JPH0723587A - Pole detecting circuit and driver for three-phase brushless synchronous motor employing it - Google Patents

Pole detecting circuit and driver for three-phase brushless synchronous motor employing it

Info

Publication number
JPH0723587A
JPH0723587A JP5150223A JP15022393A JPH0723587A JP H0723587 A JPH0723587 A JP H0723587A JP 5150223 A JP5150223 A JP 5150223A JP 15022393 A JP15022393 A JP 15022393A JP H0723587 A JPH0723587 A JP H0723587A
Authority
JP
Japan
Prior art keywords
phase
magnetic pole
degrees
synchronous motor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150223A
Other languages
Japanese (ja)
Inventor
Nobukazu Takagi
伸和 高木
Takahiro Kanai
孝弘 金井
Satoshi Kawai
智 川合
Yasushi Hagiwara
恭 萩原
Yasuo Ono
保夫 小野
Kiyoshi Nara
清 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIGH P TEC KK
Bosch Corp
Original Assignee
HIGH P TEC KK
Zexel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIGH P TEC KK, Zexel Corp filed Critical HIGH P TEC KK
Priority to JP5150223A priority Critical patent/JPH0723587A/en
Publication of JPH0723587A publication Critical patent/JPH0723587A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/188Circuit arrangements for detecting position without separate position detecting elements using the voltage difference between the windings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To prevent step out by comparing the output from a differential amplifier, for detecting the differential voltage between the terminals of a winding from a counter electromotive force having phase shifted through a primary low-pass filter, with a zero volt potential. CONSTITUTION:A voltage Vab between terminals is fed through a primary low-pass filter (LF) 11a where noise components are removed from counter electromotive forces Va, Vb and the phase of main component is shifted by about 60 deg.. Main components of the counter electromotive forces Va, Vb subjected to phase shift are then fed to a differential amplifier 12a and the differential voltage is outputted as a voltage waveform Da between terminals. The waveform Da is fed to a comparator 13a where it is compared with a zero volt potential. The comparator 13a outputs a pulse of 180 deg. width having phase lag of about 60 deg. behind the zero-cross point of the voltage waveform Vab between terminals. In other words, a pole position detecting circuit 10a generates a pole position signal Pa. Similarly, detecting circuits 10b, 10c generate pole position signals Pb, Pc. The pole position signals Pa, Pb, Pc have 120 deg. phase shift.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電機子巻線に発生する
逆起電圧を基に、磁極の回転位置を検出する磁極センサ
と同等の磁極位置信号を生成する磁極検出回路、及び当
該磁極検出回路を用いて三相ブラシレス同期電動機を駆
動するようにしたその駆動装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic pole detection circuit for generating a magnetic pole position signal equivalent to a magnetic pole sensor for detecting the rotational position of a magnetic pole on the basis of a counter electromotive voltage generated in an armature winding, and the magnetic pole. The present invention relates to a drive device for driving a three-phase brushless synchronous motor using a detection circuit.

【0002】[0002]

【従来の技術】三相ブラシレス同期電動機の回転位置を
検出する磁極センサとして、電機子巻線の端子に発生す
る逆起電圧を用いた方式のものが、近年研究が盛んにな
り、種々の方式のものが提案されている。
2. Description of the Related Art As a magnetic pole sensor for detecting a rotational position of a three-phase brushless synchronous motor, a system using a counter electromotive voltage generated at a terminal of an armature winding has been actively researched in recent years and various systems have been developed. Have been proposed.

【0003】電機子巻線の端子に発生する逆起電圧を磁
極センサとして利用する一般的な三相ブラシレス同期電
動機の駆動装置は、図5に示される様な構成が採られて
いる。
A drive device for a general three-phase brushless synchronous motor, which utilizes a back electromotive force generated at the terminals of the armature winding as a magnetic pole sensor, has a structure as shown in FIG.

【0004】6個の半導体スイッチング素子Q1 ないし
6 で構成された三相ブリッジ回路1は直流電源2から
その電源が供給され、例えば120度通電角の通電制御
方式の場合、三相ブラシレス同期電動機3の各相に12
0度通電角の矩形波が所定のタイミングで印加される様
になっている。
A three-phase bridge circuit 1 composed of six semiconductor switching elements Q 1 to Q 6 is supplied with power from a DC power supply 2. For example, in the case of a 120-degree conduction angle conduction control system, a three-phase brushless synchronization is used. 12 for each phase of motor 3
A rectangular wave with a conduction angle of 0 degree is applied at a predetermined timing.

