JPH07235506A - Thinfilm forming method - Google Patents

Thinfilm forming method

Info

Publication number
JPH07235506A
JPH07235506A JP32555494A JP32555494A JPH07235506A JP H07235506 A JPH07235506 A JP H07235506A JP 32555494 A JP32555494 A JP 32555494A JP 32555494 A JP32555494 A JP 32555494A JP H07235506 A JPH07235506 A JP H07235506A
Authority
JP
Japan
Prior art keywords
gas
thin film
discharge
film
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32555494A
Other languages
Japanese (ja)
Other versions
JP3529466B2 (en
Inventor
Noriyuki Hirata
教行 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32555494A priority Critical patent/JP3529466B2/en
Publication of JPH07235506A publication Critical patent/JPH07235506A/en
Application granted granted Critical
Publication of JP3529466B2 publication Critical patent/JP3529466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To eliminate the high vacuum exhaust means by a method wherein a discharging gas having no thin film forming capacity at all is led in to produce plasma as a pretreatment step and then a reaction gas is substituted for the discharging gas without changing the plasma producing requirements to form a thin film on a substrate to be treated. CONSTITUTION:A substrate 6 is carried in a film forming chamber l and then a discharging gas (nitrogen gas) only not containing monosilane for stabilizing discharge is led into the chamber 1 for governing pressure. Next, an upper electrode 2 is impressed with high-frequency power from a high-frequency power supply for starting the discharge in the space between a lower electrode 3 holding the substrate 6 to be left intact until the plasma discharge is stabilized. Later, a reaction gas (monosilane, nitrogen gas) required for the formation of a silicon nitride film is led in to deposit the thin silicon nitride film on the substrate 6. Through these procedures, the high vacuum exhaustion before and after the film formation can be eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばガラス基板のよ
うな被処理基体上にプラズマCVD法により薄膜を形成
する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film on a substrate to be processed such as a glass substrate by a plasma CVD method.

【0002】[0002]

【従来の技術】従来から、基板上に複数層の薄膜を形成
する方法として、平行平板電極を設置した複数の成膜室
を有するCVD装置を用いて成膜を行う方法が知られて
いる。以下、図6のフローチャートに基づいて従来の平
行平板電極を設置した複数の成膜室を有するCVD装置
により、基板上に窒化シリコン膜(膜種A)、アモルフ
ァスシリコン膜(膜種B)を形成する方法を説明する。
2. Description of the Related Art Conventionally, as a method of forming a plurality of thin films on a substrate, there is known a method of forming a film by using a CVD apparatus having a plurality of film forming chambers in which parallel plate electrodes are installed. Hereinafter, a silicon nitride film (film type A) and an amorphous silicon film (film type B) are formed on a substrate by a conventional CVD apparatus having a plurality of film forming chambers in which parallel plate electrodes are installed based on the flowchart of FIG. I will explain how to do.

【0003】まず、膜種A成膜用の成膜室Iにガラス基
板のような基板を搬入し平行平板電極の下部電極上に配
置する(1)。高真空状態(例えば1×10-1Pa以
下)まで成膜前排気を施し(2)、膜種Aの成膜に必要
な反応ガスA(モノシラン、アンモニア又は窒素)を前
記成膜室Iに導入して調圧を行いプラズマ放電が可能な
圧力状態とし(3)、高周波電源から対向電極に電力を
供給してプラズマ放電を開始させ基板上に薄膜Aを堆積
させる(4)。所定の時間放電を継続した後、高周波電
源からの電力の供給を遮断してプラズマ放電を停止さ
せ、同時に反応ガスAの供給も停止する(5)。成膜室
I内を前記高真空状態(例えば1×10-1Pa以下)に
排気し(6)、排気された成膜室Iから薄膜Aの形成さ
れた基板を真空を破らずに搬出し(7)、これを膜種B
形成用の成膜室IIに搬入する(8)。成膜室IIにお
いても成膜室Iにおけると同様に、成膜前排気(9)、
反応ガスB(モノシラン、水素)の導入、調圧(1
0)、所定時間プラズマ放電継続(11)、プラズマ放
電停止(反応ガスB停止)(12)、成膜後排気(1
3)を順次行った後基板の搬出を行う(14)。
First, a substrate such as a glass substrate is carried into a film forming chamber I for forming a film type A and placed on the lower electrode of a parallel plate electrode (1). Evacuation before film formation is performed up to a high vacuum state (for example, 1 × 10 −1 Pa or less) (2), and the reaction gas A (monosilane, ammonia or nitrogen) necessary for film formation of the film type A is supplied to the film formation chamber I. It is introduced to adjust the pressure so that plasma discharge is possible (3), and power is supplied from the high frequency power source to the counter electrode to start plasma discharge to deposit the thin film A on the substrate (4). After continuing the discharge for a predetermined time, the supply of the electric power from the high frequency power supply is cut off to stop the plasma discharge, and at the same time, the supply of the reaction gas A is stopped (5). The inside of the film forming chamber I is evacuated to the high vacuum state (for example, 1 × 10 −1 Pa or less) (6), and the substrate on which the thin film A is formed is carried out from the evacuated film forming chamber I without breaking the vacuum. (7), this is membrane type B
It is carried into the film forming chamber II for formation (8). In the film forming chamber II, as in the film forming chamber I, the pre-film forming exhaust (9),
Introduction of reaction gas B (monosilane, hydrogen), pressure regulation (1
0), plasma discharge continued for a predetermined time (11), plasma discharge stopped (reaction gas B stopped) (12), film formation exhaust (1
After performing 3) in sequence, the substrate is unloaded (14).

【0004】上記の(2),(9)の成膜前排気は不純
物ガスを排気して基板表面および放電空間をできるだけ
清浄にし、基板と形成される薄膜との界面及び薄膜自体
への不純物の混入を防止する目的で行われるものであ
る。薄膜トランジスタの製造の場合には、この目的を達
成するためには、調圧時圧力を100Paとする場合に
は、その1/1000の圧力、すなわち1×10-1Pa
以下にすることが必要とされている。したがって、この
成膜前排気には十分な排気能力を有する広域ターボ分子
ポンプが用いられ、60秒間程度を要してこの圧力まで
減圧される。(3)、(10)の反応ガスA,Bの導
入、調圧では、成膜前排気により清浄雰囲気となった成
膜室内に反応ガスのみが導入されて、放電開始前約30
秒を要して放電継続に必要な一定圧力状態に保持され
る。このガス導入には、流量制御機構が用いられ、調圧
には自動制御式スロットルバルブが用いられる。反応ガ
スにより成膜室が一定圧力となった後(4)又は(1
1)のプラズマ放電が開始される。膜厚の調整は、
(5)、(12)の放電停止までのプラズマ放電の継続
時間を制御することにより行われる。
In the pre-deposition exhaust of (2) and (9), the impurity gas is exhausted to clean the surface of the substrate and the discharge space as much as possible, and the impurities on the interface between the substrate and the formed thin film and on the thin film itself are removed. This is done for the purpose of preventing contamination. In the case of manufacturing a thin film transistor, in order to achieve this object, when the pressure during pressure adjustment is 100 Pa, the pressure is 1/1000 of that pressure, that is, 1 × 10 −1 Pa.
The following are required: Therefore, a wide area turbo molecular pump having a sufficient exhaust capacity is used for the exhaust before the film formation, and the pressure is reduced to this pressure in about 60 seconds. In (3) and (10) the introduction and regulation of the reaction gases A and B, only the reaction gas is introduced into the film forming chamber which has become a clean atmosphere due to the exhaust before the film formation, and about 30 before the start of discharge.
It takes a few seconds to maintain the constant pressure required for continuous discharge. A flow rate control mechanism is used for this gas introduction, and an automatically controlled throttle valve is used for pressure regulation. After the film formation chamber has a constant pressure due to the reaction gas, (4) or (1
The plasma discharge of 1) is started. To adjust the film thickness,
This is performed by controlling the duration of plasma discharge until the discharge is stopped in (5) and (12).

