JPH07231082A - Solid-state image pick-up device - Google Patents

Solid-state image pick-up device

Info

Publication number
JPH07231082A
JPH07231082A JP6021320A JP2132094A JPH07231082A JP H07231082 A JPH07231082 A JP H07231082A JP 6021320 A JP6021320 A JP 6021320A JP 2132094 A JP2132094 A JP 2132094A JP H07231082 A JPH07231082 A JP H07231082A
Authority
JP
Japan
Prior art keywords
region
photoelectric conversion
vertical
type
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6021320A
Other languages
Japanese (ja)
Inventor
Kazutoshi Nakajima
和敏 中島
Yoichi Nagano
洋一 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6021320A priority Critical patent/JPH07231082A/en
Publication of JPH07231082A publication Critical patent/JPH07231082A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reduce the amount of saturation signal at a vertical transfer region consisting of CCD and to reduce the occupied area of the vertical transfer region consisting of the CCD by forming a horizontal or vertical separation region or an overflow drain provided at the periphery of a photoelectric conversion region. CONSTITUTION:A plurality of photoelectric conversion regions 1 are provided in a matrix. A vertical separation region 2 is laid out between the vertical directions of the photoelectric conversion region 1. Also, a vertical transfer region 3 consisting of a CCD is laid out along the row direction of the photoelectric conversion region 1. namely the vertical direction and via a gate region 5. Then, a horizontal separation region 4 is laid out continuously in the vertical direction between the vertical transfer region 3 and the photoelectric conversion region 1 along the vertical transfer region 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はビデオカメラ等に使用し
て好適な固体撮像素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device suitable for use in a video camera or the like.

【0002】[0002]

【従来の技術】従来のビデオカメラに使用されている固
体撮像素子の要部の平面図を図7に示す。この図7につ
き説明するに、1はマトリックス状に複数個例えば41
万個が配された光電変換領域、2はこの光電変換領域1
の垂直方向間に配された垂直分離領域、3はこの光電変
換領域1の列方向即ち垂直方向に沿い且つゲート領域5
を介して配されたCCDより成る垂直転送領域、4はこ
の垂直転送領域3に沿って、この垂直転送領域3と光電
変換領域1と間に垂直方向に連続的に配された水平分離
領域を示す。
2. Description of the Related Art FIG. 7 is a plan view of a main part of a solid-state image pickup device used in a conventional video camera. Referring to FIG. 7, 1 is a plurality of matrix elements, for example 41
Photoelectric conversion area where millions are arranged, 2 is this photoelectric conversion area 1
The vertical separation regions 3 arranged between the vertical regions of the photoelectric conversion regions 1 are arranged in the column direction of the photoelectric conversion regions 1, that is, in the vertical direction, and the gate regions 5 are formed.
A vertical transfer region 4 composed of a CCD arranged via a horizontal separation region 4 arranged continuously along the vertical transfer region 3 in the vertical direction between the vertical transfer region 3 and the photoelectric conversion region 1. Show.

【0003】図8はこの図7の水平方向のA−A線断面
図を示し、図9はこの図7の垂直方向のB−B線断面図
である。この図8及び図9を参照して従来の固体撮像素
子の例を更に説明する。
FIG. 8 is a sectional view taken along the line AA in the horizontal direction of FIG. 7, and FIG. 9 is a sectional view taken along the line BB of the vertical direction in FIG. An example of the conventional solid-state imaging device will be further described with reference to FIGS. 8 and 9.

【0004】図8及び図9において、6はN型半導体基
板を示し、このN型半導体基板6上の全域に亘ってP-
濃度のP型ウェル7を設ける。図7で示した光電変換領
域1は、このP型ウェル7上に光の強さに応じた電荷を
蓄積するN型領域1Nを形成すると共にこのN型領域1
N上にP+ 濃度のP型領域1Pを形成したものである。
[0004] In FIGS. 8 and 9, 6 denotes an N-type semiconductor substrate, over the entire region on the N-type semiconductor substrate 6 P -
A P-type well 7 having a concentration is provided. In the photoelectric conversion region 1 shown in FIG. 7, an N-type region 1N for accumulating charges according to the intensity of light is formed on the P-type well 7 and the N-type region 1 is formed.
A P-type region 1P having a P + concentration is formed on N.

【0005】この例においては縦型のオーバーフロード
レインを構成しており、この光電変換領域1の深さ方向
のポテンシャルは図10の曲線8に示す如く、表面のP
型領域1Pより電荷蓄積領域であるN型領域1Nで極小
値(φsens)まで下がり、P型ウェル7で極大となり、
深さ方向のバリア8aを形成し、ドレインを構成するN
型半導体基板6で所定電位まで下がる如きものであり、
蓄積電荷9がこの深さ方向のバリア8aを超えたとき
は、この超えた電荷はドレインを構成するN型半導体基
板6に流れ出る如くなされている。
In this example, a vertical overflow drain is formed, and the potential in the depth direction of this photoelectric conversion region 1 is P on the surface as shown by a curve 8 in FIG.
In the N-type region 1N, which is a charge storage region, lower than the type region 1P to a minimum value (φ sens ) and becomes maximum in the P-type well 7,
N forming a drain and forming a barrier 8a in the depth direction
Type semiconductor substrate 6 such that the potential drops to a predetermined potential,
When the accumulated charges 9 exceed the barrier 8a in the depth direction, the exceeded charges flow out to the N-type semiconductor substrate 6 forming the drain.