【0005】磁極検出回路4は三相ブラシレス同期電動
機3の電機子巻線の端子電圧Va ,Vb ,Vc を入力
し、転流の為の磁極検出信号を生成する回路で、更に具
体的に説明すると、図6の様に構成されている。
[0005] In the circuit pole detection circuit 4 to enter the terminal voltage of the three-phase brushless synchronous motor 3 of the armature winding V a, V b, V c , to generate a magnetic pole detection signal for commutation, more specifically Specifically, the configuration is as shown in FIG.

【0006】すなわち図6において、電機子巻線3−1
の各端子にスター結線された3個の抵抗5の仮想中性点
を基準に、電機子巻線3−1の各端子に発生する逆起電
圧を検出し、各相毎に設けられている遮断周波数が充分
低い1次ローパスフィルタ6により位相を90度シフト
させ、更に対応して設けられている比較器7で転流の為
の位置信号、すなわち磁極検出信号を得ている。
That is, in FIG. 6, the armature winding 3-1.
The counter electromotive voltage generated at each terminal of the armature winding 3-1 is detected with reference to the virtual neutral point of the three resistors 5 star-connected to each terminal of The phase is shifted by 90 degrees by the primary low-pass filter 6 having a sufficiently low cutoff frequency, and the corresponding comparator 7 is provided with a position signal for commutation, that is, a magnetic pole detection signal.

【0007】この様にして得られた磁極検出信号を基
に、図5の制御回路8は所定のタイミングで三相ブリッ
ジ回路1内の半導体スイッチング素子Q1 ないしQ6
ゲート信号を生成し、三相ブリッジ回路1から三相ブラ
シレス同期電動機3の各相に120度通電角の矩形波を
印加させるように制御している。
Based on the magnetic pole detection signal thus obtained, the control circuit 8 in FIG. 5 generates gate signals for the semiconductor switching elements Q 1 to Q 6 in the three-phase bridge circuit 1 at a predetermined timing, Control is performed so that a rectangular wave having a conduction angle of 120 degrees is applied from the three-phase bridge circuit 1 to each phase of the three-phase brushless synchronous motor 3.

【0008】[0008]

【発明が解決しようとする課題】しかしながら図6に示
されている様な磁極検出回路4の構成では、重負荷時に
問題点が生じる欠点があった。
However, the configuration of the magnetic pole detection circuit 4 as shown in FIG. 6 has a drawback that a problem occurs at the time of heavy load.

【0009】つまり、三相ブラシレス同期電動機3が無
負荷の時の端子電圧は、図7(A)の実線の様な波形と
なってなり、この無負荷時の端子電圧V10を1次ローパ
スフィルタ6に通すと、図7(A)の点線で示されてい
る様な位相が90度シフトされた波形V11が生成され
る。この信号波形V11を転流信号に用いると三相ブラシ
レス同期電動機3は比較的安定した回転が得られる。
That is, the terminal voltage when the three-phase brushless synchronous motor 3 is unloaded has a waveform as shown by the solid line in FIG. 7 (A), and the terminal voltage V 10 when unloaded is the primary low-pass. When it is passed through the filter 6, a waveform V 11 with the phase shifted by 90 degrees as shown by the dotted line in FIG. 7A is generated. When this signal waveform V 11 is used as a commutation signal, the three-phase brushless synchronous motor 3 can obtain relatively stable rotation.

【0010】しかしながら三相ブラシレス同期電動機3
の負荷が重いときの端子電圧は、図7(B)の実線で示
されている様にスパイク電圧が重畳された波形となって
おり、この重負荷時の端子電圧V12を1次ローパスフィ
ルタ6に通すと、図7(B)の点線で示されている様な
位相が90度から進む波形V13となり、進み角が30度
を超えると三相ブラシレス同期電動機3が脱調を起こ
し、停止してしまう事態が生じる。
However, the three-phase brushless synchronous motor 3
The terminal voltage when the load is heavy has a waveform in which the spike voltage is superimposed as shown by the solid line in FIG. 7B, and the terminal voltage V 12 at the time of the heavy load is the primary low-pass filter. 6 shows a waveform V 13 where the phase advances from 90 degrees as shown by the dotted line in FIG. 7B, and when the advance angle exceeds 30 degrees, the three-phase brushless synchronous motor 3 causes step out, A situation occurs in which it stops.