【0005】具体的には、膜種A(窒化シリコン)を厚
さ400nm、膜種B(アモルファスシリコン)を厚さ
300nmに形成するには、それぞれ120秒、360
秒のプラズマ放電が必要であり、放電停止と同時に反応
ガスの供給を停止し、直ちに(6)、(13)の成膜後
の排気が行われる。この排気の目的は前記した成膜前排
気と同様であり、成膜前排気と同様、十分な排気能力を
有する広域ターボ分子ポンプで90秒の時間を要して排
気が行われる。
More specifically, it takes 120 seconds and 360 to form the film type A (silicon nitride) with a thickness of 400 nm and the film type B (amorphous silicon) with a thickness of 300 nm, respectively.
Second plasma discharge is required, the supply of the reaction gas is stopped at the same time as the discharge is stopped, and immediately after the film formation in (6) and (13), the gas is discharged. The purpose of this exhaust is the same as the exhaust before the film formation described above, and like the exhaust before the film formation, the wide-area turbo molecular pump having a sufficient exhaust capability takes 90 seconds to exhaust the gas.

【0006】上記のように膜種A(窒化シリコン),膜
種B(アモルファスシリコン)を有する薄膜トランジス
タを、平行平板プラズマCVD法を用いて、真空中で連
続的に基板上に成膜する場合には2室の成膜室が必要で
あり、かつ、成膜には全体で840秒の時間が必要であ
る。
When thin film transistors having the film type A (silicon nitride) and the film type B (amorphous silicon) as described above are continuously formed on a substrate in a vacuum by the parallel plate plasma CVD method. Requires two film forming chambers, and film formation requires a total time of 840 seconds.

【0007】[0007]

【発明が解決しようとする課題】上記のように従来のC
VD装置を用いて成膜する場合には、成膜前に成膜室を
清浄雰囲気とするために高真空にすることが行われてお
り、このため十分な排気能力を有する広域ターボ分子ポ
ンプを必要とする上に、成膜室を必要な真空度とするま
でに、成膜の前後に成膜に要する時間と同等またはそれ
以上の排気時間が必要となるという問題がある。
As described above, the conventional C
When a film is formed using a VD device, a high vacuum is performed in order to create a clean atmosphere in the film forming chamber before film formation. Therefore, a wide area turbo molecular pump having a sufficient exhaust capacity is used. In addition to the above, there is a problem that an evacuation time equal to or longer than the time required for film formation before and after film formation is required before the film formation chamber is made to have a required degree of vacuum.

【0008】また、従来のCVD装置では、複数層に積
層された膜を形成するために膜種の数と同数の成膜室が
必要となり、このため装置のコストが増大する上に装置
寸法が大きくなって大きな設置面積を必要とするという
問題がある。
Further, in the conventional CVD apparatus, it is necessary to provide the same number of film forming chambers as the number of kinds of film in order to form a film laminated in a plurality of layers, which increases the cost of the apparatus and the size of the apparatus. There is a problem that it becomes large and requires a large installation area.

【0009】さらに、膜厚の制御は放電時間の管理によ
って行っているため、実際の放電開始時刻を確実に検出
することが困難であり膜厚を再現性よく制御することが
困難であるという問題もある。
Further, since the film thickness is controlled by controlling the discharge time, it is difficult to reliably detect the actual discharge start time, and it is difficult to control the film thickness with good reproducibility. There is also.

【0010】また、さらに、図7に示すように、高周波
電力源から電力を印加したとき、放電開始後の電極板か
らの反射波が大きく、このため、その後反射波が小さく
なり安定するまでの間の初期プラズマの状態はその後の
プラズマの状態と異なり、堆積初期の膜質がその後の膜
質と異なるものになるという問題がある。この問題は膜
の堆積速度を増加すればするほど、すなわち印加する電
力、反応ガスの供給量を増加すればする程顕著になる。
したがって、良好な堆積初期の膜質を得ようとすれば大
きな堆積速度とすることはできず、成膜所要時間が増大
し生産性が低下することとなる。
Further, as shown in FIG. 7, when electric power is applied from the high frequency power source, the reflected wave from the electrode plate after the start of discharge is large, and hence the reflected wave becomes smaller and becomes stable. There is a problem that the state of the initial plasma during the period is different from the state of the subsequent plasma, and the film quality at the initial stage of deposition becomes different from the film quality thereafter. This problem becomes more remarkable as the film deposition rate is increased, that is, the applied power and the supply amount of the reaction gas are increased.
Therefore, if an attempt is made to obtain a good film quality at the initial stage of deposition, a high deposition rate cannot be achieved, and the time required for film formation will increase and productivity will decrease.

【0011】したがって、本発明の主たる目的は、排気
手段として広域ターボ分子ポンプのように高真空に到達
可能なものを必要としない薄膜形成方法を提供すること
にある。
Therefore, a main object of the present invention is to provide a thin film forming method which does not require a wide-area turbo molecular pump capable of reaching a high vacuum as an evacuation means.

【0012】また、本発明の他の目的は、複数層に積層
された膜を単一の成膜室で連続的に成膜することがで
き、したがって、装置を小型化することができる薄膜形
成方法を提供することにある。
Another object of the present invention is to form a thin film in which a plurality of layers of films can be continuously formed in a single film forming chamber and therefore the apparatus can be downsized. To provide a method.

【0013】さらに、本発明の他の目的は、膜厚及び膜
質が均一な複数層に積層された膜を製造できる薄膜形成
方法を提供することにある。
Still another object of the present invention is to provide a thin film forming method capable of producing a film in which a plurality of layers having uniform film thickness and film quality are laminated.

【0014】さらに、本発明の別の目的は、成膜所要時
間が短く、生産性の良好な薄膜形成方法を提供すること
を目的とする。
Further, another object of the present invention is to provide a thin film forming method having a short film formation time and good productivity.

【0015】また、さらに、本発明の他の目的は、半導
体膜を含む複数層に積層された膜からなる特性の優れた
半導体装置を製造する方法を提供することにある。
Still another object of the present invention is to provide a method of manufacturing a semiconductor device having excellent characteristics, which is composed of a plurality of laminated films including a semiconductor film.

【0016】[0016]

【課題を解決するための手段】本発明の薄膜形成法は、
ガス導入口を有する真空容器内に被処理基体を配置し前
記ガス導入口から前記真空容器内に1種または2種以上
の反応ガスを導入しつつ該反応ガスに高周波電力を印加
することによりプラズマを発生させて前記被処理基板上
に反応ガスの反応生成物からなる薄膜を形成させる方法
において、前記反応ガスの導入に先だって、それ単独で
はプラズマ状態で実質的に薄膜形成能を有しない前記反
応ガスを構成する成分ガス、即ち、前記2種以上の反応
ガスに包含される1種以上のガスであってそれ自体では
実質的に薄膜形成能を有しないガスからなる放電用ガス
を導入しつつ該放電用ガスに高周波電力を印加してプラ
ズマを発生させて前処理を行い、しかる後実質的にプラ
ズマ発生条件を変えることなく前記放電用ガスに代え前
記反応ガスを導入して前記被処理基板上に薄膜を形成さ
せることを特徴としている。
The thin film forming method of the present invention comprises:
Plasma is obtained by arranging a substrate to be processed in a vacuum container having a gas introduction port, and introducing high-frequency power to the reaction gas while introducing one or more kinds of reaction gas into the vacuum container from the gas introduction port. In the method of forming a thin film composed of a reaction product of a reaction gas on the substrate to be processed, prior to the introduction of the reaction gas, the reaction alone which does not substantially have the ability to form a thin film in a plasma state. While introducing a component gas that constitutes the gas, that is, a discharge gas composed of one or more gases contained in the above-mentioned two or more reaction gases and having substantially no thin film forming ability by itself. High-frequency power is applied to the discharge gas to generate plasma for pretreatment, and then the reaction gas is introduced in place of the discharge gas without substantially changing plasma generation conditions. It is characterized by forming a thin film on the target substrate Te.

