photo-excited charges, and discharging the static charges or photo-excited majority carriers to the conductor on the back surface.

従来、静電複写機は真性のII−、VI族の化合物半導
体を光電効果を利用して選択的に静電気を帯電させる層
に用いていた。しかしこの方式は材料自体が公害物質で
あり、かつ発ガン性物質が印刷されているに加えて、光
照射により発生した電荷によりすでに帯電した電荷との
中和をコントラストを大にして(S/N比を大きくして
)行わしめることには必ずしも満足していなかった。
Conventionally, electrostatic copying machines have used intrinsic group II- and VI compound semiconductors in layers that selectively charge static electricity using the photoelectric effect. However, in this method, the material itself is a pollutant, and in addition to being printed with carcinogenic substances, the charge generated by light irradiation increases the contrast with the already charged charge (S/ They were not necessarily satisfied with the idea of increasing the N ratio.

このため本発明はこの光電効果を有する半導体中にI−
N接合またはI−P接合を設置ノ、半導体中に内部電界
を形成せしめ、さらにS/N比を増加せしめたこと、さ
らに非公害物質である珪素またはその化合物を用いたこ
とを特徴としている。
Therefore, the present invention provides I-
It is characterized in that an N junction or an I-P junction is installed to form an internal electric field in the semiconductor, further increasing the S/N ratio, and that silicon or its compound, which is a non-polluting substance, is used.

以下にその実施例を図面に従って説明する。Examples thereof will be described below with reference to the drawings.

第1図は本発明を適用させるべき静電複写機の要素を示
したものである。即ぢ第1図(A)において、導電性基
板上に光導電性の半導体(1)が設し」られている。第
1図(B)に示す如く、この上に静電気(3)を均一に
分布せしめた。図面では正の電荷を静電気発生源より放
出して、本発明の電荷蒸着層に付着せしめた。さらにこ
の後、第1図(C)に示す如く、光(5)を局部的に吸
着した領域(6)。
FIG. 1 shows the elements of an electrostatic copying machine to which the present invention is applied. In FIG. 1(A), a photoconductive semiconductor (1) is provided on a conductive substrate. As shown in FIG. 1(B), static electricity (3) was uniformly distributed thereon. In the drawings, positive charges are emitted from an electrostatic source and deposited on the charge deposited layer of the present invention. Furthermore, after this, as shown in FIG. 1(C), a region (6) where the light (5) is locally adsorbed.

(6”)、(6’)の静電気は導体(2)へと放出され
る。
The static electricity of (6'') and (6') is released to the conductor (2).

加えて、光励起で発生した電気・ポール対のうち図面で
は負の電子がこの正の静電気と再結合して中和する。か
くして半導体上に選択的に静電気を分布せしめることが
できた。
In addition, in the figure, negative electrons of the electric/pole pairs generated by photoexcitation recombine with this positive static electricity and neutralize it. In this way, it was possible to selectively distribute static electricity on the semiconductor.

第2図はこの原理を応用した回転ドラム構造になった半
導体の電子式複写機の原理を示している。
FIG. 2 shows the principle of a semiconductor electronic copying machine with a rotating drum structure to which this principle is applied.

即ち回転ドラムの表面部分はPまたはN型の半導体と真
性または実質的に真性の半導体との多層構造を有し、こ
の上にエネルギバンド的に井戸型を構成する層が第1図
と同様に設けられている。
That is, the surface portion of the rotating drum has a multilayer structure of a P- or N-type semiconductor and an intrinsic or substantially intrinsic semiconductor, and on top of this is a layer forming a well shape in terms of energy band, as shown in FIG. It is provided.

静電気発生源(8)より放出された静電気はドラムの上
部の井戸型の半導体のクラスタまたは膜内に(3)の如
く均一に分布される。さらに光源(7)より物体(例え
ば印刷された紙表面)(11)の反則光(5)がスリッ
ト(9)を経てドラム上を照射する。
The static electricity emitted from the static electricity generation source (8) is uniformly distributed within the well-shaped semiconductor cluster or film on the upper part of the drum as shown in (3). Further, a light source (7) emits reflected light (5) from an object (for example, a printed paper surface) (11), which passes through a slit (9) and irradiates the drum.