【0006】また、この光電変換領域1の垂直方向間に
配された垂直分離領域2は図9に示す如く、このP型ウ
ェル7上にP濃度のP型領域2Pを形成したものであ
る。この垂直分離領域2の深さ方向のポテンシャルは図
10の曲線10に示す如く、表面よりP型領域2P及び
P型ウェル7でこのポテンシャルが比較的高く、その後
N型半導体基板6で急に低下するものであり、この光電
変換領域1の垂直方向間を電荷的に分離する如くなされ
ている。
Further, as shown in FIG. 9, the vertical isolation region 2 arranged between the photoelectric conversion regions 1 in the vertical direction is formed by forming a P-type P-type region 2P on the P-type well 7. As shown by the curve 10 in FIG. 10, the potential of the vertical isolation region 2 in the depth direction is relatively higher in the P-type region 2P and the P-type well 7 than in the surface, and then sharply decreases in the N-type semiconductor substrate 6. The photoelectric conversion regions 1 are vertically separated from each other in terms of electric charge.

【0007】また光電変換領域1の列方向即ち垂直方向
に沿い且つゲート領域5を介して配されたCCDより成
る垂直転送領域3は図8に示す如く、垂直方向に沿って
このP型ウェル7上に所定幅のP濃度のP型領域3Pを
形成すると共にその上にN+濃度のN型領域3Nを形成
したものである。
Further, as shown in FIG. 8, the vertical transfer region 3 composed of CCDs arranged in the column direction of the photoelectric conversion regions 1, that is, in the vertical direction, and via the gate region 5, has the P-type well 7 formed in the vertical direction. A P-type region 3P having a P width and having a predetermined width is formed on the N-type region 3N having an N + concentration on the P-type region 3P.

【0008】また、ゲート領域5はこのP型ウェル7上
にN型半導体基板6と同濃度のN型領域5Nを形成する
と共にこのN型領域5N上にP- 濃度のP型領域5Pを
形成したもので、このゲート領域5上に設けられた電極
に所定の電圧を供給することにより、この光電変換領域
1のN型領域1Nに蓄積された信号電荷をこのゲート領
域5を通して垂直転送領域3のN型領域3Nに送出する
如くなされている。
Further, P on the N-type region 5N with the gate region 5 is formed an N-type region 5N the same concentration as the N-type semiconductor substrate 6 on the P-type well 7 - forming a concentration of P-type region 5P By supplying a predetermined voltage to the electrode provided on the gate region 5, the signal charge accumulated in the N-type region 1N of the photoelectric conversion region 1 is passed through the gate region 5 to the vertical transfer region 3 To the N-type region 3N.

【0009】またこの垂直転送領域3に沿って、この垂
直転送領域3と光電変換領域1と間に垂直方向に連続的
に配された水平分離領域4は、このP型ウェル7上に所
定幅のN型半導体基板6と同濃度のN型領域4Nを形成
すると共にこのN型領域4N上にP濃度のP型領域4P
を形成し、この光電変換領域1の水平方向間を電荷的に
分離する如くする。
A horizontal separation region 4 continuously arranged in the vertical direction between the vertical transfer region 3 and the photoelectric conversion region 1 along the vertical transfer region 3 has a predetermined width on the P-type well 7. An N-type region 4N having the same concentration as that of the N-type semiconductor substrate 6 is formed, and a P-type P-type region 4P having a P concentration is formed on the N-type region 4N.
Are formed, and the horizontal direction of the photoelectric conversion region 1 is electrically separated.

【0010】斯る上述の如き固体撮像素子においては、
複数の光電変換領域1により光電変換して蓄積された信
号電荷を所定タイミングでCCDより構成した垂直転送
領域3に送出し、この垂直転送領域3により順次垂直方
向に転送し、図示しないCCDより成る水平転送領域ま
で転送され、この水平転送領域の出力端より映像信号を
取り出す如くなされている。
In such a solid-state image sensor as described above,
Signal charges accumulated by photoelectric conversion by a plurality of photoelectric conversion regions 1 are sent to a vertical transfer region 3 constituted by a CCD at a predetermined timing, sequentially transferred in the vertical direction by the vertical transfer region 3, and constituted by a CCD (not shown). The video signal is transferred to the horizontal transfer area, and the video signal is taken out from the output terminal of the horizontal transfer area.

【0011】[0011]

【発明が解決しようとする課題】斯る従来の固体撮像素
子の光電変換領域1においては光電変換された蓄積電荷
9は深さ方向バリア8aまで蓄積される。この深さ方向
バリア8aまで蓄積された電荷量を飽和信号量Qsとい
い、この飽和信号量Qsは深さ方向バリア8aのポテン
シャルφOFBによって制御される。
In the photoelectric conversion region 1 of such a conventional solid-state image pickup device, photoelectrically accumulated charges 9 are accumulated up to the depth direction barrier 8a. The amount of charges accumulated up to the depth direction barrier 8a is called a saturation signal amount Qs, and this saturation signal amount Qs is controlled by the potential φOFB of the depth direction barrier 8a.

【0012】斯る従来の光電変換領域1の縦方向のオー
バーフロードレインでは、この光電変換領域1のN型領
域1Nに信号電荷が蓄積されると、この蓄積信号電荷の
影響により図10の曲線8の深さ方向のバリア8aが浅
くなり、飽和信号量Qsが大きくなるので、この光電変
換領域1の光量−出力信号特性は図11に示す如く、曲
線bに示す様に飽和信号量Qsで一定レベルになるべき
出力信号が、曲線aに示す如く増加していく。
In the conventional vertical overflow drain of the photoelectric conversion region 1, when signal charges are accumulated in the N-type region 1N of the photoelectric conversion region 1, the curve 8 of FIG. 10 is affected by the accumulated signal charges. Since the barrier 8a in the depth direction becomes shallow and the saturation signal amount Qs becomes large, the light amount-output signal characteristic of the photoelectric conversion region 1 is constant at the saturation signal amount Qs as shown by the curve b as shown in FIG. The output signal that should reach the level increases as shown by the curve a.

【0013】このため信号電荷を転送するCCDより成
る垂直転送領域3の飽和信号量Qvは大きな光量cの場
合の出力信号Qkneeまで蓄積転送できるように保証
する必要があり、この垂直転送領域3の占有面積がそれ
だけ大きくなる不都合があった。
Therefore, it is necessary to ensure that the saturation signal amount Qv of the vertical transfer area 3 composed of CCD for transferring the signal charge can be accumulated and transferred up to the output signal Qknee in the case of a large light quantity c. There is an inconvenience that the occupied area becomes so large.

【0014】本発明は斯る点に鑑み、このCCDより成
る垂直転送領域の占有面積を小さくできるようにするこ
とを目的とする。
In view of the above point, the present invention has an object to make it possible to reduce the occupied area of the vertical transfer region composed of this CCD.

【0015】[0015]

【課題を解決するための手段】本発明固体撮像素子は例
えば図1に示す如く複数の光電変換領域1と、この複数
の光電変換領域1の周辺に設けられた水平及び垂直分離
領域4及び2と、この光電変換領域1よりの信号電荷を
垂直方向に転送する垂直転送領域3とを有する固体撮像
素子において、この水平又は垂直分離領域4又は2にオ
ーバーフロードレインを形成したものである。
The solid-state image pickup device of the present invention is, for example, as shown in FIG. 1, a plurality of photoelectric conversion regions 1 and horizontal and vertical separation regions 4 and 2 provided around the plurality of photoelectric conversion regions 1. And a vertical transfer region 3 for vertically transferring the signal charges from the photoelectric conversion region 1, in the solid-state image pickup device, an overflow drain is formed in the horizontal or vertical separation region 4 or 2.

【0016】[0016]

【作用】本発明によれば光電変換領域1の周辺に設けら
れた水平又は垂直分離領域4又は2にオーバーフロード
レインを形成するようにしたので、光電変換領域1に信
号電荷が蓄積されても、飽和信号量Qsは一定であり、
CCDより成る垂直転送領域3の飽和信号量Qvを小さ
くでき、このCCDより成る垂直転送領域3の占有面積
を小さくすることができる。
According to the present invention, since the overflow drain is formed in the horizontal or vertical separation region 4 or 2 provided around the photoelectric conversion region 1, even if the signal charges are accumulated in the photoelectric conversion region 1, The saturation signal amount Qs is constant,
It is possible to reduce the saturation signal amount Qv of the vertical transfer area 3 including the CCD, and reduce the occupied area of the vertical transfer area 3 including the CCD.

【0017】[0017]

【実施例】以下図1、図2及び図7を参照して本発明固
体撮像素子の一実施例につき説明しよう。この図1及び
図2において、図9及び図8に対応するものには同一符
号を付す。本例は垂直分離領域2下にオーバーフロード
レインを構成したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the solid-state image pickup device of the present invention will be described below with reference to FIGS. 1, 2 and 7. 1 and 2, parts corresponding to those in FIGS. 9 and 8 are designated by the same reference numerals. In this example, an overflow drain is formed below the vertical isolation region 2.

【0018】本例の固体撮像素子の要部の平面図は図7
と同様であり、マトリックス状に複数個例えば41万個
の光電変換領域1を設け、この光電変換領域1の垂直方
向間に垂直分離領域2を配する。またこの光電変換領域
1の列方向即ち垂直方向に沿い且つゲート領域5を介し
てCCDより成る垂直転送領域3を配し、この垂直転送
領域3に沿って、この垂直転送領域3と光電変換領域1
と間に垂直方向に連続的に水平分離領域4を配する。
A plan view of the main part of the solid-state image sensor of this example is shown in FIG.
Similarly, a plurality of, for example, 410,000 photoelectric conversion regions 1 are provided in a matrix, and vertical separation regions 2 are arranged between the photoelectric conversion regions 1 in the vertical direction. Further, a vertical transfer area 3 composed of a CCD is arranged along the column direction, that is, the vertical direction of the photoelectric conversion area 1 and via a gate area 5, and along the vertical transfer area 3, the vertical transfer area 3 and the photoelectric conversion area 3 are arranged. 1
A horizontal separation region 4 is continuously arranged in the vertical direction between and.

【0019】この図7の水平方向のA−A線断面図であ
る図2は図8と略同様であるが、本例においては垂直方
向のB−B線断面図を図1に示す如く構成する。この図
1及び図2を参照して、本例の固体撮像素子を説明す
る。
2 which is a sectional view taken along the line AA in the horizontal direction of FIG. 7 is substantially the same as that shown in FIG. 8, but in this embodiment, a sectional view taken along the line BB in the vertical direction is constructed as shown in FIG. To do. The solid-state image sensor of this example will be described with reference to FIGS. 1 and 2.

【0020】本例においては、図1、図2に示す如くN
型半導体基板6上に垂直分離領域2に対応する部分を除
いてP- 濃度のP型ウェル7aを形成する。この場合P
型ウェル7aの不純物濃度を従来のP型ウェル7の不純
物濃度よりも大とする如くする。
In this example, as shown in FIGS. 1 and 2, N
Except for the portion corresponding to the vertical separation region 2 on the type semiconductor substrate 6 P - forming a concentration of P-type well 7a. In this case P
The impurity concentration of the type well 7a is set to be higher than that of the conventional P-type well 7.

【0021】また図1、図2に示す如く、図7で示した
光電変換領域1は、このP型ウェル7a上に光の強さに
応じた電荷を蓄積するN型領域1Nを形成すると共にこ
のN型領域1N上にP+ 濃度のP型領域1Pを形成した
ものである。
Further, as shown in FIGS. 1 and 2, in the photoelectric conversion region 1 shown in FIG. 7, an N-type region 1N for accumulating electric charges according to the intensity of light is formed on the P-type well 7a. The P-type region 1P having a P + concentration is formed on the N-type region 1N.

【0022】この光電変換領域1の深さ方向のポテンシ
ャルは図3の曲線11に示す如く、表面のP型領域1P
より電荷蓄積領域であるN型領域1Nで極小値
(φsens)まで下がり、P型ウェル7aで極大となり深
さ方向のバリア11aを形成し、ドレインを構成するN
型半導体基板6で所定電位(バイアス電圧により決ま
る)まで下がる如きものである。
The potential in the depth direction of the photoelectric conversion region 1 is the P-type region 1P on the surface as shown by the curve 11 in FIG.
Further, in the N-type region 1N which is the charge storage region, it is lowered to the minimum value (φ sens ) and is maximized in the P-type well 7a to form the barrier 11a in the depth direction to form the drain N.
In the semiconductor substrate 6, the potential is lowered to a predetermined potential (determined by the bias voltage).

【0023】また本例においては、この光電変換領域1
の垂直方向間に配された垂直分離領域2は図1に示す如
く、N型半導体基板6上にP濃度のP型領域2Pを形成
したものである。この垂直分離領域2の深さ方向のポテ
ンシャルは図3の曲線12に示す如く、表面のP型領域
2Pより徐々に低下し、その後N型半導体基板6で所定
電位(バイアス電圧により決まる)まで下がる如きもの
である。
In this example, the photoelectric conversion region 1
As shown in FIG. 1, the vertical separation regions 2 arranged between the vertical directions of the above are formed by forming P-type regions 2P of P concentration on the N-type semiconductor substrate 6. The potential of the vertical isolation region 2 in the depth direction gradually decreases from the surface P-type region 2P as shown by the curve 12 in FIG. 3, and then drops to a predetermined potential (determined by the bias voltage) on the N-type semiconductor substrate 6. Like that.

【0024】この場合、この垂直分離領域2の深さ方向
のポテンシャル曲線12と光電変換領域1の深さ方向の
ポテンシャル曲線11とが、曲線12の下降部と曲線1
1の上昇部とで交点13を有し、この交点13が電荷蓄
積領域であるN型領域1Nの深さ方向のバリア11aよ
り低いので、この交点13がこの電荷蓄積領域であるN
型領域1Nのバリアとなり、このN型領域1Nの蓄積電
荷9がこの交点13のポテンシャル即ちバリアを超えた
ときは、この超えた電荷は図1に矢印で示す如く横方向
のP型領域2Pを通してドレインを構成するN型半導体
基板6に流れ出る。即ち本例においてはこの垂直分離領
域2によりオーバーフロードレインが構成される。
In this case, the potential curve 12 in the depth direction of the vertical separation region 2 and the potential curve 11 in the depth direction of the photoelectric conversion region 1 are the descending part of the curve 12 and the curve 1.
1 has an intersection 13 with the rising portion of 1, and since this intersection 13 is lower than the barrier 11a in the depth direction of the N-type region 1N which is the charge storage region, this intersection 13 is the charge storage region N.
When the accumulated charge 9 of the N-type region 1N exceeds the potential of the intersection 13, that is, the barrier, the excess charge passes through the lateral P-type region 2P as indicated by an arrow in FIG. It flows out to the N-type semiconductor substrate 6 forming the drain. That is, in this example, the vertical drain region 2 constitutes an overflow drain.

【0025】またこの場合、この光電変換領域1のN型
領域1Nに電荷が蓄積されても曲線12は変動すること
がないので交点13のポテンシャルも変動することがな
い。
Further, in this case, since the curve 12 does not change even if charges are accumulated in the N-type region 1N of the photoelectric conversion region 1, the potential at the intersection 13 does not change.

【0026】また光電変換領域1の列方向即ち垂直方向
に沿い且つゲート領域5を介して配されたCCDより成
る垂直転送領域3は図2に示す如く垂直方向に沿って、
このP型ウェル7a上に所定幅のP濃度のP型領域3P
を形成すると共にその上にN + 濃度のN型領域3Nを形
成したものである。
The column direction of the photoelectric conversion regions 1, that is, the vertical direction
Consisting of CCDs arranged along and along the gate region 5.
The vertical transfer area 3 shown in FIG.
On the P-type well 7a, a P-type region 3P having a P concentration of a predetermined width is formed.
And form N on it +Concentration N-type region 3N shape
It was made.

【0027】また、ゲート領域5はこのP型ウェル7a
上にN型半導体基板6と同濃度のN型領域5Nを形成す
ると共にこのN型領域5N上にP- 濃度のP型領域5P
を形成したもので、このゲート領域5上に設けられた電
極に所定の電圧を供給することにより、この光電変換領
域1のN型領域1Nに蓄積された信号電荷をこのゲート
領域5を通して垂直転送領域3のN型領域3Nに送出す
る如くなされている。
Further, the gate region 5 is the P-type well 7a.
An N-type region 5N having the same concentration as that of the N-type semiconductor substrate 6 is formed thereon, and a P-type P-type region 5P having a P concentration is formed on the N-type region 5N.
By supplying a predetermined voltage to the electrode provided on the gate region 5, the signal charges accumulated in the N-type region 1N of the photoelectric conversion region 1 are vertically transferred through the gate region 5. It is designed to be sent to the N-type region 3N of the region 3.

【0028】またこの垂直転送領域3に沿って、この垂
直転送領域3と光電変換領域1との間に垂直方向に連続
的に配された水平分離領域4はこのP型ウェル7a上に
所定幅のN型半導体基板6と同濃度のN形領域4Nを形
成すると共に、このN型領域4N上にP濃度のP型領域
4Pを形成し、この光電変換領域1の水平方向間を電荷
的に分離する如くする。
Along the vertical transfer region 3, the horizontal separation region 4 continuously arranged in the vertical direction between the vertical transfer region 3 and the photoelectric conversion region 1 has a predetermined width on the P-type well 7a. The N-type region 4N having the same concentration as that of the N-type semiconductor substrate 6 and the P-type P-type region 4P having the P concentration are formed on the N-type region 4N to electrically charge the photoelectric conversion region 1 in the horizontal direction. Make it separate.

【0029】上述本例の固体撮像素子においては複数の
光電変換領域1により光電変換して蓄積された信号電荷
を所定タイミングでCCDより構成した垂直転送領域3
に送出し、この垂直転送領域3により順次垂直方向に転
送し、図示しないCCDより成る水平転送領域まで転送
され、この水平転送領域の出力端より映像信号を取り出
す如くなす。
In the above-described solid-state image pickup device of the present example, the vertical transfer region 3 formed by the CCD at a predetermined timing is used for photoelectrically converting signal charges accumulated by photoelectric conversion by the plurality of photoelectric conversion regions 1.
To the horizontal transfer area composed of a CCD (not shown), and the video signal is taken out from the output end of this horizontal transfer area.

【0030】斯る本例の固体撮像素子の光電変換領域1
においては、光電変換された蓄積電荷9は交点13で決
まるバリアまで蓄積される。ここではこの交点13のポ
テンシャルまで蓄積された電荷量を飽和信号量Qsとい
い、この飽和信号量Qsはこの交点13のポテンシャル
によって制御される。
The photoelectric conversion area 1 of the solid-state image sensor of this example.
In, the photoelectrically accumulated charges 9 are accumulated up to the barrier determined by the intersection 13. Here, the charge amount accumulated up to the potential at the intersection 13 is referred to as a saturation signal amount Qs, and the saturation signal amount Qs is controlled by the potential at the intersection 13.

【0031】本例によるこの交点13のポテンシャルは
この光電変換領域1のN型領域1Nに信号電荷が蓄積さ
れても、変動することがなく、大きな光量のときにも出
力信号量(Qknee)は小さくでき、垂直転送領域3
の飽和信号量Qvを小さくでき、この垂直転送領域3の
占有面積を小さくできる。
The potential at the intersection 13 according to this example does not change even if signal charges are accumulated in the N-type region 1N of the photoelectric conversion region 1, and the output signal amount (Qknee) is large even when the light amount is large. Vertical transfer area 3
The saturation signal amount Qv can be reduced, and the occupied area of the vertical transfer region 3 can be reduced.

【0032】従って、同一面積の固体撮像素子において
はCCDより成る垂直転送領域3の占有面積が小さくな
った分だけ光電変換領域1の面積を大きくでき、感度を
向上することができる。
Therefore, in the solid-state image pickup device having the same area, the area of the photoelectric conversion region 1 can be increased by the reduction of the occupied area of the vertical transfer region 3 made of CCD, and the sensitivity can be improved.

【0033】図4及び図5は本発明によるオーバーフロ
ードレインを垂直分離領域2に適用したときの他の実施
例の夫々の図7の垂直方向のB−B線断面図を示す。こ
の図4及び図5の夫々の例においても要部の平面図及び
A−A線断面図は夫々図7及び図2と同様である。この
図4及び図5例は上述図1例においては部分的に強い光
量が当たると、その部分の光電変換領域1からオーバー
フローした電子が周辺の光電変換領域1に悪影響を及ぼ
す可能性を除くための対策を施したものである。
FIGS. 4 and 5 are vertical sectional views taken along the line BB in FIG. 7 of another embodiment in which the overflow drain according to the present invention is applied to the vertical isolation region 2. Also in the examples of FIGS. 4 and 5, the plan view and the sectional view taken along the line AA of the main part are the same as those in FIGS. 7 and 2, respectively. In order to eliminate the possibility that the electrons overflowing from the photoelectric conversion region 1 of the portion in FIG. 4 and FIG. 5 in the above-described example of FIG. The measures have been taken.

【0034】この図4及び図5の夫々につき説明するに
図1に対応する部分には同一符号を付して示す。図4例
においては図1例におけるN型半導体基板6上のP-
度のP型ウェル7aを形成しない部分を垂直分離領域2
に対応する部分の半分とし、この垂直分離領域2のP型
ウェル7aのない部分で上述の如くオーバーフロードレ
インを構成する如くする。その他は上述例と同様に構成
する。
To explain each of FIGS. 4 and 5, parts corresponding to those of FIG. 1 are designated by the same reference numerals. Fig In 4 cases on the N-type semiconductor substrate 6 in example FIG P - concentration of the P-type well 7a formed is not part of the vertical isolation region 2
And the overflow drain is formed in the portion of the vertical isolation region 2 where the P-type well 7a is not formed as described above. Others are the same as the above-mentioned example.

【0035】斯る図4例に係る固体撮像素子において
は、垂直分離領域2のP型ウェル7aを形成しない側に
おいては上述同様に図3の曲線11及び12の交点13
のポテンシャルによるバリアを超えた電荷はオーバーフ
ローし、図1例同様の作用効果があると共にこの垂直分
離領域2のP型ウェル7aを形成した側は従来と同様に
素子分離としての機能を有し、上述不都合を改善でき
る。
In the solid-state image pickup device according to the example of FIG. 4, on the side where the P-type well 7a of the vertical isolation region 2 is not formed, the intersection 13 of the curves 11 and 12 of FIG.
The electric charges that have exceeded the barrier due to the potential of 6 overflow and have the same effect as in the example of FIG. 1 and the side of the vertical isolation region 2 where the P-type well 7a is formed has the function of element isolation as in the conventional case. The above-mentioned inconvenience can be improved.

【0036】また図5例においては図1例におけるN型
半導体基板6上のP- 濃度のP型ウェル7aを形成しな
い部分を垂直分離領域2の1個おきとし、このP型ウェ
ル7aの形成されていない垂直分離領域2により上述の
如くオーバーフロードレインを構成する如くすると共に
P型ウェル7aの形成されている垂直分離領域2は従来
同様とする。その他は上述例と同様に構成する。
Further P on N-type semiconductor substrate 6 in an example figure 5 example - a portion that does not form a P-type well 7a concentration and every other vertical isolation region 2, the formation of the P-type well 7a The vertical separation region 2 which is not formed constitutes the overflow drain as described above, and the vertical separation region 2 in which the P-type well 7a is formed is the same as the conventional one. Others are the same as the above-mentioned example.

【0037】斯る図5例に係る固体撮像素子においては
垂直分離領域2のP型ウェル7aの形成されていないも
のは上述同様に図3に示す曲線11及び12の交点13
のポテンシャルによるバリアを超えた電荷はオーバーフ
ローし、図1例同様の作用効果があると共にこの垂直分
離領域2のP型ウェル7aを形成したものは従来と同様
に素子分離としての機能を有し、上述不都合を改善でき
る。
In the solid-state image pickup device according to the example of FIG. 5 in which the P-type well 7a of the vertical separation region 2 is not formed, the intersection 13 of the curves 11 and 12 shown in FIG.
The charges that have exceeded the barrier due to the potential of 6 overflow and have the same effect as in the example of FIG. 1 and the P-type well 7a of the vertical isolation region 2 has the function of element isolation as in the conventional case. The above-mentioned inconvenience can be improved.

【0038】また図6は水平分離領域4下にオーバーフ
ロードレインを構成した例で、この図6は固体撮像素子
の要部の図7に示す如き平面図の水平方向のA−A線断
面図を示す。本例の要部の平面図及びその垂直方向のB
−B線断面図は図7及び図9に示す如くである。この図
6につき説明するに図8に対応する部分には同一符号を
付して示す。
FIG. 6 shows an example in which an overflow drain is formed under the horizontal separation region 4. This FIG. 6 is a sectional view taken along the line AA in the horizontal direction of the plan view of the main part of the solid-state image pickup device as shown in FIG. Show. The top view of the principal part of this example and B of the perpendicular direction
The sectional view taken along line B is as shown in FIGS. 7 and 9. In FIG. 6, parts corresponding to those in FIG. 8 are designated by the same reference numerals.

【0039】この図6例においては図8におけるN型半
導体基板6上のP- 濃度のP型ウェル7を水平分離領域
4に対応する光電変換領域1側の半分を除いた全ての部
分に形成する。この場合この水平分離領域4のP型ウェ
ル7のない部分で上述の如くオーバーフロードレインを
構成する如くする。その他は従来例と同様に構成する。
In the example of FIG. 6, the P-type well 7 of P concentration on the N-type semiconductor substrate 6 in FIG. 8 is formed in all parts except the half on the photoelectric conversion region 1 side corresponding to the horizontal isolation region 4. To do. In this case, the overflow drain is formed in the portion of the horizontal separation region 4 where the P-type well 7 is not formed as described above. Others are configured similarly to the conventional example.

【0040】斯る図6例に係る固体撮像素子において
は、水平分離領域4のP型ウェル7を形成しない側にお
いて上述垂直分離領域2にオーバーフロードレインを構
成したと同様に光電変換領域1のN型領域1Nの図3に
示す曲線11及び12の交点13のポテンシャルによる
バリアを超えた電荷がオーバーフローし、図1例同様の
作用効果が得られる。また本例においては光電変換領域
1間(画素間)におけるスミアの減少にも効果がある。
In the solid-state image pickup device according to the example of FIG. 6, as in the case where the overflow drain is formed in the vertical separation region 2 on the side where the P-type well 7 of the horizontal separation region 4 is not formed, the N of the photoelectric conversion region 1 is formed. Charges that exceed the barrier due to the potential at the intersection 13 of the curves 11 and 12 of the mold region 1N shown in FIG. 3 overflow, and the same effect as the example of FIG. 1 is obtained. Further, in this example, it is also effective in reducing smear between the photoelectric conversion regions 1 (between pixels).

【0041】尚、本発明は上述実施例に限ることなく本
発明の要旨を逸脱することなく、その他種々の構成が採
り得ることは勿論である。
The present invention is not limited to the above-described embodiments, and it goes without saying that various other configurations can be adopted without departing from the gist of the present invention.

【0042】[0042]

【発明の効果】本発明によれば光電変換領域の周辺の水
平又は垂直分離領域にオーバーフロードレインを形成す
るようにしたので、この光電変換領域に電荷が蓄積され
ても、この飽和信号量Qsが変動することがなく、大き
な光量のときにも出力信号量(Qknee)を小さくで
き、垂直転送領域の飽和信号量Qvを小さくでき、この
垂直転送領域の占有面積を小さくできる利益がある。
According to the present invention, the overflow drain is formed in the horizontal or vertical separation region around the photoelectric conversion region. Therefore, even if charges are accumulated in this photoelectric conversion region, the saturation signal amount Qs is There is an advantage that the output signal amount (Qknee) can be reduced even when the light amount is large without changing, the saturation signal amount Qv of the vertical transfer region can be reduced, and the occupied area of the vertical transfer region can be reduced.

【0043】従って、本発明によれば同一面積の固体撮
像素子においてはCCDより成る垂直転送領域の占有面
積が小さくなった分だけ、この光電変換領域の面積を大
きくでき、それだけ感度を向上することができる。
Therefore, according to the present invention, in the solid-state image pickup device having the same area, the area of this photoelectric conversion region can be increased by the reduction of the occupied area of the vertical transfer region formed of CCD, and the sensitivity can be improved accordingly. You can

【0044】また本発明によれば画素間におけるスミア
を減少できる利益がある。
Further, according to the present invention, there is an advantage that smear between pixels can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明固体撮像素子の一実施例の要部の垂直方
向断面図である。
FIG. 1 is a vertical cross-sectional view of a main part of an embodiment of a solid-state imaging device of the present invention.

【図2】本発明固体撮像素子の一実施例の要部の水平方
向断面図である。
FIG. 2 is a horizontal cross-sectional view of a main part of an embodiment of the solid-state imaging device of the present invention.

【図3】本発明の説明に供する線図である。FIG. 3 is a diagram for explaining the present invention.

【図4】本発明の他の実施例の要部の垂直方向断面図で
ある。
FIG. 4 is a vertical sectional view of a main part of another embodiment of the present invention.

【図5】本発明の他の実施例の要部の垂直方向断面図で
ある。
FIG. 5 is a vertical cross-sectional view of a main part of another embodiment of the present invention.

【図6】本発明の他の実施例の要部の水平方向断面図で
ある。
FIG. 6 is a horizontal sectional view of a main part of another embodiment of the present invention.

【図7】固体撮像素子の要部の平面図である。FIG. 7 is a plan view of a main part of a solid-state image sensor.

【図8】固体撮像素子の要部の水平方向断面図である。FIG. 8 is a horizontal cross-sectional view of a main part of a solid-state image sensor.

【図9】固体撮像素子の要部の垂直方向断面図である。FIG. 9 is a vertical cross-sectional view of a main part of a solid-state image sensor.

【図10】従来の固体撮像素子の説明に供する線図であ
る。
FIG. 10 is a diagram used for explaining a conventional solid-state imaging device.

【図11】固体撮像素子の説明に供する線図である。FIG. 11 is a diagram for explaining a solid-state image sensor.

【符号の説明】[Explanation of symbols]

1 光電変換領域 1N N型領域 2 垂直分離領域 2P P型領域 3 垂直転送領域 4 水平分離領域 5 ゲート領域 6 N型半導体基板 7,7a P型ウェル 9 蓄積電荷 11 光電変換領域の深さ方向のポテンシャル曲線 12 垂直分離領域の深さ方向のポテンシャル曲線 13 交点 1 photoelectric conversion region 1N N-type region 2 vertical separation region 2P P-type region 3 vertical transfer region 4 horizontal separation region 5 gate region 6 N-type semiconductor substrate 7, 7a P-type well 9 accumulated charge 11 in the depth direction of the photoelectric conversion region Potential curve 12 Potential curve in the depth direction of vertical separation area 13 Intersection point

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の光電変換領域と、該複数の光電変
換領域の周辺に設けられた水平及び垂直分離領域と、上
記光電変換領域よりの信号電荷を垂直方向に転送する垂
直転送領域とを有する固体撮像素子において、上記水平
又は垂直分離領域にオーバーフロードレインを形成した
ことを特徴とする固体撮像素子。
1. A plurality of photoelectric conversion regions, horizontal and vertical separation regions provided around the plurality of photoelectric conversion regions, and a vertical transfer region for vertically transferring signal charges from the photoelectric conversion regions. A solid-state image sensor having the above, wherein an overflow drain is formed in the horizontal or vertical separation region.
JP6021320A 1994-02-18 1994-02-18 Solid-state image pick-up device Pending JPH07231082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021320A JPH07231082A (en) 1994-02-18 1994-02-18 Solid-state image pick-up device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021320A JPH07231082A (en) 1994-02-18 1994-02-18 Solid-state image pick-up device

Publications (1)

Publication Number Publication Date
JPH07231082A true JPH07231082A (en) 1995-08-29

Family

ID=12051869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021320A Pending JPH07231082A (en) 1994-02-18 1994-02-18 Solid-state image pick-up device

Country Status (1)

Country Link
JP (1) JPH07231082A (en)

Similar Documents

Publication Publication Date Title
JPS6329873B2 (en)
JPS6262553A (en) Solid state image pick-up device
US5397730A (en) Method of making a high efficiency horizontal transfer section of a solid state imager
JP2964571B2 (en) Solid-state imaging device
JPH07231082A (en) Solid-state image pick-up device
JPH0425714B2 (en)
JP2897689B2 (en) Solid-state imaging device
JP3047965B2 (en) Solid-state imaging device
JPS61188965A (en) Solid-state image sensor
JP3263476B2 (en) Solid-state imaging device
US5910013A (en) Process for manufacturing a solid-state pick-up device
JP2000150852A (en) Solid state imaging device
JPH05190828A (en) Solid-state image-sensing element
JPH04369266A (en) Ccd solid-state image sensor
JP3154204B2 (en) CCD solid-state imaging device
JP2671151B2 (en) Semiconductor device
JPH0774336A (en) Solid-state image sensing device
JPS639753B2 (en)
JPH0424871B2 (en)
JP3271164B2 (en) Solid-state imaging device
JPH0715984B2 (en) Method of manufacturing solid-state imaging device
JPS5851673A (en) Solid-state image pickup device
US20070210342A1 (en) Vertical charge transfer active pixel sensor
JP2002057325A (en) Solid state imaging device
JPH02159062A (en) Solid-state image-sensing device