【0011】本発明は、上記の点に鑑みなされたもので
あり、発明者らは実験に基づき相電圧よりも相間電圧を
基に磁極位置信号を検出し、これから転流信号を生成し
て三相ブラシレス同期電動機を駆動する方が重負荷時の
スパイク電圧の影響を受けにくい事実を見出したことか
ら、その様な構成となし、磁極センサを用いずに、かつ
脱調を起こして停止することのないような磁極検出回路
及びそれを用いた三相ブラシレス同期電動機の駆動装置
を提供することを目的としている。
The present invention has been made in view of the above points, and the inventors have experimentally detected a magnetic pole position signal based on an interphase voltage rather than a phase voltage, and generate a commutation signal from the detected signal. It was found that driving a phase brushless synchronous motor is less susceptible to spike voltage under heavy load.Therefore, such a structure is adopted, and the magnetic pole sensor is not used and step out occurs and the motor stops. It is an object of the present invention to provide a magnetic pole detection circuit that does not exist and a drive device for a three-phase brushless synchronous motor using the magnetic pole detection circuit.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の磁極検出回路及びそれを用いた三相ブラ
シレス同期電動機の駆動装置は、各相が120度通電角
の矩形波で駆動される星型結線の電機子巻線を備えた三
相ブラシレス同期電動機の駆動装置において、各相に発
生する逆起電圧を基に所定の周波数でその位相を60度
近傍の遅相にシフトさせる3組の1次ローパスフィルタ
と、当該1次ローパスフィルタで位相がシフトされた逆
起電圧から電機子巻線の各端子間の差電圧を検出する3
組の差動増幅器と、当該差動増幅器の出力と零ボルト電
位とを比較する3組の比較器とを磁極検出回路は備えて
いる。
In order to achieve the above object, the magnetic pole detection circuit of the present invention and a drive unit for a three-phase brushless synchronous motor using the magnetic pole detection circuit are rectangular waves with a conduction angle of 120 degrees for each phase. In a drive device of a three-phase brushless synchronous motor having a star-shaped armature winding to be driven, the phase is shifted to a delayed phase near 60 degrees at a predetermined frequency based on the counter electromotive voltage generated in each phase. 3 sets of primary low-pass filters to be operated, and the differential voltage between the terminals of the armature winding is detected from the back electromotive force whose phase is shifted by the primary low-pass filter 3
The magnetic pole detection circuit includes a pair of differential amplifiers and three pairs of comparators that compare the output of the differential amplifier and the zero volt potential.

【0013】そして、三相ブラシレス同期電動機の駆動
装置は、上記の磁極検出回路と、当該磁極検出回路が出
力する磁極位置信号に基づいて転流信号を生成する制御
回路と、当該制御回路が生成する転流信号により、上記
各相に120度通電角の矩形波を出力し、三相ブラシレ
ス同期電動機を駆動する三相ブリッジ回路とを備えてい
る。
In the drive device for the three-phase brushless synchronous motor, the magnetic pole detection circuit described above, a control circuit that generates a commutation signal based on the magnetic pole position signal output from the magnetic pole detection circuit, and the control circuit generate the commutation signal. And a three-phase bridge circuit that outputs a rectangular wave with a conduction angle of 120 degrees to each of the above phases by a commutation signal to drive the three-phase brushless synchronous motor.

【0014】[0014]

【作用】端子間電圧のスパイク電圧は、零クロス点から
60度手前と零クロス点の直後に重畳される形となるの
で、重負荷時においてスパイク電圧の影響を受け難くな
る。
Since the spike voltage of the inter-terminal voltage is superimposed 60 degrees before the zero cross point and immediately after the zero cross point, the spike voltage is less likely to be affected by the heavy load.

【0015】[0015]

【実施例】図1は本発明の一実施例構成図を示してい
る。同図において、1、3、8は図5のものに対応して
いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a block diagram of an embodiment of the present invention. In the figure, numerals 1, 3, 8 correspond to those in FIG.

【0016】11は1次ローパスフィルタ、12は差動
増幅器、13は比較器をそれぞれ表している。例えば最
上段の1次ローパスフィルタ11及び差動増幅器12に
は、三相ブラシレス同期電動機3の端子間電圧(逆起電
圧)Vabが入力される様になっており、遮断周波数が充
分低い1次ローパスフィルタ11でPWMの通電波形が
平滑化された上で雑音成分が除去され、約60度位相が
シフトされた逆起電圧の主要成分だけが抽出されて差動
増幅器12に入力される。当該差動増幅器12でその差
の成分が適宜増幅されるようになっており、当該差動増
幅器12から出力される端子間電圧波形Da は上記端子
間電圧(逆起電圧)波形Vabに対して位相が図2図示の
如く約60度遅れている。
Reference numeral 11 is a first-order low-pass filter, 12 is a differential amplifier, and 13 is a comparator. For example, the inter-terminal voltage (back electromotive force) V ab of the three-phase brushless synchronous motor 3 is input to the first-order low-pass filter 11 and the differential amplifier 12 at the uppermost stage, and the cutoff frequency is sufficiently low. The PWM conduction waveform is smoothed by the next low-pass filter 11, the noise component is removed, and only the main component of the counter electromotive voltage whose phase is shifted by about 60 degrees is extracted and input to the differential amplifier 12. The difference component is appropriately amplified by the differential amplifier 12, and the terminal voltage waveform D a output from the differential amplifier 12 becomes the terminal voltage (back electromotive force) waveform V ab . On the other hand, the phase is delayed by about 60 degrees as shown in FIG.