【0017】本発明に用いられるガス導入口を有する真
空容器としては、公知の平行平板型プラズマCVD装置
が例示される。
As a vacuum container having a gas inlet used in the present invention, a known parallel plate type plasma CVD apparatus is exemplified.

【0018】平行平板型プラズマ発生装置は、一般に、
複数のガス導入口を有し内部に上下に平行させて一対の
平板電極を配置した真空容器(成膜室)と、この真空容
器に反応ガスを供給する反応ガス供給系と、平行平板電
極に13.56 MHzの高周波電圧を印加する高周波電源等
から構成されている。
The parallel plate type plasma generator is generally composed of
A vacuum container (deposition chamber) having a plurality of gas inlets and a pair of flat plate electrodes arranged in parallel vertically, a reaction gas supply system for supplying a reaction gas to the vacuum container, and a parallel plate electrode. It consists of a high-frequency power source that applies a high-frequency voltage of 13.56 MHz.

【0019】成膜は、下部電極に被処理基板を載置し
て、ガス導入口から前工程に放電用ガス次いで反応ガス
を導入しつつ、平行平板電極に高周波電力を印加してプ
ラズマを発生させることにより行われる。
For film formation, a substrate to be processed is placed on the lower electrode, and a discharge gas and then a reaction gas are introduced from the gas inlet into the preceding process, and high frequency power is applied to the parallel plate electrodes to generate plasma. It is carried out by

【0020】前処理工程においては、放電用ガスとし
て、次工程の反応が、(a)アモルファスシリコン膜の
形成である場合にはシランガスを構成する水素ガスが用
いられ(b)窒化シリコン膜の形成である場合にはシラ
ンガスを構成する(1)水素ガス、(2)窒素ガス、又
は(3)シランガスを構成する元素である水素と窒素ガ
スを構成する元素である窒素の化合物であるアンモニア
ガスが用いられ、(c)酸化シリコン膜の形成である場
合には酸素ガスが用いられる。
In the pretreatment step, as the discharge gas, when the reaction in the next step is (a) formation of an amorphous silicon film, hydrogen gas which constitutes silane gas is used (b) formation of a silicon nitride film. In the case of (1) hydrogen gas that constitutes silane gas, (2) nitrogen gas, or (3) hydrogen that is an element that constitutes silane gas and ammonia gas that is a compound of nitrogen that is an element that constitutes nitrogen gas, In the case of (c) forming a silicon oxide film, oxygen gas is used.

【0021】特に、半導体膜を含む複数層からなる半導
体装置の製造において、次工程の反応がアモルファスシ
リコン膜の形成であるとき、放電用ガスとして水素ガス
を使用すると、アモルファスシリコンの界面にSi−H
の結合が生じて半導体装置の特性を改善する効果があ
る。
In particular, in manufacturing a semiconductor device having a plurality of layers including a semiconductor film, when hydrogen gas is used as a discharge gas when the reaction in the next step is formation of an amorphous silicon film, Si-- H
Is effective to improve the characteristics of the semiconductor device.

【0022】本発明においては、真空容器内のガス圧
は、形成される膜により100 〜300 Paの範囲で設定さ
れる。本発明においては、全操作過程を通じて真空容器
内を10Paより低い真空にする必要はなく、したがって
広域ターボ分子ポンプのような排気能力の大きい真空ポ
ンプを用いる必要はない。
In the present invention, the gas pressure in the vacuum container is set within the range of 100 to 300 Pa depending on the film to be formed. In the present invention, it is not necessary to make the inside of the vacuum container a vacuum lower than 10 Pa throughout the whole operation process, and therefore it is not necessary to use a vacuum pump having a large evacuation capacity such as a wide range turbo molecular pump.

【0023】本発明において、例えば平行平板電極型C
VD装置を用いた成膜は次のように行われる。
In the present invention, for example, parallel plate electrode type C
The film formation using the VD device is performed as follows.

【0024】まず、平行平板電極の下部電極上に被処理
基板、例えばガラス基板を置き、放電用ガスを導入しつ
つ、高周波電源から平行平板電極間に13.56 MHzの高
周波電力を印加する。このとき、全処理ガスの流量、ガ
ス圧、電極間距離、供給電力は、形成する膜の種類に応
じて予め設定された値とされる。
First, a substrate to be processed, for example, a glass substrate is placed on the lower electrode of the parallel plate electrode, and a high frequency power of 13.56 MHz is applied from the high frequency power source between the parallel plate electrodes while introducing a discharge gas. At this time, the flow rates of all the processing gases, the gas pressure, the inter-electrode distance, and the supplied power are set to values preset according to the type of film to be formed.

【0025】このプラズマ放電により被処理基板の表面
は清浄化される。所定の時間放電を継続して放電状態が
安定した後、放電用ガスの供給が停止され、反応ガスが
供給される。このとき、反応ガスの供給に先だって形成
すべき膜の種類に応じて電極間距離が調整される。ガス
圧、供給電力を変化させる必要はないが、調整すること
も可能である。この場合、放電用ガスの供給圧力は反応
ガス供給圧力の10〜100 %の範囲内、放電用ガスの供給
下での電力設定値は反応ガス供給下での電力設定値の50
〜100 %の範囲内とする。
The surface of the substrate to be processed is cleaned by this plasma discharge. After the discharge is continued for a predetermined time to stabilize the discharge state, the supply of the discharge gas is stopped and the reaction gas is supplied. At this time, the inter-electrode distance is adjusted according to the type of film to be formed prior to the supply of the reaction gas. It is not necessary to change the gas pressure or the supplied power, but it is possible to adjust it. In this case, the supply pressure of the discharge gas is within the range of 10 to 100% of the reaction gas supply pressure, and the power set value under the supply of the discharge gas is 50% of the power set value under the reaction gas supply.
Within 100%.

【0026】放電用ガス下でのプラズマ放電の時間は前
記反応ガス下でのプラズマ放電時間を1 としたとき、0.
1 〜0.4 の範囲にあることが望ましく、また、プラズマ
放電を維持したまま放電用ガスに代え反応ガスを導入す
るに際し、ガス圧及び放電電力を一定にしたまま反応ガ
スの導入を行うことが望ましい。
The time of plasma discharge under the discharge gas is 0 when the plasma discharge time under the reaction gas is 1.
It is desirable to be in the range of 1 to 0.4, and when introducing the reaction gas in place of the discharge gas while maintaining the plasma discharge, it is desirable to introduce the reaction gas while keeping the gas pressure and the discharge power constant. .

【0027】複数層の積層された膜を形成する場合に
は、所定時間第1の成膜を行った後、反応ガスの供給を
停止し、プラズマ放電を維持したまま、第2の膜に対応
した放電用ガスを導入し、同様の工程を繰り返す。
In the case of forming a laminated film of a plurality of layers, after the first film formation is performed for a predetermined time, the supply of the reaction gas is stopped and the plasma discharge is maintained and the second film is formed. The discharge gas is introduced and the same process is repeated.