すると照射された表面領域の半導体中で光起電力を発生
し、その負の電荷の再結合及び正の電荷の基板導体への
放出により、その反射光(5)に従って静電気(4)の
濃淡ができる。
Then, a photovoltaic force is generated in the semiconductor in the irradiated surface area, and due to the recombination of the negative charges and the release of the positive charges to the substrate conductor, the intensity of the static electricity (4) changes according to the reflected light (5). can.

さらにこの回転ドラムの表面は(12)の部分にて炭素
粉またはそれと似質の混合物(1,0〜100μの粒径
)の黒粉体をドラム表面上に分布せしめる。
Furthermore, black powder of carbon powder or a mixture similar to carbon powder (particle size of 1.0 to 100 μm) is distributed on the surface of the rotating drum at the portion (12).

するとこの粉体は静電気の量に比例してドラム表面に付
着する。いわゆる「可視化」を行う。
This powder then adheres to the drum surface in proportion to the amount of static electricity. Perform so-called "visualization".

さらにこのドラムの回転(スピードはI〜10秒/回転
)と同じスピードにてこの黒粉体の表面に接して被複写
体例えば新しい紙(13)が移動し、この粉体を被複写
体上に付着せしめる。この後この紙(13)は焼付、定
着を経て複写が完成する。ドラムの表面に残存した粉体
はブラシ(14)により完全に除去した後、最初の静電
気発生源(8)に至る。
Further, an object to be copied, such as a new piece of paper (13), is moved in contact with the surface of this black powder at the same speed as the rotation of this drum (speed is I~10 seconds/rotation), and this powder is transferred onto the object to be copied. Let it adhere to. Thereafter, this paper (13) undergoes printing and fixing to complete the copy. After the powder remaining on the surface of the drum is completely removed by a brush (14), it reaches the first static electricity generation source (8).

第3図は従来の非接合型の光導電性半導体(1)のエネ
ルギバンド図である。図面において静電気(3) 、 
m面の導体(2)が設けられ、光照射により電子・ボー
ル対が形成されるが、この半導体はCdS等の化合物半
導体であり真性であるため、フェルミレベル(22)が
中央に存在している。さらにこの半導体(2)の表面に
静電気が吸着して安定状態になったエネルギバンド図が
第3図(B)に示されている。
FIG. 3 is an energy band diagram of a conventional non-junction type photoconductive semiconductor (1). In the drawing, static electricity (3),
An m-plane conductor (2) is provided, and electron-ball pairs are formed by light irradiation, but since this semiconductor is a compound semiconductor such as CdS and is intrinsic, the Fermi level (22) exists in the center. There is. Furthermore, an energy band diagram in which static electricity is attracted to the surface of this semiconductor (2) and a stable state is obtained is shown in FIG. 3(B).

本発明のドラムを製造したプラズマCVD法を用いた製
造装置を第4図に示す。
FIG. 4 shows a manufacturing apparatus using the plasma CVD method that manufactured the drum of the present invention.