【0017】比較器13には上記差動増幅器12からの
端子間電圧波形Da と零ボルト電位とが入力されてい
る。端子間電圧波形Da が零ボルト電位より大きいとき
当該比較器13からHレベルが出力されるようになって
いるので、図2に示された磁極位置信号Pa が当該比較
器13から発生する。この磁極位置信号Pa は図2から
明らかな様に端子間電圧(逆起電圧)波形Vabの零クロ
ス点から約60度遅れた幅が180度相当のパルスとな
っている。
The voltage waveform D a between terminals and the zero volt potential from the differential amplifier 12 are input to the comparator 13. When the inter-terminal voltage waveform D a is larger than the zero volt potential, the comparator 13 outputs the H level, so that the magnetic pole position signal P a shown in FIG. . As is apparent from FIG. 2, the magnetic pole position signal P a is a pulse whose width is delayed by about 60 degrees from the zero cross point of the inter-terminal voltage (back electromotive voltage) waveform V ab and is 180 degrees.

【0018】同様にして、中段の比較器からは端子間電
圧(逆起電圧)波形Vbcの零クロス点から約60度遅れ
た磁極位置信号Pb が生成され、また最下段の比較器か
らは端子間電圧(逆起電圧)波形Vcaの零クロス点から
約60度遅れた磁極位置信号Pc が生成される。
Similarly, the middle-stage comparator produces a magnetic pole position signal P b delayed by about 60 degrees from the zero crossing point of the terminal voltage (back electromotive force) waveform V bc , and the lowest-stage comparator. Generates a magnetic pole position signal P c delayed by about 60 degrees from the zero crossing point of the inter-terminal voltage (back electromotive force) waveform V ca.

【0019】この様にして3組の各比較器13から生成
された磁極位置信号Pa ,Pb ,P c を基に、制御回路
8は所定のタイミングで三相ブリッジ回路1内の半導体
スイッチング素子Q1 ないしQ6 をオンにする制御を行
う。
In this way, three sets of comparators 13 are generated.
Magnetic pole position signal Pa, Pb, P cBased on the control circuit
8 is a semiconductor in the three-phase bridge circuit 1 at a predetermined timing
Switching element Q1Through Q6Control to turn on
U

【0020】図4は磁極検出回路の一実施例具体的回路
を示している。同図において、10aないし10cは磁
極位置検出回路、11aないし11cは1次ローパスフ
ィルタ、12aないし12cは差動増幅器、13aない
し13cは比較器をそれぞれ表している。
FIG. 4 shows a specific circuit of an embodiment of the magnetic pole detection circuit. In the figure, 10a to 10c are magnetic pole position detection circuits, 11a to 11c are primary low-pass filters, 12a to 12c are differential amplifiers, and 13a to 13c are comparators.

【0021】1次ローパスフィルタ11aないし11c
には三相ブラシレス同期電動機3の端子電圧、すなわち
各相に発生する逆起電圧Va ,Vb ,Vc が同図図示の
如くそれぞれ入力されるようになっている。
First-order low-pass filters 11a to 11c
The terminal voltages of the three-phase brushless synchronous motor 3, that is, the back electromotive voltages V a , V b , and V c generated in each phase are input to the respective terminals as shown in FIG.

【0022】例えば磁極位置検出回路10aについて説
明すると、1次ローパスフィルタ11aには端子間電圧
abが入力される形となっており、当該1次ローパスフ
ィルタ11aで入力される逆起電圧Va ,Vb の雑音成
分がそれぞれ除去(例えばPWMの通電波形の平滑化)
されると共に、その主要成分の位相が約60度シフトさ
れる。この1次ローパスフィルタ11aの時定数は、三
相ブラシレス同期電動機3の所望回転数及び回転子の磁
石の磁極数で決められる交番周波数によって決定され
る。実際には後述するが、実験結果から上記時定数は約
65度位相がシフトする値が良好な結果をもたらしてい
る。
Explaining, for example, the magnetic pole position detection circuit 10a, the inter-terminal voltage V ab is input to the primary low pass filter 11a, and the counter electromotive voltage V a input by the primary low pass filter 11a. , V b noise components are removed (for example, smoothing of PWM energization waveform)
At the same time, the phase of its main component is shifted by about 60 degrees. The time constant of the primary low-pass filter 11a is determined by the desired rotation speed of the three-phase brushless synchronous motor 3 and the alternating frequency determined by the number of magnetic poles of the rotor magnet. Actually, as will be described later, from the experimental results, the above-mentioned time constant gives a good result in which the phase shift is about 65 degrees.