【0028】本発明は、窒化シリコン−アモルファスシ
リコン−窒化シリコン或は酸化シリコン−窒化シリコン
−アモルファスシリコン−窒化シリコンのような複数層
を積層させて形成するときに有効であり、このような層
構造の薄膜を有するチャネルエッチング型又はチャネル
絶縁膜型のアモルファスシリコンTFT(逆スタガ型又
はスタガ型)の製造プロセス等に有利に用いられる。
The present invention is effective when laminated by forming a plurality of layers such as silicon nitride-amorphous silicon-silicon nitride or silicon oxide-silicon nitride-amorphous silicon-silicon nitride. It is advantageously used in a manufacturing process of a channel etching type or channel insulating film type amorphous silicon TFT (inverse stagger type or stagger type) having the thin film of

【0029】[0029]

【作用】本発明の薄膜形成法において、薄膜の形成前に
反応ガスの成分のうち、薄膜形成に関与しないガス成分
からなる放電用ガスにより放電を発生させると、放電開
始の時点において成膜室及び基板は活性化された雰囲気
に曝されることとなり、成膜室内の不純物ガスと放電用
ガスとが容易に置換され、成膜前後において広域ターボ
分子ポンプによる高真空排気を行う必要はなく、清浄な
雰囲気中での薄膜形成を行うことができ、短時間に薄膜
形成の初期段階における不純物混入のない良好な薄膜を
形成し得る。放電開始後、所定時間経過の後に、放電電
力を変えずに、薄膜形成に関与しない放電用ガスのガス
成分および薄膜形成に関与するガス成分からなる反応ガ
スを実質的に同じガス圧で導入してプラズマ放電を実質
的に同じ放電電力で継続させれば安定なプラズマ状態を
維持させることができるので堆積初期の膜質とその後の
膜質とは同一のものが得られ、膜厚の制御も容易とな
る。
In the thin film forming method of the present invention, when discharge is generated by the discharge gas consisting of gas components not involved in thin film formation among the components of the reaction gas before forming the thin film, the film forming chamber is started at the start of discharge. Further, the substrate is exposed to an activated atmosphere, the impurity gas in the film forming chamber is easily replaced with the discharge gas, and it is not necessary to perform high vacuum exhaust by a wide area turbo molecular pump before and after film forming. It is possible to form a thin film in a clean atmosphere, and it is possible to form a good thin film in which impurities are not mixed in the initial stage of thin film formation in a short time. After a lapse of a predetermined time after the start of discharge, without changing the discharge power, a reaction gas consisting of a gas component of a discharge gas not involved in thin film formation and a gas component involved in thin film formation is introduced at substantially the same gas pressure. If the plasma discharge is continued at substantially the same discharge power, a stable plasma state can be maintained, so that the film quality at the initial stage of deposition and that after deposition can be the same, and the control of the film thickness is also easy. Become.

【0030】特に、半導体膜を含む複数層からなる積層
膜を形成する際に、放電用ガスとして水素ガスを用いる
と半導体界面の状態が改善されて特性の優れた半導体装
置を製造することができる。
In particular, when hydrogen gas is used as a discharge gas when forming a laminated film composed of a plurality of layers including a semiconductor film, the state of the semiconductor interface is improved and a semiconductor device having excellent characteristics can be manufactured. .

【0031】[0031]

【実施例】【Example】

実施例1 図1及び図2を参照しながら、平行平板プラズマCVD
法により窒化シリコン(膜種A)、アモルファスシリコ
ン(膜種B)からなる半導体膜の製造に適用した実施例
について説明する。
Example 1 With reference to FIGS. 1 and 2, parallel plate plasma CVD
An example applied to the manufacture of a semiconductor film made of silicon nitride (film type A) and amorphous silicon (film type B) by the method will be described.

【0032】なお、図1は本発明に用いたCVD装置を
概念的に示す図、図2は本発明の平行平板プラズマCV
D法による半導体膜の製法を説明するためのフローチャ
ートである。
FIG. 1 is a diagram conceptually showing the CVD apparatus used in the present invention, and FIG. 2 is a parallel plate plasma CV of the present invention.
6 is a flowchart for explaining a method of manufacturing a semiconductor film by the D method.

【0033】図1において、真空密に構成された成膜室
I内には上下に対向してプラズマ発生電極2,3が間隔
を置いて対向設置されている。上部電極2は成膜室Iと
電気的に絶縁されて支持され、成膜室1内に露出してお
り、また下部電極3はその下側に加熱ヒータ4が配置さ
れている。そして、下部電極3は成膜室1とともにアー
スされ、このアースされた下部電極3と上部電極2との
間に高周波電源5が接続されている。化学気相成長され
る基板6は下部電極3上に載置され、ガス導入口7から
成膜室1内へ導入された反応ガス中で上記両電極に高周
波電力を印加することによりプラズマを発生させ、その
ガス中の成膜成分を基板6上に化学気相成長させるよう
になっている。符号8は図示しない排気ポンプへ連通さ
れた排気口である。
In FIG. 1, plasma generating electrodes 2 and 3 are vertically opposed to each other in a vacuum-tightly-formed film forming chamber I so as to oppose each other. The upper electrode 2 is electrically insulated from and supported by the film forming chamber I, is exposed in the film forming chamber 1, and the lower electrode 3 is provided with a heater 4 below it. The lower electrode 3 is grounded together with the film forming chamber 1, and the high frequency power source 5 is connected between the grounded lower electrode 3 and the upper electrode 2. The substrate 6 to be grown by chemical vapor deposition is placed on the lower electrode 3, and plasma is generated by applying high frequency power to both electrodes in the reaction gas introduced from the gas inlet 7 into the film forming chamber 1. Then, the film forming component in the gas is chemically vapor-deposited on the substrate 6. Reference numeral 8 is an exhaust port that communicates with an exhaust pump (not shown).

【0034】なお、以下の説明において括弧で示した符
号は図2のフローチャートに示した工程を示す符号であ
る。
In the following description, the reference numerals shown in parentheses are the reference numerals for the steps shown in the flow chart of FIG.

【0035】この実施例では、まず、窒化シリコンと、
アモルァスシリコン膜とを積層成膜する成膜室Iに、基
板を搬入し(1)、膜種Aの形成前に基板及び成膜室を
洗浄化し、さらに、放電を安定させるためにモノシラン
を含まない放電用ガスA(窒素ガス)のみを導入、調圧
(100〜300Pa)して所定のプラズマ放電が可能
な圧力状態とした(2)。
In this embodiment, first, silicon nitride and
The substrate is carried into a film forming chamber I for laminating and depositing an amorphous silicon film (1), the substrate and the film forming chamber are cleaned before the film type A is formed, and monosilane is added to stabilize the discharge. Only the discharge gas A (nitrogen gas) containing no gas was introduced, and the pressure was adjusted (100 to 300 Pa) so that a predetermined plasma discharge was possible (2).

【0036】このとき、上記圧力状態を維持するまでに
30秒を必要とした。なお、ガス導入には、流量制御機
構を使用し、調圧には自動スロットバルブを使用した
(2)。次に、高周波電源から上部電極2に高周波電力
を印加し、基板を保持した下部電極3との間に放電を開
始させ(3)、プラズマ放電が安定するまで10秒間間
放置した後、窒化シリコン膜の形成に必要な反応ガスA
(モノシラン、窒素ガス)を60秒間導入して、基板上
へ窒化シリコン膜の薄膜を400nmの厚さに堆積させ
た(4)。
At this time, it took 30 seconds to maintain the above pressure state. A flow rate control mechanism was used for gas introduction, and an automatic slot valve was used for pressure regulation (2). Next, high-frequency power is applied from the high-frequency power source to the upper electrode 2 to start discharge between the lower electrode 3 holding the substrate (3) and leave for 10 seconds until the plasma discharge stabilizes, and then silicon nitride. Reaction gas A required for film formation
(Monosilane, nitrogen gas) was introduced for 60 seconds to deposit a thin film of a silicon nitride film on the substrate to a thickness of 400 nm (4).