即ち、真空可能な反応炉(50)に配設したドラム(4
2)は直径20〜40cm、長さ25〜50cmを有し
ており、このドラム(42)をO8I〜1回/秒の速度
にて回転させた。このドラムの表面はアルミニュームま
たはその化合物よりなり、表面の酸化アルミニュームを
珪化物気体を被膜化する前に真空中でプラズマスパッタ
にて計またはArおよび11□との混合気体によりドラ
ム表面の被形成面をクリーニングして酸化物または汚物
を除去した。珪化物気体、例えば5ill+、5ill
□C1z + S s Cl 4またはSiF4を(4
0)より導入した。さらにP型半導体を形成する場合に
は、■価の不純物であるB2116. InCl+を同
時にヘリューム等により希釈して導入した。この後、プ
ラズマを1〜50MIIz、1〜10GIlzの周波数
で100W 〜IKHのパワー(高周波出力)を加え、
第4図(A)の縦断面図が示される第4図(B)の如(
、ドラム(42)と電IM (47) 、 (47°)
との間にプラズマ化を生ぜしめ、珪素を主成分とする元
素がドラム上に被着するようにこのドラムを200〜5
00℃に加熱しつつ、かつDCプラズマCVDを行った
。さらにB2O2,InCl3の導入を中止し、真性ま
たは実質的に真性の半導体を形成させた。
That is, a drum (4) disposed in a vacuum capable reactor (50)
2) had a diameter of 20 to 40 cm and a length of 25 to 50 cm, and this drum (42) was rotated at a speed of 08I to 1 time/sec. The surface of this drum is made of aluminum or its compound, and the aluminum oxide on the surface is coated with plasma sputtering in a vacuum or with a mixed gas of Ar and 11□ before being coated with silicide gas. The forming surface was cleaned to remove oxides or dirt. Silicide gas, e.g. 5ill+, 5ill
□C1z + S s Cl 4 or SiF4 (4
0). Furthermore, when forming a P-type semiconductor, B2116. At the same time, InCl+ was diluted with helium and the like and introduced. After this, the plasma was heated at a frequency of 1 to 50 MIIz, 1 to 10 GIlz, and a power of 100 W to IKH (high frequency output) was applied.
As shown in FIG. 4(B) where the longitudinal cross-sectional view of FIG. 4(A) is shown.
, drum (42) and electric IM (47) , (47°)
The drum was heated at 200 to 50 ml to cause plasma formation between the drum and the element mainly composed of silicon.
DC plasma CVD was performed while heating to 00°C. Further, the introduction of B2O2 and InCl3 was stopped to form an intrinsic or substantially intrinsic semiconductor.

反応炉内は珪化物気体特にシランを3〜30χ、He 
97〜10% とし、さらにB 2II 、またはIn
Cl3を0.1〜5χ導入する場合はその里に相当する
希釈材であるヘリュームを少なくした。ヘリュームはす
べての気体中量も軽く、かつ熱伝導率力<Ar等に比べ
て約3倍も大きく、反応炉内の均熱化にきわめて好まし
い希釈ガスであった。
The inside of the reactor is filled with silicide gas, especially silane, at 3~30χ, He
97 to 10%, and further B 2II or In
When introducing 0.1 to 5x of Cl3, the amount of helium, which is a diluent corresponding to the amount of Cl3, was reduced. Helium is light in all gases, and its thermal conductivity is about three times greater than Ar, etc., making it an extremely preferable diluent gas for equalizing heat in the reactor.

さらにはlleはイオン化する時の電離電圧が21eV
もあり、他の気体の12〜15eνに比べてきわめて大
きく、結果としてプラズマ状態の持続に対してもその寄
与が大であった。
Furthermore, when lle is ionized, the ionization voltage is 21 eV.
This value was extremely large compared to 12 to 15 eν for other gases, and as a result, it made a large contribution to the continuation of the plasma state.

さらにこの形成される被膜を半導体ではなく半絶縁体と
するためには同様にアンモニアを添加した。すると5i
3Nn−x (0<X<4)が形成され、窒素が10〜
50原子χ添加されるとその膜はEgが2.0〜3.O
eVと珪素の1.0〜1゜8eVよりも大きくすること
ができ、加えて耐摩耗性も向上した。本発明の静電複写
機は結果として従来より公知の単純な珪素ではなく、窒
素がIθ〜50原子2添加され、特にこの半導体の静電
気が吸着する表面またはその近傍に窒素の添加量を大と
した。
Furthermore, in order to make the formed film a semi-insulator rather than a semiconductor, ammonia was similarly added. Then 5i
3Nn-x (0<X<4) is formed, and nitrogen is
When 50 atoms χ are added, the film has an Eg of 2.0 to 3. O
eV could be made larger than the 1.0 to 1°8 eV of silicon, and in addition, wear resistance was improved. As a result, the electrostatic copying machine of the present invention is not made of the conventionally known simple silicon, but has nitrogen added to Iθ~50 atoms, and in particular, a large amount of nitrogen is added to the surface of this semiconductor where static electricity is attracted or its vicinity. did.

