JPH07230808A - Positive electrode active material for nonaqueous lithium secondary battery, manufacture thereof, and lithium secondary battery - Google Patents

Positive electrode active material for nonaqueous lithium secondary battery, manufacture thereof, and lithium secondary battery

Info

Publication number
JPH07230808A
JPH07230808A JP6044886A JP4488694A JPH07230808A JP H07230808 A JPH07230808 A JP H07230808A JP 6044886 A JP6044886 A JP 6044886A JP 4488694 A JP4488694 A JP 4488694A JP H07230808 A JPH07230808 A JP H07230808A
Authority
JP
Japan
Prior art keywords
positive electrode
powder
secondary battery
spherical
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6044886A
Other languages
Japanese (ja)
Other versions
JP3434873B2 (en
Inventor
Akinobu Iikawa
明伸 飯川
Yuichi Ito
有一 伊藤
Seishi Araki
清史 荒木
Yukio Hiraoka
幸雄 平岡
Norio Haga
教雄 芳賀
Katsuaki Okabe
勝明 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP04488694A priority Critical patent/JP3434873B2/en
Publication of JPH07230808A publication Critical patent/JPH07230808A/en
Application granted granted Critical
Publication of JP3434873B2 publication Critical patent/JP3434873B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide spherical powder of LiNiO2 which is so favorable as positive electrode active material for a nonaqueous lithium secondary battery as to enable formation of a high charge/discharge capacity battery, and provide a positive electrode plate to be used as a positive electrode formed of the spherical powder of LiNiO2 obtained in a manufacturing method in which the powder can be manufactured at satisfactory reproducibility. CONSTITUTION:Nickel compound and lithium powder of an average grain size of 5-50mum are blended at a Li/Ni molar ratio of 1/1, suspension-agitated in solution including organic acid, and dried. This is then heat-treated in an oxygen gas current at 740 deg.C for 15 hours to be spherical powder of LiNiO2 of 150 mesh or less, which is kneaded with conductive agent and binding agent to be moulded, and a positive electrode plate is manufactured of this mould to be used as a positive electrode 4 in a lithium battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水リチウム二次電池の
正極活物質として有効な球状LiNiO2 粒子とその製
造方法および該粒子を主成分とする正極板を用いて充放
電容量の高容量化を図るリチウム二次電池に関するもの
である。
TECHNICAL FIELD The present invention relates to a spherical LiNiO 2 particle which is effective as a positive electrode active material of a non-aqueous lithium secondary battery, a method for producing the same, and a positive electrode plate containing the particle as a main component, which has a high charge / discharge capacity. The present invention relates to a rechargeable lithium secondary battery.

【0002】[0002]

【従来の技術】一般にリチウム電池は、カメラや腕時計
の電源として使用され、小型且つ高エネルギー密度の利
点を生かして使用されているが、これらのほとんどはい
わゆる一次電池で充電ができないタイプである。充電が
できない最大の理由は正極活物質にあり、従来はリチウ
ムとの反応が不可逆なフッ化カーボンやMnO2 、Cu
Oなどが正極活物質として使用されていた。
2. Description of the Related Art Generally, a lithium battery is used as a power source for a camera or a wrist watch, and is used by taking advantage of its small size and high energy density. However, most of these are so-called primary batteries that cannot be charged. The main reason why charging is not possible is in the positive electrode active material, which has been irreversible with lithium in the past, such as fluorocarbon, MnO 2 , and Cu.
O and the like have been used as the positive electrode active material.

【0003】近年充電のできるリチウム二次電池の研究
が進み、正極活物質V25 を用いることにより負極の
Liイオンとの反応が可逆化できることが知られるよう
になった。さらにリチウム塩およびニッケル塩の各原料
を有機溶媒中で微粉砕・混合した後に乾燥・成形し、7
50℃程度において24時間酸素気流中で焼成を行なっ
てLiNiO2 を合成し、リチウムイオンの移動を容易
にして容量を高めるように結晶構造を発達させていた。
In recent years, research on a rechargeable lithium secondary battery has progressed, and it has become known that the reaction with Li ions in the negative electrode can be reversible by using the positive electrode active material V 2 O 5 . Further, each raw material of lithium salt and nickel salt is finely pulverized and mixed in an organic solvent, and then dried and molded.
LiNiO 2 was synthesized by firing in an oxygen stream at about 50 ° C. for 24 hours, and a crystal structure was developed to facilitate the movement of lithium ions and increase the capacity.

【0004】製造方法としてはニッケル水酸化物、ニッ
ケル酸化物やオキシ水酸化ニッケルから選ばれる一種以
上の粉末と、炭酸リチウム、硝酸リチウム、水酸化リチ
ウムやリチウム酸化物から選ばれる少なくとも一種以上
の粉末とを、リチウム不溶性のアセトンやアルコール等
の有機溶剤中で、セラミック製のメディアを用いて微粉
砕しつつ混合した後、該有機溶剤を揮発させて混合粉末
を得、次いで該混合粉末を造粒するか、加圧成形・解砕
することによって密度の高い凝集粒または成形体にして
いる。
As a manufacturing method, one or more powders selected from nickel hydroxide, nickel oxide and nickel oxyhydroxide, and at least one powder selected from lithium carbonate, lithium nitrate, lithium hydroxide and lithium oxide. And are mixed in an organic solvent such as lithium-insoluble acetone or alcohol while finely pulverizing using a ceramic medium, the organic solvent is volatilized to obtain a mixed powder, and then the mixed powder is granulated. Or by press-molding and crushing to obtain a dense aggregate or a compact.