【0037】この後、材料ガスAの導入を停止させて基
板上への窒化シリコンの堆積を終了させると同時に
(5)、アモルファスシリコン膜の形成前に放電を安定
させるため、放電状態を持続させたまま、材料ガスB
(モノシラン)の構成元素ガスである水素ガス(放電用
ガスB)の導入、調圧を行った。(6)。この時、必要
に応じて電極板への印加電力、調圧設定値、電極間距離
設定の変更を行うようにしてもよい。アモルファスシリ
コンを連続的に堆積させるには、調圧設定値を150〜
300Paとすることが望ましい。
After that, the introduction of the material gas A is stopped to finish the deposition of silicon nitride on the substrate (5), and at the same time, the discharge state is maintained in order to stabilize the discharge before the formation of the amorphous silicon film. As it is, material gas B
Hydrogen gas (discharge gas B), which is a constituent element gas of (monosilane), was introduced and pressure was adjusted. (6). At this time, the power applied to the electrode plate, the pressure adjustment set value, and the interelectrode distance setting may be changed as necessary. To continuously deposit amorphous silicon, adjust the pressure setting value to 150-
It is desirable that the pressure is 300 Pa.

【0038】10秒間の放電の後、材料ガスB(モノシ
ラン)の導入を開始し(7)、60秒間放電を続けて3
00nmの膜厚のアモルファスシリコンを堆積させた。
After the discharge for 10 seconds, the introduction of the material gas B (monosilane) was started (7), and the discharge was continued for 60 seconds to 3
Amorphous silicon with a film thickness of 00 nm was deposited.

【0039】この後、高周波電力源からの電力供給を停
止して放電停止させ、同時に材料ガスBの供給を停止さ
せてアモルファスシリコン膜の基板上への堆積を停止さ
せた(8)。ここで、成膜室内を到達真空度が中真空の
例えば10Pa以下となるまで成膜後排気を行い
(9)、成膜室から基板を搬出する(10)。なお、成
膜後排気に要する時間は十分な排気能力を有するドライ
ポンプを使用して10秒である。
After that, the power supply from the high-frequency power source was stopped to stop the discharge, and at the same time, the supply of the material gas B was stopped to stop the deposition of the amorphous silicon film on the substrate (8). Here, the film is evacuated after the film formation until the ultimate vacuum reaches, for example, 10 Pa or less of the medium vacuum in the film formation chamber (9), and the substrate is unloaded from the film formation chamber (10). The time required for evacuation after film formation is 10 seconds using a dry pump having a sufficient evacuation capacity.

【0040】以上のように、この実施例の成膜方法によ
れば、従来の成膜方法では成膜室2個を必要とし、84
0秒を要していたのが成膜室1個のみで連続的に成膜が
可能であり、成膜に必要な合計時間を180秒とするこ
とができた。
As described above, according to the film forming method of this embodiment, the conventional film forming method requires two film forming chambers.
It took 0 seconds to perform continuous film formation in only one film forming chamber, and the total time required for film formation could be 180 seconds.

【0041】また、この実施例では、モノシランを含ま
ないガス中の放電時間を10秒以上に設定することによ
り、常に不純物の影響を最低限に維持、管理することが
できた。
Further, in this example, the discharge time in the gas containing no monosilane was set to 10 seconds or more, so that the influence of impurities could always be kept to a minimum and managed.

【0042】また、上記のように放電(プラズマ状態)
を安定させた後にモノシランを導入するので、図7に示
した初期プラズマ状態での成膜形成はなく、良好な初期
堆積の膜質が得られた。
Further, as described above, discharge (plasma state)
Since the monosilane was introduced after the stabilization, the film formation was not performed in the initial plasma state shown in FIG. 7, and good initial deposition film quality was obtained.

【0043】したがって、この実施例の方法によれば、
堆積膜の界面膜質が良好となり、良好な特性の薄膜トラ
ンジスタを得ることができる。
Therefore, according to the method of this embodiment,
The quality of the interfacial film of the deposited film becomes good, and a thin film transistor with good characteristics can be obtained.

【0044】この実施例では、窒化シリコンとアモルフ
ァスシリコンの成膜を単一の成膜室によって行っている
が、上記実施例と同様の手順によって、単一の成膜室に
よる3種以上の薄膜の連続形成が可能である。なお、こ
のように多種の薄膜を連続形成する場合には、一つの薄
膜の成膜後に異種の薄膜の成膜に先立って、放電を一旦
停止させてもよく、必要に応じて排気を実施してもよ
い。
In this embodiment, the film formation of silicon nitride and amorphous silicon is carried out in a single film forming chamber, but by the same procedure as in the above embodiment, three or more thin films in a single film forming chamber are formed. Can be continuously formed. Note that in the case of continuously forming various thin films in this way, the discharge may be temporarily stopped after the formation of one thin film and prior to the formation of a different type of thin film. May be.

【0045】なお、放電用ガスによる放電と反応ガスに
よる放電は1秒以内であれば間欠してもよい。また、高
周波電力はパルス状間欠電力であってもよい。
The discharge with the discharge gas and the discharge with the reaction gas may be intermittent within 1 second. Further, the high frequency power may be pulsed intermittent power.

【0046】要するに、この実施例は複数成膜を同じ成
膜室にて実施し、放電用ガスとして薄膜形成用反応ガス
の内、成膜に寄与しない放電用ガスを導入し調圧後、プ
ラズマ状態にし、被形成面を清浄化し、この清浄放電用
ガスを引続いて成膜用反応ガスの一部として使用するも
のである。
In summary, in this embodiment, a plurality of film formations are carried out in the same film formation chamber, and a discharge gas that does not contribute to film formation is introduced as a discharge gas among the thin film forming reaction gases, and the plasma is adjusted after the pressure adjustment. In this state, the surface to be formed is cleaned, and this clean discharge gas is subsequently used as a part of the film forming reaction gas.

【0047】この実施例では、薄膜の形成以前にモノシ
ラン以外のそれ自体では薄膜形成能のない放電用ガスの
放電を行い、所定の時間経過後に放電を継続させたまま
モノシランを放電空間中に導入して、薄膜の形成を開始
させるようにしたから、放電開始の時点において基板は
活性化された雰囲気に曝されることとなり、成膜前後に
おいて広域ターボ分子ポンプによる高真空排気を行う必
要はなく、清浄な雰囲気中での薄膜形成を行うことがで
き、短時間に薄膜形成の初期段階における不純物混入の
ない良好な薄膜を形成し得る。すなわち、成膜室内は数
Pa〜300Pa程度の中真空に維持されればよく、高
真空に到達可能なポンプが不要であり、ドライポンプ等
による排気系で足りる。
In this embodiment, a discharge gas other than monosilane, which is not capable of forming a thin film by itself, is discharged before the thin film is formed, and after a predetermined time elapses, monosilane is introduced into the discharge space while continuing the discharge. Since the thin film formation is started, the substrate is exposed to the activated atmosphere at the time of starting the discharge, and it is not necessary to perform high vacuum exhaust by the wide area turbo molecular pump before and after the film formation. It is possible to form a thin film in a clean atmosphere, and it is possible to form a good thin film in a short time without inclusion of impurities in the initial stage of thin film formation. That is, the film forming chamber may be maintained at a medium vacuum of several Pa to 300 Pa, a pump capable of reaching a high vacuum is unnecessary, and an exhaust system such as a dry pump is sufficient.