【0023】この様に位相がシフトされた逆起電圧
a ,Vb の主要成分が差動増幅器12aに入力され、
その差電圧が端子間電圧波形Da として出力される。そ
して当該端子間電圧波形Da は比較器13aの非反転入
力端子に入力され、当該比較器13aの反転入力端子に
入力されている零ボルト電位と比較される。
The main components of the counter electromotive voltages V a and V b whose phases are thus shifted are input to the differential amplifier 12a,
The difference voltage is output as the terminal voltage waveform D a . The inter-terminal voltage waveform D a is input to the non-inverting input terminal of the comparator 13a and compared with the zero volt potential input to the inverting input terminal of the comparator 13a.

【0024】図2で説明した様に当該比較器13aから
は、端子間電圧波形Vabの零クロス点より約60度(実
験的には約65度が良好)遅れた幅が180度相当のパ
ルスが出力する。すなわち磁極位置検出回路10aで磁
極位置信号Pa が生成される。
As described with reference to FIG. 2, from the comparator 13a, a width delayed by about 60 degrees (experimentally about 65 degrees is good) from the zero cross point of the terminal voltage waveform V ab is equivalent to 180 degrees. The pulse is output. That is, the magnetic pole position detection circuit 10a generates the magnetic pole position signal P a .

【0025】同様にして磁極位置検出回路10b,10
cから同様の条件を備えた磁極位置信号Pb ,Pc が生
成される。そして磁極位置信号Pa ,Pb ,Pc はそれ
ぞれ120度の位相のずれを備えている。
Similarly, the magnetic pole position detection circuits 10b, 10
Magnetic pole position signals P b and P c having similar conditions are generated from c . The magnetic pole position signals P a , P b , and P c have a phase shift of 120 degrees.

【0026】一般的に、ホールIC等を回転子の位置セ
ンサとして用いる三相ブラシレス同期電動機の駆動装置
の場合、ホールICの位置を三相ブラシレス同期電動機
の端子間の逆起電圧と位相を合わせるのが常道とされて
いる。
Generally, in the case of a drive device for a three-phase brushless synchronous motor using a Hall IC or the like as a rotor position sensor, the position of the Hall IC is aligned with the counter electromotive voltage between the terminals of the three-phase brushless synchronous motor. Is said to be the norm.

【0027】しかしながら本発明の場合、通電される電
機子巻線3−1の逆起電圧を位置信号として検出する
際、電機子巻線3−1の逆起電圧にPWMのチョッパ電
圧が重畳されており、上記の1次ローパスフィルタ11
aがそれを平滑化する働きと共に、同時に位相もシフト
させている。そこで当該1次ローパスフィルタ11aに
おいて、シフトの幅を約60度(実験的には約65度)
程度の時定数に設定される。他の磁極位置検出回路10
b,10cの1次ローパスフィルタについても同様であ
る。
However, in the case of the present invention, when the counter electromotive voltage of the energized armature winding 3-1 is detected as a position signal, the PWM chopper voltage is superimposed on the counter electromotive voltage of the armature winding 3-1. And the above-mentioned first-order low-pass filter 11
a works to smooth it and at the same time shifts the phase. Therefore, in the first-order low-pass filter 11a, the shift width is about 60 degrees (experimentally about 65 degrees).
It is set to a time constant of degree. Other magnetic pole position detection circuit 10
The same applies to the first-order low-pass filters b and 10c.

【0028】図3は重負荷時における電機子の一実施例
波形説明図を示しており、Va ,V b は端子電圧波形、
abは端子間電圧波形を表している。端子電圧波形
a ,Vb では、従来例の図7で説明した様に120度
幅通電のオフ時にスパイク電圧が発生している。
FIG. 3 shows an embodiment of the armature under heavy load.
A waveform explanatory diagram is shown, and Va, V bIs the terminal voltage waveform,
VabRepresents the voltage waveform between terminals. Terminal voltage waveform
Va, VbThen, as explained in FIG. 7 of the conventional example, 120 degrees
Spike voltage is generated when width energization is off.