かくして、第5図(^)に示す如り、導体基板(2)」
二にP型半導体(21)、真性または実質的に真性の半
導体(23)よりなる半導体層(1)を形成した。次に
この上面に電流を流し得る厚さの絶縁または半絶縁膜(
26)ここでは窒化珪素を10〜100人特に30〜5
0人を漸次積層し、光導電性半導体または半絶縁体の層
とした。この上面に半導体のクラスタ(50)をエネル
ギ的に井戸型を構成するようにして同し反応炉にて作製
した。さらに、その上面に電流を流し得る厚さの第2の
絶縁または半絶縁膜(27)を(26)と同様の作製方
法により形成した。半導体のクラスタ(50)は50人
〜5μの直径をもつ塊状の半導体であり、また各クラス
タ間は互いに電気的に絶縁されている。平均膜厚が50
〜2000人の厚さを有するこのクラスタはシランのみ
を膜(26)上にディポジットしてもよく、またはこの
珪素に0.1〜10原子χの窒素を添加したそのクラス
タの外周辺を窒化した低級窒化物であってもよい。いず
れにしても一度半導体表面よりこの低い(狭い)エネル
ギハントを有する井戸(50)内に静電(1:jを集積
させた場合でも面方向に拡散しない程度に絶縁性がある
ことが必要である。この意味で半導体をクラスタ構造と
し、またその周辺を絶縁性にするだめの窒素を添加する
ことは有効であった。
Thus, as shown in Figure 5 (^), the conductor substrate (2)
Second, a semiconductor layer (1) consisting of a P-type semiconductor (21) and an intrinsic or substantially intrinsic semiconductor (23) was formed. Next, an insulating or semi-insulating film (
26) Here, silicon nitride is 10 to 100 people, especially 30 to 5
The layers were successively stacked to form photoconductive semiconductor or semi-insulator layers. A semiconductor cluster (50) was formed on this upper surface in the same reactor so as to form a well-shaped structure in terms of energy. Further, a second insulating or semi-insulating film (27) having a thickness sufficient to allow current to flow was formed on the upper surface thereof by the same method as in (26). The semiconductor clusters (50) are bulk semiconductors having a diameter of 50 to 5μ, and the clusters are electrically insulated from each other. Average film thickness is 50
This cluster with a thickness of ~2000 nm may be deposited with silane alone onto the film (26), or the outer periphery of the cluster may be nitrided with 0.1 to 10 atoms of nitrogen added to the silicon. It may also be a lower nitride. In any case, even if electrostatic charge (1:j) is accumulated in the well (50) that has a lower (narrow) energy hunt than the semiconductor surface, it must have insulating properties to the extent that it will not diffuse in the surface direction. In this sense, it was effective to form the semiconductor into a cluster structure and add enough nitrogen to make the periphery insulating.

さらに本発明においてはこの半導体のクラスタまたは膜
の表面に電流を流し得る厚さの絶縁物、ここでは窒化珪
素(Si3N4)をバリア層として30〜100人の厚
さに形成させた。この窒化珪素はエネルギバンド中が5
.OeVであり、これは酸化珪素に比べて硬く耐摩耗性
に優れているに加えて、その厚さを30〜100人と厚
くしても電流を流すことができる。このため酸化珪素の
保護膜に比べて寿命が長いという特徴を有する。
Furthermore, in the present invention, an insulator, here silicon nitride (Si3N4), is formed to a thickness of 30 to 100 layers as a barrier layer to allow current to flow on the surface of the semiconductor cluster or film. This silicon nitride has an energy band of 5
.. OeV, which is harder and has better wear resistance than silicon oxide, and can conduct current even if the thickness is 30 to 100 mm thick. Therefore, it has a feature that it has a longer lifespan than a silicon oxide protective film.