【0048】また、従来の薄膜形成法においては、40
0nm膜厚の窒化シリコン薄膜形成に120秒、300
nm膜厚のアモルファスシリコン薄膜形成に360秒を
要していたのに対して、それぞれが60秒でよく生産性
が向上された。すなわち、本発明によれば安定なプラズ
マ状態から堆積が開始されるので堆積初期の膜質とその
後の膜質とが同一となるので実質的に膜の成長速度を向
上させることが可能となる。また、膜厚の制御にはモノ
シランの供給時間を管理するだけで良好な膜厚の再現性
が得られる。本実施例により薄膜トランジスタを製造す
る場合には、従来の2成膜室使用の薄膜形成法において
840秒を要していたのに対して、1成膜室使用では1
80秒ですむことになる。
Further, in the conventional thin film forming method, 40
120 seconds for forming a 0 nm thick silicon nitride thin film, 300
While it took 360 seconds to form the amorphous silicon thin film having a thickness of nm, the productivity was well improved in 60 seconds in each case. That is, according to the present invention, since the deposition is started from a stable plasma state, the film quality at the initial stage of deposition and the film quality after that are the same, so that it is possible to substantially improve the growth rate of the film. Further, in controlling the film thickness, good reproducibility of the film thickness can be obtained only by controlling the supply time of monosilane. In the case of manufacturing a thin film transistor according to this embodiment, it takes 840 seconds in the conventional thin film forming method using two film forming chambers, whereas it takes 1 time in using one film forming chamber.
It only takes 80 seconds.

【0049】実施例2 図1に示された平行平板電極型CVD装置を用いて、37
0 mm×470 mmのガラス基板上に、表1に示す成膜条
件及び公知のエッチング技術を用いて、図3に示すチャ
ネルエッチングTFT(逆スタガ型)を製造した。
Example 2 Using the parallel plate electrode type CVD apparatus shown in FIG.
A channel etching TFT (inverted stagger type) shown in FIG. 3 was manufactured on a 0 mm × 470 mm glass substrate using the film forming conditions shown in Table 1 and a known etching technique.

【0050】[0050]

【表1】 図3において、10はガラス基板、11はメタル、12
はゲート窒化シリコン膜、13はアモルファスシリコン
膜、14はドープトアモルファスシリコン膜、15は窒
化シリコン膜である。この、実施例ではゲート窒化シリ
コン膜−アモルファスシリコン膜−n+ シリコン膜の成
膜に本発明が用いられている。
[Table 1] In FIG. 3, 10 is a glass substrate, 11 is a metal, and 12
Is a gate silicon nitride film, 13 is an amorphous silicon film, 14 is a doped amorphous silicon film, and 15 is a silicon nitride film. In this embodiment, the present invention is used for forming a gate silicon nitride film-amorphous silicon film-n + silicon film.

【0051】実施例3 図1に示された平行平板電極型CVD装置を用いて、37
0 mm×470 mmのガラス基板上に、表2に示す成膜条
件及び公知のエッチング技術を用いて、図4に示すチャ
ネル絶縁型TFT(逆スタガ型)を製造した。
Example 3 Using the parallel plate electrode type CVD apparatus shown in FIG.
On a 0 mm × 470 mm glass substrate, the channel insulation type TFT (inverted stagger type) shown in FIG. 4 was manufactured under the film forming conditions shown in Table 2 and a known etching technique.

【0052】[0052]

【表2】 図4において、15は窒化シリコン膜であり、図3と同
一符号で示された他の部分は図3の各部と同一部分であ
る。この、実施例ではゲート窒化シリコン膜、ゲート窒
化シリコン膜−アモルファスシリコン膜−チャネル絶縁
窒化シリコン膜の成膜に本発明が用いられている。
[Table 2] In FIG. 4, reference numeral 15 is a silicon nitride film, and the other portions indicated by the same reference numerals as those in FIG. 3 are the same portions as those in FIG. In this embodiment, the present invention is used for forming a gate silicon nitride film and a gate silicon nitride film-amorphous silicon film-channel insulating silicon nitride film.

【0053】実施例4 図1に示された平行平板電極型CVD装置を用いて、37
0 mm×470 mmのガラス基板上に、表3に示す成膜条
件及び公知のエッチング技術を用いて、図5に示す正ス
タガ型TFTを製造した。
Example 4 Using the parallel plate electrode type CVD apparatus shown in FIG.
The positive staggered TFT shown in FIG. 5 was manufactured on a 0 mm × 470 mm glass substrate using the film forming conditions shown in Table 3 and a known etching technique.

【0054】[0054]

【表3】 図5において、16は多結晶シリコン膜であり、図3と
同一符号で示された他の部分は図3の各部と同一部分で
ある。
[Table 3] In FIG. 5, reference numeral 16 is a polycrystalline silicon film, and the other parts indicated by the same reference numerals as those in FIG. 3 are the same parts as those in FIG.

【0055】なお、この実施例では16を多結晶シリコ
ン膜としたがアモルファスシリコンとすることもでき
る。この、実施例では多結晶シリコン膜−窒化シリコン
膜の成膜に本発明が用いられている。
In this embodiment, 16 is a polycrystalline silicon film, but it may be amorphous silicon. In this embodiment, the present invention is used for forming a polycrystalline silicon film-silicon nitride film.

【0056】[0056]

【発明の効果】本発明の薄膜形成法によれば、被処理基
体や成膜室内は、放電開始の時点において活性化された
雰囲気にさらされて清浄化されるので、成膜前後に清浄
化のために広域ターボ分子ポンプで高真空排気を行う必
要がなくなり、短時間で薄膜形成の初期段階における不
純物混入のない良好な薄膜を形成することができる。
According to the thin film forming method of the present invention, the substrate to be treated and the film forming chamber are exposed to the activated atmosphere at the time of the start of discharge and cleaned, so that the film can be cleaned before and after the film formation. Therefore, it is not necessary to perform high vacuum exhaustion with a wide area turbo molecular pump, and it is possible to form a good thin film free from impurities in the initial stage of thin film formation in a short time.

【0057】また、成膜室内は数Pa〜300Pa程度
の真空に維持されればよいから、高真空に到達可能なポ
ンプが不要となって、装置コストの低下、装置の小型
化、生産性の向上を図ることができる。
Further, since it is sufficient to maintain a vacuum of about several Pa to 300 Pa in the film forming chamber, a pump capable of reaching a high vacuum is unnecessary, which lowers the apparatus cost, downsizes the apparatus, and improves productivity. It is possible to improve.

【0058】さらに、放電用ガスとして、それ自体では
膜形成能のないガスを使用しプラズマ状態を持続したま
ま反応ガスの供給に切換えるので、放電初期のプラズマ
不安定の状態での薄膜形成はなされず、膜の形成の堆積
初期とその後とで等質均一の成膜を行うことができる。
さらに、また、放電用ガスとして反応ガスを構成する成
分ガス等を使用するので、膜中に取り込まれても特性に
影響を与えることはなく、特に、半導体薄膜の界面を水
素ガスプラズマで処理した場合には界面にSi−Hが形
成されて、かえって得られる半導体装置の特性が改善さ
れるという利点がある。
Further, since a gas which has no film forming ability by itself is used as the discharge gas and the supply of the reaction gas is switched while maintaining the plasma state, thin film formation is performed in the plasma unstable state at the initial stage of discharge. Instead, uniform film formation can be performed at the initial stage of film formation and thereafter.
Furthermore, since the component gas that constitutes the reaction gas is used as the discharge gas, it does not affect the characteristics even if it is taken into the film. Particularly, the interface of the semiconductor thin film is treated with hydrogen gas plasma. In that case, there is an advantage that Si—H is formed at the interface and the characteristics of the semiconductor device obtained on the contrary are improved.