【0029】これに対し端子間電圧波形Vabでは、端子
電圧波形Va ,Vb の場合と同様にスパイク電圧が重畳
されているが、その発生しているタイミングが上記端子
電圧波形Va ,Vb の場合と異なる。端子電圧波形
a ,Vb 上のスパイク電圧がその零クロス点から30
度手前の位置に対し、端子間電圧波形Vab上のスパイク
電圧A,Cはその零クロス点から60度手前の位置に、
またスパイク電圧B,Dはその零クロス点直後の位置に
それぞれ重畳されている。このことから、1次ローパス
フィルタ11aの後の波形の位相に対して端子間電圧波
形Vabの方が影響され難いことが容易に判る。つまり仮
想中性点から端子電圧を見ている従来例の図6の場合
〔重負荷時の波形は図7(B)〕、スパイク電圧が零ク
ロス点より30度手前から発生しているため1次ローパ
スフィルタ6を通すと逆起電圧にスパイク電圧が重畳さ
れた形でフィルタリングされることとなり、位相遅れが
90度よりも進んでしまう。負荷が重い程その傾向が強
くなる。
On the other hand, in the inter-terminal voltage waveform V ab , the spike voltage is superimposed as in the case of the terminal voltage waveforms V a and V b , but the timing of occurrence is the above-mentioned terminal voltage waveform V a , Different from the case of V b . The spike voltage on the terminal voltage waveforms V a and V b is 30 from the zero cross point.
The spike voltages A and C on the voltage waveform V ab between the terminals are 60 degrees before the zero cross point,
The spike voltages B and D are superimposed on the positions immediately after the zero crossing points. From this, it is easily understood that the inter-terminal voltage waveform V ab is less likely to be affected by the phase of the waveform after the primary low-pass filter 11a. That is, in the case of FIG. 6 of the conventional example in which the terminal voltage is viewed from the virtual neutral point [waveform at heavy load is FIG. 7 (B)], the spike voltage is generated 30 degrees before the zero cross point. When passing through the next low-pass filter 6, the spike voltage is superimposed on the back electromotive force, and the phase delay is advanced beyond 90 degrees. The heavier the load, the stronger the tendency.

【0030】ところが本発明では、上記説明の通りスパ
イク電圧Aが零クロス点より60度も手前なので時間的
に考えればスパイク電圧Aの影響が従来例より少ない。
またスパイク電圧Bは零クロス点より後に発生している
ので、さらに影響がなくなる。
However, in the present invention, as described above, the spike voltage A is 60 degrees before the zero cross point, so that the effect of the spike voltage A is less than that of the conventional example in terms of time.
Further, since the spike voltage B is generated after the zero cross point, the influence is further eliminated.

【0031】実際の実験例でも負荷が定格の3倍程度で
約10度前後の進みにおさまることを確認している。従
って上記説明の磁極検出回路を用いれば、三相ブラシレ
ス同期電動機3を、回転子の位置を検出する磁極センサ
なしに安定して回転させることができる。
It has been confirmed in an actual experimental example that the load is about three times the rated value and the progress is about 10 degrees. Therefore, by using the magnetic pole detection circuit described above, the three-phase brushless synchronous motor 3 can be stably rotated without a magnetic pole sensor for detecting the position of the rotor.

【0032】[0032]

【発明の効果】以上説明した如く、本発明によれば、磁
極センサなしに磁極位置信号を生成することができ、ま
た当該磁極検出回路を用いることにより脱調が生じるこ
とがなくなり、所定の回転数幅まで安定して三相ブラシ
レス同期電動機を回転させることができる。
As described above, according to the present invention, it is possible to generate a magnetic pole position signal without a magnetic pole sensor, and by using the magnetic pole detection circuit, step out does not occur and a predetermined rotation is performed. The three-phase brushless synchronous motor can be stably rotated up to several widths.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】磁極位置信号生成の波形説明図である。FIG. 2 is a waveform explanatory diagram of magnetic pole position signal generation.

【図3】重負荷時における電機子の一実施例波形説明図
でる。
FIG. 3 is a waveform explanatory diagram of an embodiment of an armature under heavy load.

【図4】磁極検出回路の一実施例具体的回路である。FIG. 4 is a specific circuit of an embodiment of a magnetic pole detection circuit.

【図5】三相ブラシレス同期電動機の駆動装置構成図で
ある。
FIG. 5 is a configuration diagram of a driving device of a three-phase brushless synchronous motor.

【図6】従来の磁極検出回路の構成図である。FIG. 6 is a configuration diagram of a conventional magnetic pole detection circuit.

【図7】従来の磁極検出回路の波形説明図である。FIG. 7 is a waveform explanatory diagram of a conventional magnetic pole detection circuit.