本発明においては、第4図の反応炉においてシランの導
入を中止してアンモニアのみを4人しプラズマ化し、こ
の半導体または半絶縁体の表面を同相−気相反応で窒化
して絶縁膜(29)を形成してもよい。
In the present invention, the introduction of silane is stopped in the reactor shown in Fig. 4, and only ammonia is turned into plasma by four people, and the surface of this semiconductor or semi-insulator is nitrided by an in-phase-vapor phase reaction to form an insulating film (29 ) may be formed.

この保護膜(27)は炭化珪素であってもよい。This protective film (27) may be made of silicon carbide.

かくして形成された第5図(八)は注入された電荷に光
照射(20)により発生した電子・ボール対の中の少数
キャリアが再結合する場合を示す。また第5図(B)は
正の静電荷が蓄積されて不揮発性になった場合のエネル
ギバンド図を示している。この場合、粉体(53)がこ
の静電荷に吸引されて静電荷の量に比例して絶縁膜(2
7)の表面に吸着する。
FIG. 5 (8) thus formed shows the case where the minority carriers in the electron-ball pair generated by the light irradiation (20) recombine with the injected charges. Further, FIG. 5(B) shows an energy band diagram when positive electrostatic charges are accumulated and become nonvolatile. In this case, the powder (53) is attracted to this static charge, and the insulating film (2) is proportional to the amount of static charge.
7) Adsorbs to the surface.

この第5図(八) 、 (B)の構造の半導体層におい
てはプリントの度に再び静電荷を蓄積させる必要がなく
、複数回プリントする複写機に対して好ましい結果が得
られる。
In the semiconductor layer having the structure shown in FIGS. 5(8) and 5(B), there is no need to accumulate static charge again each time printing is performed, and favorable results can be obtained for a copying machine that prints multiple times.

第5図(C)は本発明の他の実施例を示す。この図面は
第5図(B)と同様に半導体のクラスフまたは膜(50
)を有したエネルギバンド的に井戸構成とせしめ、この
井戸に静電荷を蓄積させるものであるが、その井戸を挟
む膜(28) 、 (29)はプラズマCVD法で作製
したため、そのエネルギバンド端(エツジ)がソフトに
なっている。この場合は窒素の添加量を調整してEg 
3〜4eVとすることができるため、被膜(28) 、
 (29)を30〜500人と厚くしても光照射による
感光性を有していた。
FIG. 5(C) shows another embodiment of the present invention. Similar to FIG. 5(B), this drawing shows a semiconductor classif or film (50
), and electrostatic charge is accumulated in this well, but since the films (28) and (29) sandwiching the well were fabricated by plasma CVD, the edge of the energy band (edge) is soft. In this case, adjust the amount of nitrogen added and
Since it can be set to 3 to 4 eV, the coating (28),
Even when (29) was thickened by 30 to 500 people, it still had photosensitivity to light irradiation.

以上の説明より明らかなごとく、本発明は従来のCdS
等の化合物半導体を用いた静電複写機に比べて安価な珪
素を主成分とした半導体とした。その半導体中特にその
表面またはその近傍に窒素を添加して硬くし耐摩耗性を
向上し、さらに静電気のリークを半導体を半絶縁化する
ことにより防止した。導体基板またはドラム近傍にはP
型の半導体を設け、I−P接合を作ることにより内部電
界を発生せしめS/N比(表面電位を100〜150V
以上とさせる)を向上させた。
As is clear from the above explanation, the present invention is based on the conventional CdS
Compared to electrostatic copying machines that use compound semiconductors such as , etc., the semiconductor used as the main component is silicon, which is cheaper. Nitrogen was added to the semiconductor, especially at or near its surface, to make it hard and improve its wear resistance, and to prevent electrostatic leakage by making the semiconductor semi-insulating. P near the conductor board or drum
By providing a type semiconductor and creating an I-P junction, an internal electric field is generated and the S/N ratio (surface potential is 100 to 150 V).
and above).

本発明の実施例においては正の静電気を帯びさせる場合
を主として示した。しかし負の静電気を帯びさせる場合
は接合をI−Nとするべき導体上の第1の半導体層の導
電型を定めればよく、まったく逆符号の関係になる。
In the embodiments of the present invention, cases where positive static electricity is applied are mainly shown. However, when charging with negative static electricity, it is sufficient to determine the conductivity type of the first semiconductor layer on the conductor whose junction is I-N, and the relationship is of completely opposite sign.

さらにこのドラム上での半導体または半絶縁体の被膜化
をドラムを回転しながらDCプラスマを利用した減圧C
VD法を用いた為、材料の反応炉の壁への付着によるロ
スを少なくした等の特徴を有するもので、工業的にきわ
めて重要であると信する。
Furthermore, coating of the semiconductor or semi-insulating material on this drum is performed using a reduced pressure C using DC plasma while rotating the drum.
Since the VD method was used, it has the characteristics of reducing loss due to material adhesion to the walls of the reactor, and we believe that it is extremely important industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本分明になる静電気の局部的な帯電の原理を示
したものである。 第2図はドラム弐の静電複写機の原理を示したものであ
る。 第3図は従来の複写機用半導体のエネルギハンド図を示
す。 第4図は本発明の複写機を作るためのプラズマCVD法
を用いた製造装置の原理を示している。 第5図は本発明の井戸型のエネルギハンド構造を有する
静電複写機用の半導体のエネルギハンド図を示す。 398− 試1(2) 兼2(2) (Aン
FIG. 1 shows the principle of local electrostatic charging that will become clear in the present invention. FIG. 2 shows the principle of an electrostatic copying machine with two drums. FIG. 3 shows an energy hand diagram of a conventional semiconductor for copying machines. FIG. 4 shows the principle of a manufacturing apparatus using the plasma CVD method for manufacturing the copying machine of the present invention. FIG. 5 shows an energy hand diagram of a semiconductor for an electrostatic copying machine having a well-type energy hand structure according to the present invention. 398- Test 1 (2) cum 2 (2) (A

Claims (1)

【特許請求の範囲】 1、導電性の基板またはドラム上に光導電性半導体また
は半絶縁体層を形成させる工程と、該半導体層上に半導
体のクラスタまたは膜を電荷を捕獲蓄積させる層として
形成さゼる工程と、該工程の後、前記半導体のクラスタ
または膜上に該クラスタまたは膜がエネルギ的に井戸型
を構成すべく大きいエネルギバンド11を有する層を形
成させる工程とを有することを特徴とする複写機の作製
方法。 2、特許請求の範囲第1項において、電荷を捕獲蓄積さ
せる層の半導体のクラスタまたは膜は珪素を主成分とす
るとともに、該層を挟んで珪素化合物の絶縁または半絶
縁膜が設けられたことを特徴とする複写機の作製方法。 3、特許請求の範囲第1項において、光導電性半導体層
は非単結晶構造を有するSi、S+Jt−x(0〈ざ<
4)+St(:+−*(0<X4) またはSiO□−
x (0<X<2)をプラズマCVD法により積層して
形成せしめたことを特徴とする複写機の作製方法。
[Claims] 1. Forming a photoconductive semiconductor or semi-insulating layer on a conductive substrate or drum, and forming semiconductor clusters or films on the semiconductor layer as a layer for trapping and storing charge. and, after the step, forming a layer having a large energy band 11 on the semiconductor cluster or film so that the cluster or film constitutes an energetic well shape. A method of manufacturing a copying machine. 2. In claim 1, the semiconductor cluster or film of the layer for trapping and accumulating charges is mainly composed of silicon, and an insulating or semi-insulating film of a silicon compound is provided with the layer sandwiched therebetween. A method for manufacturing a copying machine characterized by: 3. In claim 1, the photoconductive semiconductor layer is Si having a non-single crystal structure, S+Jt-x(0<za<
4) +St(:+-*(0<X4) or SiO□-
1. A method for manufacturing a copying machine, characterized in that x (0<X<2) is formed by laminating them by a plasma CVD method.
JP13073984A 1984-06-25 1984-06-25 Manufacture of copying machine Pending JPS6017452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13073984A JPS6017452A (en) 1984-06-25 1984-06-25 Manufacture of copying machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13073984A JPS6017452A (en) 1984-06-25 1984-06-25 Manufacture of copying machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8680180A Division JPS5711351A (en) 1980-06-25 1980-06-25 Electrostatic copying machine

Publications (1)

Publication Number Publication Date
JPS6017452A true JPS6017452A (en) 1985-01-29

Family

ID=15041466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13073984A Pending JPS6017452A (en) 1984-06-25 1984-06-25 Manufacture of copying machine

Country Status (1)

Country Link
JP (1) JPS6017452A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145537A (en) * 1978-05-04 1979-11-13 Canon Inc Preparation of electrophotographic image forming material
JPS564150A (en) * 1979-06-22 1981-01-17 Minolta Camera Co Ltd Electrophotographic receptor
JPS56115573A (en) * 1980-02-15 1981-09-10 Matsushita Electric Ind Co Ltd Photoconductive element
JPS5711351A (en) * 1980-06-25 1982-01-21 Shunpei Yamazaki Electrostatic copying machine
JPS57200047A (en) * 1981-06-02 1982-12-08 Nippon Telegr & Teleph Corp <Ntt> Electrophotographic photoreceptor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54145537A (en) * 1978-05-04 1979-11-13 Canon Inc Preparation of electrophotographic image forming material
JPS564150A (en) * 1979-06-22 1981-01-17 Minolta Camera Co Ltd Electrophotographic receptor
JPS56115573A (en) * 1980-02-15 1981-09-10 Matsushita Electric Ind Co Ltd Photoconductive element
JPS5711351A (en) * 1980-06-25 1982-01-21 Shunpei Yamazaki Electrostatic copying machine
JPS57200047A (en) * 1981-06-02 1982-12-08 Nippon Telegr & Teleph Corp <Ntt> Electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JPH0415938B2 (en)
JPS6161383B2 (en)
JPS58154850A (en) Recording member
US5465137A (en) Printing member for electrostatic photocopying
JPS6017452A (en) Manufacture of copying machine
Shimizu et al. Photoreceptor of a‐Si: H with diodelike structure for electrophotography
JP2662707B2 (en) Manufacturing method of drum type photoreceptor
JPS6017451A (en) Manufacture of copying machine
JP2617417B2 (en) Electrophotographic photoreceptor
US5103262A (en) Printing member for electrostatic photocopying
US5070364A (en) Printing member for electrostatic photocopying
JPH0723962B2 (en) Drum type photoconductor manufacturing method
JPH09120173A (en) Production of photoreceptor
US4999270A (en) Printing member for electrostatic photocopying
Shimizu Electrophotography
US5008171A (en) Printing member for electrostatic photocopying
JPS61138958A (en) Photoconductive material
US4971872A (en) Electrostatic photocopying machine
JPS61126557A (en) Photoconductive material
US5545503A (en) Method of making printing member for electrostatic photocopying
JPS61212849A (en) Electrophotographic sensitive body
US5144367A (en) Printing member for electrostatic photocopying
JPH0629977B2 (en) Electrophotographic photoconductor
JP2573150B2 (en) Electronic photosensitive device
PART IMAGING SCIENCE AND ENGINEERING LABORATORY TOKYO INSTITUTE OF TECHNOLOGY YOKOHAMA, JAPAN