【0059】さらに、また、本発明によれば、単一の成
膜室により多種の積層された薄膜を連続的に形成するこ
とが可能であり、従来の薄膜形成法と比較して、効率良
く成膜を行うことができ、生産性を向上させることがで
きる。この場合、薄膜形成後の基板は常に活性化された
ガス雰囲気内に置かれるので、単一の成膜室内で異なる
複数膜種の成膜を連続的に行っても、各膜種への不純物
の混入はなく、良好な界面分離特性を得ることができ
る。
Furthermore, according to the present invention, it is possible to continuously form various kinds of laminated thin films in a single film forming chamber, which is more efficient than the conventional thin film forming method. A film can be formed and productivity can be improved. In this case, since the substrate after the thin film formation is always placed in an activated gas atmosphere, even if a plurality of different film types are continuously formed in a single film forming chamber, impurities in each film type are not formed. It is possible to obtain good interfacial separation characteristics without the inclusion of

【0060】また、膜厚の制御には薄膜の形成に関与す
るガスの供給時間を管理するだけで済むから膜厚の再現
性が向上される。
Further, the film thickness can be controlled only by controlling the supply time of the gas involved in forming the thin film, so that the reproducibility of the film thickness is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いたCVD装置を概念的に
示す図。
FIG. 1 is a diagram conceptually showing a CVD apparatus used in an example of the present invention.

【図2】本発明の一実施例のフローチャート。FIG. 2 is a flowchart of an embodiment of the present invention.

【図3】本発明を用いて製作されたチャネルエッチング
型のTFTを模式的に示す図。
FIG. 3 is a diagram schematically showing a channel etching type TFT manufactured by using the present invention.

【図4】本発明を用いて製作されたチャネル絶縁型のT
FTを模式的に示す図。
FIG. 4 is a channel-insulated T manufactured using the present invention.
The figure which shows FT typically.

【図5】本発明を用いて製作された他のチャネルエッチ
ング型のTFTを模式的に示す図。
FIG. 5 is a diagram schematically showing another channel etching type TFT manufactured by using the present invention.

【図6】従来の平行平板プラズマCVD法による薄膜形
成法のフローチャート。
FIG. 6 is a flowchart of a conventional thin film forming method by a parallel plate plasma CVD method.

【図7】電力印加後の反射波の変化を示すグラフ。FIG. 7 is a graph showing changes in reflected waves after power is applied.

【符号の説明】[Explanation of symbols]

1…成膜室、2…上部電極、3…下部電極、4…加熱ヒ
ータ、5…高周波電源 6…基板、7…ガス導入口、8…排気口、10…ガラス
基板、11…メタル、12…ゲート窒化シリコン膜、1
3…アモルファスシリコン膜、14…ドープトアモルフ
ァスシリコン膜、15…窒化シリコン膜 16…多結晶シリコン膜
DESCRIPTION OF SYMBOLS 1 ... Film-forming chamber, 2 ... Upper electrode, 3 ... Lower electrode, 4 ... Heater, 5 ... High frequency power supply 6 ... Substrate, 7 ... Gas inlet, 8 ... Exhaust port, 10 ... Glass substrate, 11 ... Metal, 12 ... Gate silicon nitride film, 1
3 ... Amorphous silicon film, 14 ... Doped amorphous silicon film, 15 ... Silicon nitride film 16 ... Polycrystalline silicon film

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年3月6日[Submission date] March 6, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0052[Correction target item name] 0052

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0052】[0052]

【表2】 図4において、16はチャネル絶縁窒化シリコン膜であ
り、図3と同一符号で示された他の部分は図3の各部と
同一部分である。この、実施例ではゲート窒化シリコン
膜11、ゲート窒化シリコン膜12−アモルファスシリ
コン膜13−チャネル絶縁窒化シリコン膜14の成膜に
本発明が用いられている。
[Table 2] In FIG. 4, reference numeral 16 is a channel insulating silicon nitride film, and the other portions indicated by the same reference numerals as those in FIG. 3 are the same portions as the respective portions in FIG. In this embodiment, the present invention is used for forming the gate silicon nitride film 11, the gate silicon nitride film 12, the amorphous silicon film 13 and the channel insulating silicon nitride film 14.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ガス導入口を有する真空容器内に被処理
基体を配置し、前記ガス導入口から前記真空容器内に1
種または2種以上の反応ガスを導入しつつ該反応ガスに
高周波電力を印加することによりプラズマを発生させて
前記被処理基板上に前記反応ガスの反応生成物からなる
薄膜を形成させる方法において、 前記反応ガスの導入に先だって、それ自体では実質的に
薄膜形成能を有しない前記反応ガスを構成する成分ガ
ス、または前記2種以上の反応ガスに包含される1種以
上のガスであってそれ自体では実質的に薄膜形成能を有
しないガスからなる放電用ガスを導入しつつ該放電用ガ
スに高周波電力を印加してプラズマを発生させて前処理
を行い、しかる後実質的にプラズマ状態を維持したまま
前記放電用ガスに代え前記反応ガスを導入して前記被処
理基板上に薄膜を形成させることを特徴とする薄膜形成
法。
1. A substrate to be treated is placed in a vacuum container having a gas inlet, and 1 is placed in the vacuum container through the gas inlet.
A method of forming a thin film of a reaction product of the reaction gas on the substrate to be processed by generating plasma by applying high-frequency power to the reaction gas while introducing one kind or two or more kinds of reaction gas, Prior to the introduction of the reaction gas, a component gas constituting the reaction gas which does not substantially have the ability to form a thin film by itself, or one or more gases contained in the two or more reaction gases, While introducing a discharge gas consisting of a gas that does not substantially have the ability to form a thin film by itself, a high-frequency power is applied to the discharge gas to generate plasma to perform pretreatment, and then a substantially plasma state is set. A thin film forming method, characterized in that the reaction gas is introduced in place of the discharge gas while being maintained to form a thin film on the substrate to be processed.
【請求項2】 ガス導入口を有し内部に平行平板電極を
有する真空容器内の前記平行平板電極の一方の電極に被
処理基体を配置し、前記被処理基板上に複数層の薄膜を
形成する薄膜形成方法において、前記ガス導入口から、
放電用ガスを導入しつつ前記平行平板電極に高周波電力
を印加してプラズマ放電を起こさせる工程と、実質的に
前記放電を維持したまま前記放電用ガスに代え反応ガス
を導入して前記基板上に反応ガスの反応生成物からなる
薄膜を形成させる工程を具備し前記薄膜を形成させる工
程の少なくとも1つの工程が、1種または複数種の反応
ガスを用いて反応生成物からなる半導体薄膜を形成する
工程であり、かつ、この工程の直前に導入される放電用
ガスが、それ自体ではプラズマ放電下で実質的に薄膜形
成能を有しない前記反応ガスを構成する成分ガス、また
は前記2種以上の反応ガスに包含される1種以上のガス
であってそれ自体ではプラズマ放電下で実質的に薄膜形
成能を有しないガスからなることを特徴とする薄膜形成
方法。
2. A substrate to be processed is arranged on one of the parallel plate electrodes in a vacuum container having a gas inlet and a parallel plate electrode inside, and a plurality of thin films are formed on the substrate to be processed. In the thin film forming method to do, from the gas inlet,
A step of applying high-frequency power to the parallel plate electrodes while introducing a discharge gas to cause plasma discharge, and introducing a reaction gas instead of the discharge gas while substantially maintaining the discharge on the substrate A step of forming a thin film of a reaction product of a reaction gas, wherein at least one step of forming the thin film forms a semiconductor thin film of a reaction product using one or more kinds of reaction gases. The gas for discharge introduced immediately before this step is a component gas constituting the above reaction gas which does not substantially have the ability to form a thin film under plasma discharge by itself, or two or more kinds thereof. The method for forming a thin film, characterized in that the thin film forming method comprises one or more kinds of gas included in the reaction gas of 1., which itself has substantially no ability to form a thin film under plasma discharge.
【請求項3】 前記半導体薄膜がシリコンと非酸素元素
からなるものであって、前記放電用ガスが前記非酸素ガ
スからなることを特徴とする請求項1または2記載の薄
膜形成方法。
3. The thin film forming method according to claim 1, wherein the semiconductor thin film is made of silicon and a non-oxygen element, and the discharge gas is made of the non-oxygen gas.
【請求項4】 前記半導体薄膜がシリコンからなり、前
記放電ガスが水素であることを特徴とする請求項2記載
の薄膜形成法。
4. The thin film forming method according to claim 2, wherein the semiconductor thin film is made of silicon and the discharge gas is hydrogen.
【請求項5】 前記放電用ガスを導入しているときのプ
ラズマ放電の時間が前記反応ガスを導入しているときの
プラズマ放電時間を1としたとき、0.1〜0.4の範
囲であることを特徴とする請求項1乃至4のいずれか1
記載の薄膜形成法。
5. A plasma discharge time when introducing the discharge gas is within a range of 0.1 to 0.4 when the plasma discharge time when introducing the reaction gas is 1. Any one of claims 1 to 4 characterized in that
The thin film forming method described.
【請求項6】 実質的に、プラズマ放電を維持したまま
放電用ガスに代え反応ガスを導入するに際し、ガス圧及
び放電電力を一定にした状態で反応ガスの導入を行うこ
とを特徴とする請求項1乃至5のいずれか1記載の薄膜
形成法。
6. The reaction gas is introduced with the gas pressure and the discharge power kept constant when the reaction gas is introduced instead of the discharge gas while maintaining the plasma discharge. Item 6. A thin film forming method according to any one of items 1 to 5.
【請求項7】 前記複数層の薄膜が窒化シリコン−アモ
ルファスシリコンからなる薄膜であることを特徴とする
請求項2乃至6のいずれか1記載の薄膜形成法。
7. The thin film forming method according to claim 2, wherein the plurality of thin films are thin films made of silicon nitride-amorphous silicon.
【請求項8】 前記複数層の薄膜が、窒化シリコン−ア
モルファスシリコン−窒化シリコンからなる薄膜である
ことを特徴とする請求項2乃至6のいずれか1記載の薄
膜形成方法。
8. The thin film forming method according to claim 2, wherein the plurality of thin films are thin films made of silicon nitride-amorphous silicon-silicon nitride.
【請求項9】 前記複数層の薄膜が、アモルファスシリ
コンTFT(逆スタガ型)を構成する酸化シリコン−窒
化シリコン−アモルファスシリコン−窒化シリコン薄膜
である請求項8記載の薄膜形成法。
9. The method for forming a thin film according to claim 8, wherein the thin films of the plurality of layers are silicon oxide-silicon nitride-amorphous silicon-silicon nitride thin films forming an amorphous silicon TFT (inverted stagger type).
【請求項10】 反応ガスがシランガスと、水素ガス、
窒素ガス及びアンモニアガスから選ばれた1種または2
種以上からなり、放電用ガスが、水素ガス、窒素ガス及
びアンモニアガスから選ばれた1種または2種以上から
なる請求項2乃至9のいずれか1記載の薄膜形成方法。
10. The reaction gas is silane gas, hydrogen gas,
One or two selected from nitrogen gas and ammonia gas
10. The method for forming a thin film according to claim 2, wherein the discharge gas comprises one or more kinds, and the discharge gas includes one kind or two or more kinds selected from hydrogen gas, nitrogen gas and ammonia gas.
JP32555494A 1993-12-27 1994-12-27 Thin film formation method Expired - Fee Related JP3529466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32555494A JP3529466B2 (en) 1993-12-27 1994-12-27 Thin film formation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32917193 1993-12-27
JP5-329171 1993-12-27
JP32555494A JP3529466B2 (en) 1993-12-27 1994-12-27 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH07235506A true JPH07235506A (en) 1995-09-05
JP3529466B2 JP3529466B2 (en) 2004-05-24