【符号の説明】[Explanation of symbols]

1 三相ブリッジ回路 2 直流電源 3 三相ブラシレス同期電動機 3−1 電機子巻線 4 磁極検出回路 8 制御回路 10a,10b,10c 磁極位置検出回路 11 1次ローパスフィルタ 12 差動増幅器 13 比較器 1 three-phase bridge circuit 2 DC power supply 3 three-phase brushless synchronous motor 3-1 armature winding 4 magnetic pole detection circuit 8 control circuit 10a, 10b, 10c magnetic pole position detection circuit 11 primary low-pass filter 12 differential amplifier 13 comparator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川合 智 埼玉県大里郡江南町大字千代字東原39番地 株式会社ゼクセル江南工場内 (72)発明者 萩原 恭 神奈川県相模原市南橋本1丁目20番12− 703号 (72)発明者 小野 保夫 神奈川県相模原市並木2丁目4番12号 (72)発明者 奈良 清 神奈川県相模原市鹿沼台1丁目4番15号 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Satoshi Kawai 39 Toba, Chiyo-ji, Konan-cho, Osato-gun, Saitama Prefecture Inside Zekcel Gangnam Plant (72) Inventor Kyo Hagiwara 1-20-12 Minamihashimoto, Sagamihara-shi, Kanagawa Prefecture No. 703 (72) Inventor Yasuo Ono 2-4-12 Namiki, Sagamihara-shi, Kanagawa (72) Inventor Kiyo Nara 1-4-15 Kanumadai, Sagamihara-shi, Kanagawa

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 各相が120度通電角の矩形波で駆動さ
れる星型結線の電機子巻線を備えた三相ブラシレス同期
電動機の駆動装置において、 各相に発生する逆起電圧を基に所定の周波数でその位相
を60度近傍の遅相にシフトさせる3組の1次ローパス
フィルタと、 当該1次ローパスフィルタで位相がシフトされた逆起電
圧から電機子巻線の各端子間の差電圧を検出する3組の
差動増幅器と、 当該差動増幅器の出力と零ボルト電位とを比較する3組
の比較器とを備えたことを特徴とする磁極検出回路。
1. A drive device for a three-phase brushless synchronous motor, wherein each phase is provided with a star-shaped armature winding that is driven by a rectangular wave with a conduction angle of 120 degrees, and a counter electromotive voltage generated in each phase is used as a basis. Between the three sets of primary low-pass filters that shift the phase to a lag phase near 60 degrees at a predetermined frequency, and the back electromotive force whose phase is shifted by the primary low-pass filter, between the terminals of the armature winding. A magnetic pole detection circuit comprising: three sets of differential amplifiers for detecting a difference voltage; and three sets of comparators for comparing the output of the differential amplifier and a zero volt potential.
【請求項2】 各相が120度通電角の矩形波で駆動さ
れる星型結線の電機子巻線を備えた三相ブラシレス同期
電動機の駆動装置において、 各相に発生する逆起電圧を基に所定の周波数でその位相
を60度近傍の遅相にシフトさせる3組の1次ローパス
フィルタと、当該1次ローパスフィルタで位相がシフト
された逆起電圧から電機子巻線の各端子間の差電圧を検
出する3組の差動増幅器と、当該差動増幅器の出力と零
ボルト電位とを比較する3組の比較器とを備えた磁極検
出回路と、 当該磁極検出回路が出力する磁極位置信号に基づいて転
流信号を生成する制御回路と、 当該制御回路が生成する転流信号により、上記各相に1
20度通電角の矩形波を出力し、三相ブラシレス同期電
動機を駆動する三相ブリッジ回路とを備えたことを特徴
とする三相ブラシレス同期電動機の駆動装置。
2. A drive device for a three-phase brushless synchronous motor, wherein each phase is provided with a star-shaped armature winding driven by a rectangular wave having a conduction angle of 120 degrees, and a counter electromotive voltage generated in each phase is used as a basis. Between three sets of primary low-pass filters that shift the phase to a lag phase near 60 degrees at a predetermined frequency, and the back electromotive force whose phase is shifted by the primary low-pass filter between each terminal of the armature winding. A magnetic pole detection circuit including three sets of differential amplifiers for detecting a differential voltage and three sets of comparators for comparing the output of the differential amplifier with a zero volt potential, and a magnetic pole position output by the magnetic pole detection circuit. 1 for each phase by a control circuit that generates a commutation signal based on the signal and a commutation signal that is generated by the control circuit.
A drive device for a three-phase brushless synchronous motor, comprising: a three-phase bridge circuit that outputs a rectangular wave with a conduction angle of 20 degrees and drives the three-phase brushless synchronous motor.
JP5150223A 1993-06-22 1993-06-22 Pole detecting circuit and driver for three-phase brushless synchronous motor employing it Pending JPH0723587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150223A JPH0723587A (en) 1993-06-22 1993-06-22 Pole detecting circuit and driver for three-phase brushless synchronous motor employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150223A JPH0723587A (en) 1993-06-22 1993-06-22 Pole detecting circuit and driver for three-phase brushless synchronous motor employing it

Publications (1)

Publication Number Publication Date
JPH0723587A true JPH0723587A (en) 1995-01-24

Family

ID=15492234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150223A Pending JPH0723587A (en) 1993-06-22 1993-06-22 Pole detecting circuit and driver for three-phase brushless synchronous motor employing it

Country Status (1)

Country Link
JP (1) JPH0723587A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021816A1 (en) * 1996-11-12 1998-05-22 Motorola, Inc. Wilmington Geneva Branch Office Method and apparatus for electronically commuting an electric motor
WO2009068314A2 (en) * 2007-11-30 2009-06-04 Trinamic Motion Control Gmbh & Co Kg Method and circuit for producing rotor position signals and for the commutation of brushless direct-current motors, without using sensors
JP2012235695A (en) * 2012-09-05 2012-11-29 Daikin Ind Ltd Method and device for controlling brushless dc motor
CN103633904A (en) * 2013-12-09 2014-03-12 国网上海市电力公司 Control method and control system for sensorless brushless direct-current motor
CN106992725A (en) * 2016-01-20 2017-07-28 珠海格力节能环保制冷技术研究中心有限公司 The position detecting circuit and method of motor
CN109508311A (en) * 2018-11-13 2019-03-22 维沃移动通信有限公司 Signal processing circuit, terminal and signal processing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021816A1 (en) * 1996-11-12 1998-05-22 Motorola, Inc. Wilmington Geneva Branch Office Method and apparatus for electronically commuting an electric motor
CN1080024C (en) * 1996-11-12 2002-02-27 摩托罗拉公司威尔明顿日内瓦分公司 Method and apparatus for electronically commuting electric motor
WO2009068314A2 (en) * 2007-11-30 2009-06-04 Trinamic Motion Control Gmbh & Co Kg Method and circuit for producing rotor position signals and for the commutation of brushless direct-current motors, without using sensors
WO2009068314A3 (en) * 2007-11-30 2009-10-15 Trinamic Motion Control Gmbh & Co Kg Method and circuit for producing rotor position signals and for the commutation of brushless direct-current motors, without using sensors
US8144439B2 (en) 2007-11-30 2012-03-27 Trinamic Motion Control Gmbh & Co. Kg Method and circuit for producing rotor position signals and for the commutation of brushless direct-current motors, without using sensors
JP2012235695A (en) * 2012-09-05 2012-11-29 Daikin Ind Ltd Method and device for controlling brushless dc motor
CN103633904A (en) * 2013-12-09 2014-03-12 国网上海市电力公司 Control method and control system for sensorless brushless direct-current motor
CN106992725A (en) * 2016-01-20 2017-07-28 珠海格力节能环保制冷技术研究中心有限公司 The position detecting circuit and method of motor
CN106992725B (en) * 2016-01-20 2024-01-12 珠海格力节能环保制冷技术研究中心有限公司 Position detection circuit and method for motor
CN109508311A (en) * 2018-11-13 2019-03-22 维沃移动通信有限公司 Signal processing circuit, terminal and signal processing method

Similar Documents

Publication Publication Date Title
JP4772044B2 (en) Voltage boost control for motor drive
US7750586B2 (en) Drive control device of motor and a method of start-up
US20160011009A1 (en) Position estimation device, motor drive control device, and position estimation method
JPH07245981A (en) Detector for position of magnetic pole in motor
WO2005117249A1 (en) Brushless motor drive control circuit and brushless motor device using the same
JP3416494B2 (en) DC brushless motor control device and DC brushless motor control method
JPH0723587A (en) Pole detecting circuit and driver for three-phase brushless synchronous motor employing it
JPH08331883A (en) Driver of brushless dc motor
JP5405224B2 (en) Motor driving device and method for determining relative position of rotor provided in motor
JP2002204592A (en) Inverter equipment
JPH1080180A (en) Control method and equipment of synchronous motor
JPH05103498A (en) Controller for motor
JPH0723586A (en) Pole detecting circuit and driver for three-phase brushless synchronous motor employing it
JP3317000B2 (en) Drive device for brushless DC motor without position sensor
US5367233A (en) Brushless motor operating apparatus provided with a filter having a voltage divider circuit
JP3173022B2 (en) Control device for brushless DC motor
JP3386688B2 (en) Brushless motor position detection circuit
JPS61191291A (en) Position detector of commutatorless dc motor
JPH0638580A (en) Drive circuit for dc brushless motor
JPH05236785A (en) Drive circuit for brushless motor
JPH08140392A (en) Driver for dc commutatorless motor
JP2738109B2 (en) Driving device for brushless motor
JPS61191290A (en) Position detector of commutatorless dc motor for motor driven compressor
Hooshmand et al. Startup and Sensor-less Drive of Brushless DC Motor for Electrical Vehicles Based on The Line Voltage Difference Integration
JP2656034B2 (en) Control device for brushless motor