【0005】次いで、これらの凝集粒または成形体を酸
化性の雰囲気中で焼成し、必要に応じて粉砕・分級する
ことによって正極活物質用粉末としているが、これらの
製造法によって得られる粉末は、角張りのある平均径3
ミクロン程度の粒子であったため、充填密度が上がらず
容積当りの電池容量を高めることができなかった。
Next, these agglomerated particles or compacts are fired in an oxidizing atmosphere, and pulverized and classified as required to obtain a powder for a positive electrode active material. The powder obtained by these production methods is , Squared average diameter 3
Since the particles were of the order of microns, the packing density did not increase and the battery capacity per volume could not be increased.

【0006】[0006]

【発明が解決しようとする課題】上述のように従来の製
造法によって得られた正極活物質は、角張り形状である
ことから容積当りの電池容量を高めることができず、高
温保存中の容量低下の原因として活物質粉末の個々の粒
子形状に起因するものがあり、これが無視できない重要
性を有していることが判明した。従って何らかの手段に
よって充填密度を高める素材の開発が望まれていた。
Since the positive electrode active material obtained by the conventional manufacturing method as described above has a square shape, the battery capacity per volume cannot be increased, and the capacity during storage at high temperature cannot be increased. It was found that the cause of the decrease is due to the individual particle shape of the active material powder, and this has a non-negligible importance. Therefore, it has been desired to develop a material that increases the packing density by some means.

【0007】[0007]

【課題を解決するための手段】本発明者等は斯かる課題
を解決するために鋭意研究したところ、正極活物質粉末
の粒子形状を適切に選択、制御することが予想外に大き
な電池特性の改善効果をもたらすものであり、また好ま
しい形状として角張りを落とした球形にすることが最適
であることがわかった。
Means for Solving the Problems The inventors of the present invention have conducted diligent research to solve such problems. As a result, it is unexpectedly expected that the particle shape of the positive electrode active material powder should be appropriately selected and controlled. It has been found that a spherical shape with no squared corners is the most preferable shape because it brings about an improvement effect.

【0008】すなわち本発明は、第一に平均粒径が5〜
50μmである球状ニッケル化合物を原料として得られ
た球状LiNiO2 粒子であることを特徴とする非水リ
チウム二次電池用正極活物質であり、第二に、平均粒径
が5〜50μmである球状ニッケル化合物を、リチウム
イオンと有機酸とを含有する溶液中において懸濁させる
工程を経ることによって球状LiNiO2 粒子と成すこ
とを特徴とする非水リチウム二次電池用正極活物質の製
造方法であり、第三に、球状LiNiO2 粒子を正極活
物質として用いることを特徴とするリチウム二次電池に
関する。
That is, according to the present invention, firstly, the average particle diameter is 5 to 5.
A positive electrode active material for a non-aqueous lithium secondary battery, which is spherical LiNiO 2 particles obtained by using a spherical nickel compound having a diameter of 50 μm as a raw material, and secondly, a spherical shape having an average particle diameter of 5 to 50 μm. A method for producing a positive electrode active material for a non-aqueous lithium secondary battery, comprising forming a spherical LiNiO 2 particle by subjecting a nickel compound to a step of suspending it in a solution containing lithium ions and an organic acid. Thirdly, the present invention relates to a lithium secondary battery using spherical LiNiO 2 particles as a positive electrode active material.

【0009】[0009]

【作用】本発明では、原料の球状形をそのまま利用して
球形の活物質を得、粉体としての理想的な充填特性を得
るとともに、形状に起因する高温保存中の放電を抑制す
ることを目的とする。そこで、出発原料である球状ニッ
ケル化合物粉末に着目し、その特性を充分に利用し得る
ようにリチウム化合物との新規混合方法を開発して、球
状のLiNiO2 粉末を製造しようとするものである。
In the present invention, the spherical shape of the raw material is used as it is to obtain a spherical active material, ideal packing characteristics as a powder are obtained, and discharge due to the shape during storage at high temperature is suppressed. To aim. Then, the spherical nickel compound powder as a starting material is focused on, and a new mixing method with a lithium compound is developed so that the characteristics thereof can be fully utilized, and a spherical LiNiO 2 powder is produced.

【0010】具体的には、球状のニッケル化合物粉末を
リチウムイオンと有機酸とを含有する溶液中に懸濁さ
せ、乾燥固化させて前駆体となし、次いで該前駆体を酸
化性雰囲気中で焼成することによって球状のLiNiO
2 粉末を得ようとするものである。尚、この場合、球形
ニッケル原料は図4に示すような完全な球体でなくても
近似的な球形または3次凝集体も含む。本発明での懸濁
用溶液は主に水溶液を示すが、エチレングリコール等を
併用することも可能である。
Specifically, spherical nickel compound powder is suspended in a solution containing lithium ions and an organic acid, dried and solidified to form a precursor, and then the precursor is fired in an oxidizing atmosphere. Spherical LiNiO
2 to obtain powder. In this case, the spherical nickel raw material includes not only perfect spherical bodies as shown in FIG. 4 but also approximate spherical or tertiary aggregates. The suspension solution in the present invention is mainly an aqueous solution, but it is also possible to use ethylene glycol or the like together.

【0011】本発明で使用するニッケル化合物として
は、工業的には水酸化物、酸化物、オキシ水酸化物、炭
酸塩等の様々な形の化合物が供給されるが、球形の化合
物の場合は水酸化物が用いられる。この場合、このよう
な水酸化物は、硫酸ニッケルと苛性ソーダとアンモニア
を用い、水溶液中での水酸化ニッケルの凝集による造粒
とニッケル錯塩による再結晶化により製造されるのが一
般である。
As the nickel compound used in the present invention, various forms of compounds such as hydroxides, oxides, oxyhydroxides and carbonates are industrially supplied, but in the case of spherical compounds, Hydroxide is used. In this case, such a hydroxide is generally produced by using nickel sulfate, caustic soda, and ammonia, granulating by agglomeration of nickel hydroxide in an aqueous solution, and recrystallization by a nickel complex salt.

【0012】酸化物は、球形の水酸化物を大気中で熱処
理することによって得られ、オキシ水酸化物は、水酸化
物の合成時に酸化剤を使用することによって得られる。
また、炭酸塩は水酸化物と同様の方法によって合成され
ているが、この他の方法によっても化合物粉末の製造は
可能である。
Oxides are obtained by heat-treating spherical hydroxides in the atmosphere, and oxyhydroxides are obtained by using an oxidizing agent during the synthesis of hydroxides.
Further, the carbonate is synthesized by the same method as the hydroxide, but the compound powder can be produced by other methods.

【0013】上記の合成法によって得られた水酸化ニッ
ケルは0.1μm以下の大きさの微細な一次粒が密に凝
集した二次以上の粒子となるため、ニッケル化合物はそ
の合成時において二次以上の凝集粒子径(以下、平均径
と呼ぶ)を制御できるが、必要に応じてフルイにおいて
分級しても構わない。
The nickel hydroxide obtained by the above-mentioned synthesis method becomes secondary or higher particles in which fine primary particles having a size of 0.1 μm or less are densely aggregated. The above-mentioned aggregate particle size (hereinafter referred to as the average size) can be controlled, but classification may be carried out in a sieve if necessary.

【0014】本発明においては、出発原料であるニッケ
ル化合物の粒径をも規定するが、これはニッケル化合物
の粒径が大きすぎると中心までリチウム成分を充分に吸
収できないためか、望ましいLiNiO2 を合成するこ
とができず、その結果、電池特性を高めることができな
いということが判明したからである。
In the present invention, either order but also to define the particle size of the nickel compound is a starting material, this is not sufficiently absorb the lithium component to the center the particle size of the nickel compound is too large, the desired LiNiO 2 This is because it was found that they could not be synthesized and, as a result, the battery characteristics could not be improved.

【0015】逆にニッケル化合物の粒径が小さすぎては
正極の成形時に極板の密度が低下するため、容積が制限
された電池の電気容量を高めることができず、本発明者
の実験からニッケル化合物の平均粒は5〜50μmの範
囲が適していることを確認できた。
On the contrary, if the particle size of the nickel compound is too small, the density of the electrode plate is lowered during the molding of the positive electrode, so that the electric capacity of the battery of which volume is limited cannot be increased. It was confirmed that the average particle size of the nickel compound is preferably in the range of 5 to 50 μm.

【0016】本発明では、ニッケル化合物として水酸化
ニッケルを代表して用い球状LiNiO2 を製造した。
まず水酸化リチウムとカルボン酸の代表であるクエン酸
を溶解させた水溶液に、上記5〜50μmの範囲にある
球状水酸化ニッケル粉末を懸濁させつつ乾燥するが、こ
の場合、リチウムは単独あるいは酸とともに水酸化ニッ
ケル粒子中の隙間にて乾固し、乾燥条件により混合物の
外観は樹脂状であったり、モルタル状であったりする。
In the present invention, spherical LiNiO 2 was produced by using nickel hydroxide as a representative nickel compound.
First, the spherical nickel hydroxide powder in the range of 5 to 50 μm is suspended and dried in an aqueous solution in which lithium hydroxide and citric acid, which is a representative of carboxylic acid, are suspended. At the same time, the mixture is dried and solidified in the gaps in the nickel hydroxide particles, and the appearance of the mixture may be resin-like or mortar-like depending on the drying conditions.

【0017】有機酸は、乾固時の水の移動に伴うリチウ
ムの偏析防止と、水酸化ニッケルの二次粒子が後工程で
破砕されてその形状が破壊されることを防止するために
用いる。尚、従来法においては、リチウムの偏析とそれ
に伴う反応性低下を防止するために、有機溶剤中での混
合と微粉砕を行なっているが、この場合、当然水酸化ニ
ッケルも微粉砕されるので本発明で目的とする球状Li
NiO2 粉末は得られなかった。
The organic acid is used to prevent the segregation of lithium due to the movement of water during dryness and to prevent the secondary particles of nickel hydroxide from being crushed in the subsequent step to destroy its shape. Incidentally, in the conventional method, in order to prevent segregation of lithium and accompanying decrease in reactivity, mixing and pulverization in an organic solvent are carried out. In this case, of course, nickel hydroxide is also pulverized. Spherical Li that is the object of the present invention
No NiO 2 powder was obtained.

【0018】次いで乾燥後の混合物は、必要ならば10
mm程度に解砕した後に酸化雰囲気中望ましくは酸素気流
中にて焼成するが、焼成条件は従来法と同様に750℃
程度の温度で10〜30時間保持し、この時混合物は焼
成後に塊状となっているので、解砕によって微粉にする
必要がある。さらに上記懸濁処理工程以降に粉砕や加圧
操作を加える場合もあるが、ニッケル化合物の球形状を
破壊することは避けなければならない。
The dried mixture is then mixed with 10 if necessary.
After crushing to about mm, calcination is performed in an oxidizing atmosphere, preferably in an oxygen stream, but the calcination conditions are 750 ° C as in the conventional method.
It is kept at a temperature of about 10 to 30 hours, and at this time, since the mixture becomes a lump after firing, it needs to be pulverized into fine powder. Further, after the suspension treatment step, crushing or pressurizing operation may be applied in some cases, but it is necessary to avoid breaking the spherical shape of the nickel compound.

【0019】上記工程において、球状水酸化ニッケルは
焼成によりリチウムと反応してLiNiO2 となり、こ
の時に最大20%の線収縮を示すが、形状自体が変化す
るようなことはない。この原因として、LiNiO2
生成に適した温度域では完全な焼結ができず、結晶構造
に基づく異方成長には至らないためと推測される。
In the above step, the spherical nickel hydroxide reacts with lithium by firing to become LiNiO 2 , and at this time, a maximum of 20% linear shrinkage is exhibited, but the shape itself does not change. It is presumed that the reason for this is that complete sintering cannot be performed in the temperature range suitable for the formation of LiNiO 2 , and anisotropic growth based on the crystal structure does not occur.

【0020】一般的に有機酸と金属元素を含む溶液の乾
固による前駆体の合成は、錯体重合あるいは有機酸ゲル
化法と呼ばれるものであるが、本発明法とは以下の点に
おいて根本的に異なっている。すなわち、 (1)従来法は、全成分を溶液とするため原料の形態を
利用することができない。 (2)有機酸を金属元素の当量に対して数倍も使用する
ため焼成後の粉体は密度が低く、電池の容量を高くする
という目的に沿わないという相違がある。
Generally, the synthesis of a precursor by drying a solution containing an organic acid and a metal element is called a complex polymerization or an organic acid gelling method, but the method of the present invention is fundamental in the following points. Is different. That is, (1) the conventional method cannot utilize the form of the raw material because all components are made into a solution. (2) Since the organic acid is used several times with respect to the equivalent of the metal element, the powder after firing has a low density, which is different from the purpose of increasing the capacity of the battery.

【0021】本発明の例示においては出発原料として水
酸化リチウムを用いたが、他に炭酸リチウムや有機酸リ
チウムも使用できる。ただし、純度およびコスト面から
水酸化リチウムが好ましい。また、有機酸としては水へ
の溶解性は価格の面から判断してカルボン酸が最適であ
るが、同様の効果があれば他の有機酸も使用可能であ
る。
Although lithium hydroxide was used as a starting material in the examples of the present invention, lithium carbonate or organic acid lithium may also be used. However, lithium hydroxide is preferable in terms of purity and cost. Further, as the organic acid, carboxylic acid is most suitable from the viewpoint of price in terms of solubility in water, but other organic acids can be used as long as they have the same effect.

【0022】その他、所定量の他成分添加あるいはニッ
ケルとリチウムとの成分比率の少量の変化により電池特
性改善を行なうことも考えられている。例えば、コバル
トを15%以下にて置換するとか、Li:Ni=1±
0.05:1の範囲で変化させることなどが挙げられる
が、このような場合でも、形状に対する操作と効果が同
様であれば、本発明の範囲内とする。
In addition, it has been considered to improve the battery characteristics by adding a predetermined amount of another component or by changing the component ratio of nickel and lithium by a small amount. For example, replacing cobalt with 15% or less, or Li: Ni = 1 ±
It may be changed within a range of 0.05: 1, but even in such a case, if the operation and effect on the shape are the same, it is within the scope of the present invention.

【0023】本発明における電池の容量は、以下の方法
で評価した。まず焼成によって得られたLiNiO2
塊を機械的に解砕し200メッシュのフルイによって分
級し、次いで得られた粉末に導電剤としてケッチェンブ
ラック、結着剤としてポリテトラフルオロエチレン
(P.T.F.E.)を重量比で8:1:1の割合で混
練し、2ton/cm2 の圧力で直径37mmの円盤状に成形し
た。この成形体を図1に示す正極4と成し、一方、負極
7にはリチウムの金属(厚み0.7mm)から切り出した
ものを用い、セパレーター5には、ポリプロピレンのフ
ィルムを切り抜いたものを使用するとともに、電解液と
してプロピレンカーボネイト(PC)と、1,2−ジメ
トキシエタン(DME)の体積比1:1の混合液に、6
フッ化リン酸リチウム(LiPF6 )を0.5mol/l濃
度溶解させたものを用いた。尚、図1中1は正極リード
線、2はセル固定用ナット、3は正極集電体、4は正
極、5はセパレーター、6はセパレーター固定用スペー
サー、7は負極、8は負極集電体、9はセル固定用ビ
ス、10は電解液注入栓、11は負極リード線をそれぞ
れ表す。
The capacity of the battery in the present invention was evaluated by the following method. First, a lump of LiNiO 2 obtained by firing was mechanically crushed and classified by a 200-mesh sieve, and then the obtained powder was ketjen black as a conductive agent and polytetrafluoroethylene (PT) as a binder. .FE) was kneaded at a weight ratio of 8: 1: 1 and molded into a disk having a diameter of 37 mm at a pressure of 2 ton / cm 2 . This molded body was used as the positive electrode 4 shown in FIG. 1, while the negative electrode 7 was made of lithium metal (thickness 0.7 mm), and the separator 5 was made by cutting out a polypropylene film. At the same time, a mixed solution of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1 as an electrolytic solution was added with 6
Lithium fluorophosphate (LiPF 6 ) dissolved in a concentration of 0.5 mol / l was used. In FIG. 1, 1 is a positive electrode lead wire, 2 is a cell fixing nut, 3 is a positive electrode current collector, 4 is a positive electrode, 5 is a separator, 6 is a separator fixing spacer, 7 is a negative electrode, and 8 is a negative electrode current collector. , 9 is a cell fixing screw, 10 is an electrolytic solution injection plug, and 11 is a negative electrode lead wire.

【0024】上記図1に示す二次電池を用いて放電容量
を求めたが、これによって得られた値は重量当りの容量
であり、容量当りで考えるために活物質のタップかさ密
度のとの積を指標として求めた。また、室温での繰り返
しを行なった場合、放電容量の低下が著しい場合は、表
1に特記するが、それ以外の低下率はほぼ20〜30%
の範囲であった。
The discharge capacity was determined using the secondary battery shown in FIG. 1. The value obtained by this was the capacity per weight, and in order to consider the capacity, the tap bulk density of the active material The product was used as an index. Further, when the discharge capacity is remarkably reduced when it is repeated at room temperature, it is noted in Table 1, but the other reduction rate is about 20 to 30%.
Was in the range.

【0025】保存性の加速試験は、試験セルに充電し7
0℃にて24時間保存後の容量低下を測定し、その量を
目安とした。この場合、保存サイクル数が2回までは測
定上充放電容量が安定しないことがあるため3回目と4
回目の放電容量の差とし、3回目の放電容量に対する割
合で示した(以下、この割合を高温保存性と記す)。
The accelerated storage test is performed by charging the test cell with
The decrease in capacity after storage at 0 ° C. for 24 hours was measured, and the amount was used as a guide. In this case, the charge and discharge capacity may not be stable in the measurement until the number of storage cycles is 2.
The difference between the discharge capacities of the third time and the discharge capacity of the third time is shown (hereinafter, this ratio is referred to as high temperature storage stability).

【0026】以下、実施例をもって詳細に説明するが本
発明の範囲はこれらに限定されるものではない。
Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited to these.

【0027】[0027]

【実施例1】まず水酸化リチウムLiOHと表1に示す
平均粒からなる球状水酸化ニッケルNi(OH)2 とを
モル比でLi/Ni=1/1となるように秤量して水中
に投入した後、クエン酸を水酸化ニッケルに対して60
%加え、70℃で攪拌しながら乾燥した。
Example 1 First, lithium hydroxide LiOH and spherical nickel hydroxide Ni (OH) 2 consisting of average particles shown in Table 1 were weighed and added into water so that the molar ratio was Li / Ni = 1/1. After that, citric acid was added to nickel hydroxide to 60
%, And dried at 70 ° C. with stirring.

【0028】次いで該乾燥物を直径2cm程度の塊にし、
酸素気流中740℃において15時間焼成し、得られた
焼成物を乳鉢にて解砕して150メッシュ下の粉末とし
た。
Then, the dried product is lumped to a diameter of about 2 cm,
It was fired for 15 hours at 740 ° C. in an oxygen stream, and the obtained fired product was crushed in a mortar to obtain a powder having a particle size of 150 mesh.

【0029】得られた粉末をXRD測定したところ、図
2に示すように、従来報告されているLiNiO2 と同
形のパターンを得た。また、その時の原料として用いた
Ni(OH)2 の粒子構造を示すSEM写真を図4に、
また得られたLiNiO2 の代表的な粒子のSEM写真
を図5に示した。
The obtained powder was subjected to XRD measurement, and as shown in FIG. 2, a pattern having the same shape as that of conventionally reported LiNiO 2 was obtained. In addition, an SEM photograph showing the particle structure of Ni (OH) 2 used as a raw material at that time is shown in FIG.
An SEM photograph of the obtained representative particles of LiNiO 2 is shown in FIG.

【0030】上記の方法で得られたLiNiO2 粉末を
正極活物質として用い、これに導電剤としてケッチェン
ブラック、結着剤としてポリテトラフルオロエチレン
(P.T.F.E.)を重量比で8:1:1の割合で加
えて混練し、2ton/cm2 の圧力をかけて直径37mmの円
盤状に加圧成形を行なって正極板とした。
The LiNiO 2 powder obtained by the above method was used as a positive electrode active material, and Ketjen black as a conductive agent and polytetrafluoroethylene (PTFE) as a binder were mixed in a weight ratio. At a ratio of 8: 1: 1 and kneaded, and a pressure of 2 ton / cm 2 was applied to perform pressure molding into a disk shape having a diameter of 37 mm to obtain a positive electrode plate.

【0031】次いで該正極板を図1に示すリチウム二次
電池である試験セルの正極4として用い、一方、負極7
にはリチウムの金属(厚み0.7mm)から切り抜いて負
極板とした。またセパレーター5にはポリプロピレンの
フィルムを切り抜いたものを使用し、電解液にはプロピ
レンカーボネイト(PC)と、1,2−ジメトキシエタ
ン(DME)の体積比1:1に混合した混合液に、6フ
ッ化リン酸リチウム(LiPF6 )を0.5mol/l濃度
溶解させたものを用いた。
Next, the positive electrode plate was used as the positive electrode 4 of the test cell which is the lithium secondary battery shown in FIG.
A negative electrode plate was prepared by cutting out a lithium metal (thickness 0.7 mm). Further, a polypropylene film cut out is used as the separator 5, and 6% of a mixed solution of propylene carbonate (PC) and 1,2-dimethoxyethane (DME) at a volume ratio of 1: 1 is used as the electrolytic solution. Lithium fluorophosphate (LiPF 6 ) dissolved in a concentration of 0.5 mol / l was used.

【0032】次いでこれらを図1の試験セルとして組み
立て、充放電試験を行った結果、図3に示すように、従
来技術において報告されている中で最も優れた二次電池
の放電容量値の190mAh/gと同等かそれ以上の値を得
た。表1に平均粒径別の放電容量とかさ密度と積値とを
まとめたが、これらの結果から出発原料である球状水酸
化ニッケルの平均粒径が2μmの場合には、10サイク
ル後の繰り返しによる容量低下が52%であり、逆に7
8μmの場合には、5サイクル後の容量低下が半減する
ことが判明し、このことから出発原料の平均粒径は5〜
50μmの範囲は好ましいことがわかった。
Then, these were assembled into the test cell of FIG. 1 and a charge / discharge test was conducted. As a result, as shown in FIG. 3, the discharge capacity value of 190 mAh of the most excellent secondary battery reported in the prior art was reported. A value equal to or higher than / g was obtained. Table 1 summarizes the discharge capacity, the bulk density and the product value for each average particle diameter. From these results, when the average particle diameter of the spherical nickel hydroxide as the starting material is 2 μm, repetition after 10 cycles is repeated. 52% decrease in capacity due to
In the case of 8 μm, it was found that the capacity decrease after 5 cycles was halved, which indicates that the starting material has an average particle size of 5 to 5 μm.
It has been found that the range of 50 μm is preferable.

【0033】[0033]

【表1】 78μmと2μmの場合は請求範囲外の比較例である。
78μmの場合はLi不純物がXRDで確認された。
[Table 1] The cases of 78 μm and 2 μm are comparative examples outside the claimed range.
In the case of 78 μm, Li impurities were confirmed by XRD.

【0034】[0034]

【実施例2】水酸化リチウム−水和物LiOH・H2
および水酸化ニッケルを300℃で処理して得られた酸
化ニッケルNiOをモル比において各々Li/Ni=
0.97/1およびLi/Ni=1/1となるように秤
量したものを供試物とした。
Example 2 Lithium hydroxide - hydrate LiOH · H 2 O
And nickel oxide NiO obtained by treating nickel hydroxide at 300 ° C. in a molar ratio of Li / Ni =
The sample was weighed so as to be 0.97 / 1 and Li / Ni = 1/1.

【0035】これらの供試物を各々水中に投入した後、
クエン酸を水酸化ニッケルに対して50重量%を添加
し、80℃で攪拌しながら混合濃縮し、次いで60℃で
乾固した。
After each of these specimens was put into water,
Citric acid was added in an amount of 50% by weight with respect to nickel hydroxide, mixed and concentrated at 80 ° C. with stirring, and then dried at 60 ° C. to dryness.

【0036】次いで得られた乾固物を10mm以下に解砕
し酸素気流中において730℃で15時間焼成して、L
iNiO2 粉末を得た。この場合、用いた酸化ニッケル
の平均粒径は30μmであり、得られたLiNiO2
平均粒径はいずれも24μmであった。
Next, the obtained dried solid matter was crushed to 10 mm or less and calcined in an oxygen stream at 730 ° C. for 15 hours to obtain L
iNiO 2 powder was obtained. In this case, the nickel oxide used had an average particle size of 30 μm, and the obtained LiNiO 2 had an average particle size of 24 μm.

【0037】得られたLiNiO2 粉末をXRD測定し
たところ、実施例1に示した図2と同様のXRDパター
ンとなった。また上記各々の出発組成比のLiNiO2
粉末を用いて、実施例1に示す手段で正極の成形体と成
し、図1に示す試験セルに組み入れて充放電試験を行っ
た結果を表2にまとめた。この結果、放電容量も従来品
とほぼ同じかそれ以上の値を得ることができた。また、
高温保存性も優れていることが判明した。
XRD measurement of the obtained LiNiO 2 powder gave the same XRD pattern as that of FIG. 2 shown in Example 1. In addition, LiNiO 2 having the respective starting composition ratios
The powder was used to form a positive electrode molded body by the means described in Example 1, and the powder was incorporated into the test cell shown in FIG. As a result, the discharge capacity could be almost the same as or higher than that of the conventional product. Also,
It was found that the high temperature storage property was also excellent.

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【比較例1】実施例1と同様にLiOH・H2 OとNi
(OH)2 とをモル比でLi/Ni=1/1となるよう
に秤量し、これらの粉末をエタノール中で50時間粉砕
・混合して平均粒径約2μmの粉末を得、次いで該粉砕
物を酸素気流中750℃において24時間焼成してLi
NiO2 粉末を得た。
Comparative Example 1 Similar to Example 1, LiOH.H 2 O and Ni
(OH) 2 was weighed so that the molar ratio was Li / Ni = 1/1, and these powders were crushed and mixed in ethanol for 50 hours to obtain a powder having an average particle size of about 2 μm, and then the crushed powder. The product was fired in an oxygen stream at 750 ° C. for 24 hours to obtain Li.
NiO 2 powder was obtained.

【0040】得られたLiNiO2 粉末をXRD測定し
たところ、実施例1における図2と同様の結果を示した
が、この粉末をSEM写真で観察したところ、図6に示
すように粒子が1μm程度にすぎなかった。
XRD measurement of the obtained LiNiO 2 powder showed the same results as in FIG. 2 in Example 1. However, when the powder was observed by SEM photograph, the particles were about 1 μm as shown in FIG. It was nothing more than

【0041】この粉末を用いて実施例1と同様に図1に
示す試験セルを作製して充放電量を測定したところ、図
7に示す結果を得た。
Using this powder, the test cell shown in FIG. 1 was prepared in the same manner as in Example 1 and the charge / discharge amount was measured. The results shown in FIG. 7 were obtained.

【0042】[0042]

【表3】 室温での繰り返しによる容量低下 10サイクル後5
0%
[Table 3] Capacity decrease due to repetition at room temperature After 10 cycles 5
0%

【0043】[0043]

【発明の効果】上述のように本発明の非水リチウム系二
次電池において、ある特定範囲の球状LiNiO2 粉末
を活物質として用いることにより、充填密度を高くする
ことができ、それにともない電池としての放電容量を高
めるとともに高温保存性を高めることができた。
INDUSTRIAL APPLICABILITY As described above, in the non-aqueous lithium secondary battery of the present invention, by using spherical LiNiO 2 powder in a specific range as the active material, the packing density can be increased, and as a result, a battery can be obtained. It was possible to increase the discharge capacity and the high temperature storability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る正極活物質または正極板の性能測
定試験に用いた試験セルの断面概略図である。
FIG. 1 is a schematic cross-sectional view of a test cell used for a performance measurement test of a positive electrode active material or a positive electrode plate according to the present invention.

【図2】実施例1において作製したLiNiO2 のXR
D(X線回折図)である。
2 is the XR of LiNiO 2 prepared in Example 1. FIG.
It is D (X-ray diffraction pattern).

【図3】実施例1において作製した試験セルによる充放
電曲線である。
3 is a charge / discharge curve of the test cell manufactured in Example 1. FIG.

【図4】実施例1で用いた球状Ni(OH)2 の粒子構
造を示すSEM写真である。
FIG. 4 is an SEM photograph showing a particle structure of spherical Ni (OH) 2 used in Example 1.

【図5】実施例1で得られた球状LiNiO2 の粒子構
造を示すSEM写真である。
5 is an SEM photograph showing the particle structure of spherical LiNiO 2 obtained in Example 1. FIG.

【図6】比較例1で得られたLiNiO2 の粒子構造を
示すSEM写真である。
6 is an SEM photograph showing the particle structure of LiNiO 2 obtained in Comparative Example 1. FIG.

【図7】比較例1において作製した試験セルによる充放
電曲線である。
7 is a charge / discharge curve of the test cell manufactured in Comparative Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 正極リード線 2 セル固定用ナット 3 正極集電体 4 正極 5 セパレーター 6 セパレーター固定用スペーサー 7 負極 8 負極集電体 10 セル固定用ビス 11 電解液注入栓 12 負極リード線 1 Positive electrode lead wire 2 Cell fixing nut 3 Positive electrode current collector 4 Positive electrode 5 Separator 6 Separator fixing spacer 7 Negative electrode 8 Negative electrode current collector 10 Cell fixing screw 11 Electrolyte injection plug 12 Negative electrode lead wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平岡 幸雄 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 芳賀 教雄 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 (72)発明者 岡部 勝明 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yukio Hiraoka 1-2-8 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd. (72) Inventor Norio Haga 1-2-8, Marunouchi, Chiyoda-ku, Tokyo Within Wa Mining Co., Ltd. (72) Inventor Katsuaki Okabe 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Within Wa Mining Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径が5〜50μmである球状ニッ
ケル化合物を原料として得られた球状LiNiO2 粒子
からなることを特徴とする非水リチウム二次電池用正極
活物質。
1. A positive electrode active material for a non-aqueous lithium secondary battery, comprising spherical LiNiO 2 particles obtained by using a spherical nickel compound having an average particle diameter of 5 to 50 μm as a raw material.
【請求項2】 平均粒径が5〜50μmである球状ニッ
ケル化合物をリチウムイオンと有機酸とを含有する溶液
中において懸濁攪拌する工程を経て球状LiNiO2
子と成すことを特徴する非水リチウム二次電池用正極活
物質の製造方法。
2. Non-aqueous lithium, which is formed into spherical LiNiO 2 particles through a step of suspending and stirring a spherical nickel compound having an average particle diameter of 5 to 50 μm in a solution containing lithium ions and an organic acid. A method for producing a positive electrode active material for a secondary battery.
【請求項3】 球状LiNiO2 粒子を導電剤および結
着剤と混練して成形した成形体を正極板として用いるこ
とを特徴とするリチウム二次電池。
3. A lithium secondary battery, wherein a molded body obtained by kneading spherical LiNiO 2 particles with a conductive agent and a binder is used as a positive electrode plate.
JP04488694A 1994-02-18 1994-02-18 Positive active material for non-aqueous lithium secondary battery, method for producing the same, and lithium secondary battery Expired - Lifetime JP3434873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04488694A JP3434873B2 (en) 1994-02-18 1994-02-18 Positive active material for non-aqueous lithium secondary battery, method for producing the same, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04488694A JP3434873B2 (en) 1994-02-18 1994-02-18 Positive active material for non-aqueous lithium secondary battery, method for producing the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH07230808A true JPH07230808A (en) 1995-08-29
JP3434873B2 JP3434873B2 (en) 2003-08-11

Family

ID=12703977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04488694A Expired - Lifetime JP3434873B2 (en) 1994-02-18 1994-02-18 Positive active material for non-aqueous lithium secondary battery, method for producing the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3434873B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998054768A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Electrode for non-aqueous electrolytic cells
WO1999001903A1 (en) * 1997-07-01 1999-01-14 Matsushita Electric Industrial Co., Ltd. Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
US6015637A (en) * 1996-09-30 2000-01-18 Sharp Kabushiki Kaisha Process of producing lithium nickel oxide and nonaqueous secondary battery using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6015637A (en) * 1996-09-30 2000-01-18 Sharp Kabushiki Kaisha Process of producing lithium nickel oxide and nonaqueous secondary battery using the same
WO1998054768A1 (en) * 1997-05-27 1998-12-03 Tdk Corporation Electrode for non-aqueous electrolytic cells
WO1999001903A1 (en) * 1997-07-01 1999-01-14 Matsushita Electric Industrial Co., Ltd. Secondary cell with nonaqueous electrolyte and process for preparing positive active material therefor
US6193946B1 (en) 1997-07-01 2001-02-27 Matsushita Electric Industrial Co., Ltd. Process for the preparation of a lithium composite metal oxide

Also Published As

Publication number Publication date
JP3434873B2 (en) 2003-08-11

Similar Documents

Publication Publication Date Title
KR101447453B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
JP3232984B2 (en) Method for producing nonaqueous electrolyte battery and positive electrode active material
US20090314985A1 (en) Pulverulent compounds, a process for the preparation thereof and the use thereof in lithium secondary batteries
JP3355126B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US12113204B2 (en) Method for producing positive electrode active material for lithium ion secondary battery, and molded body
JPH11273678A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacture, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2008013405A (en) Lithium-nickel-manganese-cobalt multiple oxide, method for producing the same, and application of the multiple oxide
JP7444534B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded article
JP4066472B2 (en) Plate-like nickel hydroxide particles, method for producing the same, and method for producing lithium / nickel composite oxide particles using the same as a raw material
US5496664A (en) Process for producing a positive electrode for lithium secondary batteries
JP3461800B2 (en) Lithium manganese nickel composite oxide and method for producing the same
JP7444535B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, and molded article
JP2006228604A (en) Anode active substance for lithium ion secondary batterry, and its manufacturing method
JP3355102B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JPH1160243A (en) Nickel hydroxide, lithium nickelate, their production and lithium ion secondary battery using the lithium nickelate
JP3709446B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP3434873B2 (en) Positive active material for non-aqueous lithium secondary battery, method for producing the same, and lithium secondary battery
JP4965019B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR19990034749A (en) Lithium-ion secondary battery employing a lithium composite oxide, a method of manufacturing the same, and a positive electrode using the same
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JPH08185863A (en) Positive electrode active material for lithium secondary battery and secondary battery using it
JPH087894A (en) Positive active material for nonaqueous lithium secondary battery, and lithium secondary battery
JP3344815B2 (en) Method for producing positive electrode active material for non-aqueous lithium secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 11

EXPY Cancellation because of completion of term