Family

ID=26571860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32555494A Expired - Fee Related JP3529466B2 (en) 1993-12-27 1994-12-27 Thin film formation method

Country Status (1)

Country Link
JP (1) JP3529466B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723660B1 (en) 1999-03-18 2004-04-20 Kabushiki Kaisha Toshiba Thin-film forming apparatus and thin-film forming method
JP2006037229A (en) * 2004-07-23 2006-02-09 Applied Materials Inc Pecvd film having improved deposition repeatability
JP2006339300A (en) * 2005-05-31 2006-12-14 Kyocera Corp Solar cell element and manufacturing method thereof
WO2010100782A1 (en) * 2009-03-06 2010-09-10 三菱重工業株式会社 Method of producing photoelectric conversion device, and film-forming apparatus
JP2012015403A (en) * 2010-07-02 2012-01-19 Semiconductor Energy Lab Co Ltd Film formation method and manufacturing method of thin film transistor
JP2013515376A (en) * 2009-12-22 2013-05-02 アプライド マテリアルズ インコーポレイテッド PECVD (plasma chemical vapor deposition) multi-step process using continuous plasma
WO2015136852A1 (en) * 2014-03-11 2015-09-17 東京エレクトロン株式会社 Plasma processing device and film formation method
JP2016174097A (en) * 2015-03-17 2016-09-29 株式会社東芝 Method for manufacturing semiconductor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723660B1 (en) 1999-03-18 2004-04-20 Kabushiki Kaisha Toshiba Thin-film forming apparatus and thin-film forming method
JP2006037229A (en) * 2004-07-23 2006-02-09 Applied Materials Inc Pecvd film having improved deposition repeatability
JP2006339300A (en) * 2005-05-31 2006-12-14 Kyocera Corp Solar cell element and manufacturing method thereof
WO2010100782A1 (en) * 2009-03-06 2010-09-10 三菱重工業株式会社 Method of producing photoelectric conversion device, and film-forming apparatus
JP2013515376A (en) * 2009-12-22 2013-05-02 アプライド マテリアルズ インコーポレイテッド PECVD (plasma chemical vapor deposition) multi-step process using continuous plasma
JP2012015403A (en) * 2010-07-02 2012-01-19 Semiconductor Energy Lab Co Ltd Film formation method and manufacturing method of thin film transistor
WO2015136852A1 (en) * 2014-03-11 2015-09-17 東京エレクトロン株式会社 Plasma processing device and film formation method
JP2015188061A (en) * 2014-03-11 2015-10-29 東京エレクトロン株式会社 Plasma processing device and film deposition method
JP2016174097A (en) * 2015-03-17 2016-09-29 株式会社東芝 Method for manufacturing semiconductor

Also Published As

Publication number Publication date
JP3529466B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
KR100241817B1 (en) Thin film forming method
US4500563A (en) Independently variably controlled pulsed R.F. plasma chemical vapor processing
KR100272891B1 (en) Low temperature high pressure silicon deposition method
US20100221895A1 (en) Surface treatment apparatus and surface treatment method
JPH0684888A (en) Formation of insulation film
JPH03155625A (en) Manufacture of plasma cvd film
JP3529466B2 (en) Thin film formation method
JP4845269B2 (en) Semiconductor wafer processing system, computer readable medium, and semiconductor process chamber cleaning method
JPH04277628A (en) Removal of unreacted gas and reaction-suppressing apparatus
JP2004140292A (en) Forming method of dielectric film
JPH06172990A (en) Method for forming thin film and device therefor
JP3224469B2 (en) Thin film formation method and apparatus
JP4059792B2 (en) Semiconductor manufacturing method
US7972961B2 (en) Purge step-controlled sequence of processing semiconductor wafers
JP3924183B2 (en) Plasma CVD film forming method
JPH11131239A (en) Formation of plasma cvd coating film and device therefor
JP2001144088A (en) Method of manufacturing semiconductor
JP3235095B2 (en) Method of forming silicon oxide film
WO2023008295A1 (en) Method for producing group iii-nitride semiconductor
JP2895981B2 (en) Silicon oxide film forming method
JP2646582B2 (en) Plasma CVD equipment
KR20000076891A (en) Thin film forming apparatus and thin film forming method
JPH07235530A (en) Formation of insulating film
JP3272187B2 (en) Apparatus and method for forming semiconductor thin film
JPS6250468A (en) Plasma vapor growth method for thin film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees