JPH07226485A - Manufacturing method of capacitor for integrated circuit - Google Patents

Manufacturing method of capacitor for integrated circuit

Info

Publication number
JPH07226485A
JPH07226485A JP1602994A JP1602994A JPH07226485A JP H07226485 A JPH07226485 A JP H07226485A JP 1602994 A JP1602994 A JP 1602994A JP 1602994 A JP1602994 A JP 1602994A JP H07226485 A JPH07226485 A JP H07226485A
Authority
JP
Japan
Prior art keywords
film
dielectric film
capacitor
temperature
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1602994A
Other languages
Japanese (ja)
Inventor
Tatsuya Hirose
達哉 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1602994A priority Critical patent/JPH07226485A/en
Publication of JPH07226485A publication Critical patent/JPH07226485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable a large capacitor in thin film to be manufactured at low temperature for realizing the on chip capacitor. CONSTITUTION:A lower electrode 13 comprising Ti is formed on a protective film 12 comprising SiON covering a substrate 11 and then a high dielectric film 14 comprising TiO2 required of high temperature baking step is formed at a low temperature having conductivity, next, the surface of the high dielectric film 14 is heated at a baking temperature by irradiating with the beams from a heavy hydrogen lamp having the wavelength in a region in shorter intrusion length than the film thickness of the high did dielectric film 14 and low transmittivity to the film 14 i.e., 125 (nm) and 160(nm) so as to form extremely thin high resistant film 14A. Next, the high resistant film 14A is used as a substantial dielectric film of a capacitor thereby enabling compact and large capacity capacitor to be manufactured at low temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばマイクロ波など
高い周波数帯で用いる集積回路、例えばMMIC(mi
crowave monolithic integr
ated circuit)などに組み込むのに好適な
キャパシタを製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an integrated circuit such as MMIC (mi) used in a high frequency band such as microwave.
crowave monolithic integr
The present invention relates to a method of manufacturing a capacitor suitable for being incorporated into an aerated circuit or the like.

【0002】一般に、キャパシタやインダクタなどの受
動素子は、トランジスタなどの能動素子に比較して大型
である為、MMICなどのパッケージも大型化せざるを
得ない状態にあり、従って、受動素子、特にキャパシタ
の小型化を図る必要がある。
Generally, since passive elements such as capacitors and inductors are larger than active elements such as transistors, the packages such as MMIC are inevitably increased in size. It is necessary to reduce the size of the capacitor.

【0003】[0003]

【従来の技術】現在、前記集積回路には、能動素子とし
てHEMT(high electron mobil
ity transistor:HEMT)やGaAs
を材料とするMESFET(metal semico
nductor fieldeffect trans
istor)などが用いられている。
2. Description of the Related Art Currently, in the integrated circuit, an HEMT (high electron mobile) is used as an active element.
(ty-transistor: HEMT) and GaAs
MESFET (metal semico)
nductor fieldeffect trans
istor) or the like is used.

【0004】それ等の専有面積は極めて小さいのである
が、それに比較するとキャパシタなどの受動素子の専有
面積は格段に大きい。従って、MMICチップのチップ
・サイズは、受動素子の大きさで律せられてしまう。
Although the area occupied by them is extremely small, the area occupied by passive elements such as capacitors is much larger than that. Therefore, the chip size of the MMIC chip is limited by the size of the passive element.

【0005】この為、直流阻止用キャパシタなどはオン
・チップ化せず、パッケージ内の適所にマウントするよ
うにしている。従って、MMICに於けるパッケージの
容積は大きくなるばかりでなく、コストも高く、また、
製造工程も煩雑である。
Therefore, the DC blocking capacitors and the like are not mounted on-chip, but are mounted in appropriate places in the package. Therefore, not only the package volume of the MMIC is large, but also the cost is high, and
The manufacturing process is also complicated.

【0006】前記したような問題を解消する為、近年、
高い比誘電率をもったセラミック系の材料を用い、専有
面積が小さいにも拘わらず、容量が大きいキャパシタが
開発され、現在、従来の技術に依った場合に比較し、面
積を約1/20乃至1/50に縮小することが可能にな
った。
In order to solve the above-mentioned problems, in recent years,
A capacitor using a ceramic-based material having a high relative dielectric constant and having a large capacitance despite its small occupied area has been developed. At present, the area is about 1/20 of that in the case of using the conventional technology. It has become possible to reduce the size to 1/50.

【0007】[0007]

【発明が解決しようとする課題】前記セラミック系の材
料を用いたキャパシタを製造する場合、被膜を形成した
だけで良質のセラミック膜を得ることはできず、長時間
に亙って高温に曝すことが必要である。
When manufacturing a capacitor using the above-mentioned ceramic material, it is not possible to obtain a good quality ceramic film only by forming a film, and to expose it to a high temperature for a long time. is necessary.

【0008】従って、HEMT・MMIC或いはGaA
s・MESFET・MMICなどでは、As抜けが生じ
たり、他の領域に於ける金属が半導体中に拡散したり、
活性層が破壊されるなどの問題を生じている。
Therefore, HEMT / MMIC or GaA
In s / MESFET / MMIC, etc., As may occur, metals in other regions may diffuse into the semiconductor,
This causes problems such as destruction of the active layer.

【0009】また、形成可能なセラミック膜の膜厚に
は、製造装置に由来する限界があることから、現在以上
にキャパシタの専有面積を縮小することは困難である。
Further, since there is a limit to the film thickness of the ceramic film that can be formed due to the manufacturing apparatus, it is difficult to further reduce the area occupied by the capacitor.

【0010】本発明では、薄膜化された大容量キャパシ
タを低温の下で製造可能であるようにし、キャパシタの
オン・チップ化を実現しようとする。
In the present invention, a large-capacity thin film capacitor can be manufactured at a low temperature, and an on-chip capacitor is realized.

【0011】[0011]

【課題を解決するための手段】図1乃至図6は本発明の
原理を解説する為の工程要所に於けるキャパシタを表す
要部切断側面図であり、以下、これ等の図を参照しつつ
説明する。
1 to 6 are side sectional views showing a capacitor in a process key point for explaining the principle of the present invention. Hereinafter, these figures will be referred to. While explaining.

【0012】図1参照 1−(1) 絶縁膜を有する半導体層1上に金属膜を形成してからパ
ターニングを行ってキャパシタの下部電極2を形成す
る。 図2参照 2−(1) 高誘電率をもつセラミックなどを材料とする誘電体膜3
を全面に形成する。
See FIG. 1 1- (1) A metal film is formed on a semiconductor layer 1 having an insulating film and then patterned to form a lower electrode 2 of a capacitor. See Fig. 2 2- (1) Dielectric film 3 made of ceramic or the like having a high dielectric constant
Are formed on the entire surface.

【0013】ところで、ここで形成する誘電体膜3に
は、導電性をもたせることが必要である。その理由は、
キャパシタの誘電体膜として実質的に作用するのは、こ
の後の工程で誘電体膜3の表面に生成させる極薄い被膜
であって、誘電体膜3の大部分は導体としての役割を果
たすことになるからである。
By the way, it is necessary that the dielectric film 3 formed here has conductivity. The reason is,
What acts substantially as the dielectric film of the capacitor is an extremely thin film formed on the surface of the dielectric film 3 in the subsequent step, and most of the dielectric film 3 functions as a conductor. Because.

【0014】誘電体膜3に導電性をもたせるには、例え
ばスパッタリング法に依る場合、基板温度を室温程度の
低温にして形成したり、或いは、イオン・ビーム・アシ
スト法に依る場合、前記と同様に低温を適用し、且つ、
イオン照射に依って内部に多量の欠陥を発生させると良
い。
In order to make the dielectric film 3 conductive, for example, in the case of using the sputtering method, the substrate temperature is set to a low temperature of about room temperature, or in the case of using the ion beam assist method, the same as above. Apply low temperature to
It is advisable to generate a large number of defects inside by ion irradiation.

【0015】図3参照 3−(1) 誘電体膜3に対して透過率が略零である波長以下の光を
発生する光源からの光を誘電体膜3に照射し、表面近傍
の温度を上昇させ、結晶構造を改質した被膜4を形成す
る。
Referring to FIG. 3, 3- (1) The dielectric film 3 is irradiated with light from a light source that generates light having a wavelength of which the transmittance is substantially zero with respect to the dielectric film 3, and the temperature near the surface is controlled. A coating 4 having a raised crystal structure and a modified crystal structure is formed.

【0016】この被膜4は、極めて薄く、また、高い誘
電率をもち、キャパシタに於ける実質的な誘電体として
作用する。
The coating 4 is extremely thin and has a high dielectric constant, and acts as a substantial dielectric in a capacitor.

【0017】図4参照 4−(1) 被膜4及び誘電体膜3のパターニングを行って、キャパ
シタに必要な部分を残して他を除去する。
Referring to FIG. 4, 4- (1) The coating film 4 and the dielectric film 3 are patterned to leave a portion necessary for the capacitor and remove others.

【0018】図5参照 5−(1) 被膜4及び誘電体膜3が変質しない程度の温度で熱処理
を行って、下部電極2の金属を誘電体膜3中に拡散させ
る。
5- (1) Heat treatment is performed at a temperature at which the coating film 4 and the dielectric film 3 are not deteriorated to diffuse the metal of the lower electrode 2 into the dielectric film 3.

【0019】誘電体膜3中には、前記したように、意図
的に多量の欠陥が導入されていることから、低温であっ
ても金属が拡散され易い。
Since a large amount of defects are intentionally introduced into the dielectric film 3 as described above, the metal is easily diffused even at a low temperature.

【0020】図6参照 6−(1) 金属膜を形成してからパターニングを行ってキャパシタ
の上部電極5を形成する。
See FIG. 6 6- (1) After forming a metal film, patterning is performed to form the upper electrode 5 of the capacitor.

【0021】前記のようにして製造されたキャパシタ
は、被膜4が、バルク結晶に近い状態になっていて、非
常に薄い高誘電体膜として作用するので、小型化しても
大容量にすることができ、チップ上に能動素子と共に集
積することができる。
In the capacitor manufactured as described above, the film 4 is in a state close to a bulk crystal and acts as a very thin high-dielectric film, so that the capacitor can have a large capacity even if it is downsized. Yes, it can be integrated with active devices on a chip.

【0022】前記したところから、本発明に依る集積回
路用キャパシタの製造方法に於いては、
From the above, in the method of manufacturing the capacitor for integrated circuit according to the present invention,

【0023】(1)基板(例えばGaAsからなる半導
体層11とSiONからなる保護膜12などをもつ基
板)上に下部電極(例えばTiからなる下部電極13)
を形成してから高温焼成を必要とする高(強)誘電体膜
(例えばTiO2 からなる高誘電体膜14)を導電性を
もつ程度の低温で形成する工程と、次いで、前記高
(強)誘電体膜の膜厚に比較し侵入長が短く且つ前記高
(強)誘電体膜に対する透過率が小さい領域の波長をも
つ光源(例えば重水素ランプなど)からの光を照射し前
記高(強)誘電体膜の表面を焼成温度に加熱して高抵抗
化された薄膜(例えば高抵抗化膜14A)を生成させる
工程とが含まれてなることを特徴とするか、或いは、
(1) Lower electrode (eg, lower electrode 13 made of Ti) on a substrate (eg, a substrate having a semiconductor layer 11 made of GaAs and a protective film 12 made of SiON)
Forming a high (strong) dielectric film (eg, a high dielectric film 14 made of TiO 2 ) requiring high temperature firing at a low temperature such that it has conductivity, and then the high (strong) ) Irradiating light from a light source (for example, a deuterium lamp) having a wavelength in a region where the penetration length is short compared to the film thickness of the dielectric film and the transmittance to the high (strong) dielectric film is small, Or a step of heating the surface of the (strong) dielectric film to a firing temperature to generate a high resistance thin film (for example, the high resistance film 14A), or

【0024】(2)前記(1)に於いて、高(強)誘電
体膜を形成する際にイオン・ビーム(例えば酸素イオン
・ビーム)を照射して物理的に損傷を与えて欠陥を生成
させることを特徴とするか、或いは、
(2) In the above (1), an ion beam (for example, an oxygen ion beam) is irradiated when the high (ferroelectric) dielectric film is formed to physically damage and generate a defect. Characterized in that, or

【0025】(3)前記(1)に於いて、下部電極を構
成する金属材料を高(強)誘電体膜中に拡散させる為の
熱処理を行う工程が含まれてなることを特徴とする。
(3) The above (1) is characterized by including a step of performing a heat treatment for diffusing the metal material forming the lower electrode into the high (ferroelectric) dielectric film.

【0026】[0026]

【作用】前記手段を採ることに依り、キャパシタに於け
る実質的な誘電体膜として作用する被膜を薄く形成する
ことができるので、専有面積が小さいにも拘わらず、大
きな容量をもつキャパシタを実現することができ、従来
は困難であったキャパシタのオン・チップ化が可能とな
り、集積回路のパッケージは小型化されるので、例えば
MMICなどには好適である。
By adopting the above-mentioned means, it is possible to form a thin film that substantially functions as a dielectric film in a capacitor, so that a capacitor having a large capacitance can be realized despite its small occupied area. Since it is possible to realize a capacitor on-chip, which has been difficult in the past, and the package of the integrated circuit can be miniaturized, it is suitable for MMIC, for example.

【0027】[0027]

【実施例】図7乃至図13は本発明一実施例を解説する
為の工程要所に於ける半導体装置の要部切断側面図であ
り、以下、これ等の図を参照しつつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 7 to 13 are side sectional views of essential parts of a semiconductor device in process steps for explaining one embodiment of the present invention, which will be described below with reference to these drawings.

【0028】図7参照 7−(1) 基板(図示せず)上にエピタキシャル成長させたGaA
sからなる半導体層11にプラズマCVD(plasm
a chemical vapour deposit
ion)法を適用することに依って、厚さ例えば150
0〔Å〕程度のSiONからなる保護膜12を形成す
る。
See FIG. 7 7- (1) GaA epitaxially grown on a substrate (not shown)
on the semiconductor layer 11 made of s by plasma CVD (plasm
a chemical vapor deposit
ion) method, depending on the thickness, for example 150
A protective film 12 made of SiON having a thickness of 0 [Å] is formed.

【0029】7−(2) 真空蒸着法を適用することに依って、保護膜12上に厚
さが例えば1000〔Å〕程度であるTi膜を形成す
る。
7- (2) A Ti film having a thickness of, for example, about 1000 [Å] is formed on the protective film 12 by applying the vacuum evaporation method.

【0030】7−(3) Arイオンを用いたイオン・ミリング法を適用すること
に依り、Ti膜のパターニングを行って下部電極13を
形成する。尚、下部電極13を構成する金属材料として
は、次の工程で形成する高誘電体膜中に拡散され易いも
のを選択することが好ましい。
7- (3) The lower electrode 13 is formed by patterning the Ti film by applying the ion milling method using Ar ions. As the metal material forming the lower electrode 13, it is preferable to select a metal material that is easily diffused in the high dielectric film formed in the next step.

【0031】図8参照 8−(1) イオン・ビーム・アシスト法を適用することに依り、全
面に厚さが例えば2000〔Å〕程度であるTiO2
らなる高誘電体膜14を形成する。
See FIG. 8 8- (1) By applying the ion beam assist method, a high dielectric film 14 made of TiO 2 having a thickness of, for example, about 2000 [Å] is formed on the entire surface.

【0032】ここで形成する高誘電体膜14には、多量
の欠陥を含ませて導電性にすることが必要であることか
ら、酸素イオンをイオン・ビームとして同時に照射する
と良い。尚、イオン・ビームとしては、高誘電体膜14
内に多量の欠陥を生成し、また、ストイキオメトリを変
えないものであれば適宜に選択することができる。
Since the high dielectric film 14 formed here needs to be made conductive by containing a large number of defects, it is preferable to simultaneously irradiate oxygen ions as an ion beam. In addition, as the ion beam, the high dielectric film 14 is used.
It can be appropriately selected as long as it produces a large amount of defects therein and does not change the stoichiometry.

【0033】TiO2 からなる高誘電体膜14を形成す
る際の雰囲気温度は、高誘電体膜14が導電性を維持で
きる範囲で選択して良く、例えば100〔℃〕に設定す
ることができる。
The atmosphere temperature when forming the high dielectric film 14 made of TiO 2 may be selected within a range in which the high dielectric film 14 can maintain conductivity, and can be set to, for example, 100 [° C.]. .

【0034】図9参照 9−(1) 出力が1〔kW〕、ピーク波長が125〔nm〕及び1
60〔nm〕の付近にある重水素ランプを光源として、
高誘電体膜14の表面近傍に於ける温度が500〔℃〕
乃至700〔℃〕、即ち、焼成温度になるまで照射し、
高誘電体膜14の結晶構造を変化(結晶化)させて厚さ
200〔Å〕の高抵抗化膜14Aを生成させる。
See FIG. 9 9- (1) Output is 1 [kW], peak wavelength is 125 [nm] and 1
Using a deuterium lamp near 60 [nm] as a light source,
The temperature near the surface of the high dielectric film 14 is 500 [° C.].
To 700 to 700 ° C., that is, to the firing temperature,
The crystal structure of the high-dielectric film 14 is changed (crystallized) to form a high-resistance film 14A having a thickness of 200 [Å].

【0035】この場合、温度は光源のパワー並びに照射
時間で制御するものであり、TiO2 からなる高誘電体
膜14は基板の全面に形成されているので、前記光照射
に依って他の領域が損傷される虞は皆無である。
In this case, the temperature is controlled by the power of the light source and the irradiation time, and since the high dielectric film 14 made of TiO 2 is formed on the entire surface of the substrate, another region is formed depending on the light irradiation. There is no risk of damage to the.

【0036】また、ここで用いる光源としては、TiO
2 に対する透過係数が零近くの波長であれば、前記重水
素ランプに限定されるものではない。
The light source used here is TiO 2.
The wavelength is not limited to the deuterium lamp as long as the transmission coefficient for 2 is near zero.

【0037】図10参照 10−(1) リソグラフィ技術に於けるレジスト・プロセス並びにエ
ッチング・ガスをSF6 とする反応性イオン・エッチン
グ(reactive ion etching:RI
E)法を適用することに依り、高抵抗化膜14A及び高
誘電体膜14のエッチングを行って、キャパシタに必要
な部分を残して他を除去する。本実施例の場合、キャパ
シタに必要な部分を平面で見た面積は、100〔μm〕
×100〔μm〕とした。
See FIG. 10 10- (1) Resist process in lithography and reactive ion etching (RI) using SF 6 as an etching gas
By applying the method E), the high resistance film 14A and the high-dielectric film 14 are etched to leave a portion necessary for the capacitor and remove the others. In the case of the present embodiment, the area required for the capacitor in plan view is 100 [μm].
× 100 [μm].

【0038】図11参照 11−(1) 下部電極13から材料であるTiを高誘電体膜14中に
拡散させる為、温度300〔℃〕〜350〔℃〕で時間
10〔分〕の熱処理を行う。尚、この程度の温度では、
集積回路に於ける他の領域が影響を受けることはなく、
しかも、Tiは高誘電体膜14の表面、即ち、高抵抗化
膜14Aに到達する程度に拡散する。
See FIG. 11 11- (1) In order to diffuse Ti, which is a material, from the lower electrode 13 into the high-dielectric film 14, heat treatment is performed at a temperature of 300 ° C. to 350 ° C. for a time of 10 minutes. To do. At this temperature,
Other areas of the integrated circuit are not affected,
Moreover, Ti diffuses to such an extent that it reaches the surface of the high dielectric film 14, that is, the high resistance film 14A.

【0039】11−(2) リソグラフィ技術に於けるレジスト・プロセスを適用す
ることに依り、上部電極にエア・ブリッジを生成させる
為のレジスト膜15を形成する。
11- (2) A resist film 15 for forming an air bridge is formed on the upper electrode by applying a resist process in the lithography technique.

【0040】図12参照 12−(1) 蒸着法を適用することに依り、全面に鍍金の下地になる
極薄い金属膜を形成する。尚、簡明にする為、前記極薄
い金属膜は図示されていない。
See FIG. 12 12- (1) By applying the vapor deposition method, an extremely thin metal film to be a base of plating is formed on the entire surface. Note that, for the sake of simplicity, the ultrathin metal film is not shown.

【0041】リソグラフィ技術に於けるレジスト・プロ
セスを適用することに依り、上部電極、上部電極引出し
パッド、下部電極引出しパッドを形成する為のパターン
をもつレジスト膜16を形成する。
By applying a resist process in the lithography technique, a resist film 16 having a pattern for forming an upper electrode, an upper electrode lead-out pad and a lower electrode lead-out pad is formed.

【0042】鍍金法を適用することに依って、レジスト
膜16で覆われていない部分、即ち、前記工程12−
(1)で形成した極薄い金属膜が表出されている部分上
に厚さが例えば1000〔Å〕/2000〔Å〕のPt
/Tiからなる上部電極17、ブリッジ部分18、上部
電極引き出しパッド19、下部電極引き出しパッド20
などをそれぞれ形成する。
By applying the plating method, the portion not covered with the resist film 16, that is, the step 12-
For example, Pt having a thickness of 1000 [Å] / 2000 [Å] is formed on the exposed portion of the ultrathin metal film formed in (1).
/ Ti upper electrode 17, bridge portion 18, upper electrode lead pad 19, lower electrode lead pad 20
Etc. are formed respectively.

【0043】図13参照 13−(1) レジスト膜16の溶解・剥離及びレジスト膜15の溶解
・剥離を行う。レジスト膜15を除去したことに依っ
て、ブリッジ部分18は下地と空気分離される。
See FIG. 13 13- (1) Dissolve and peel the resist film 16 and dissolve and peel the resist film 15. Due to the removal of the resist film 15, the bridge portion 18 is separated from the base by air.

【0044】13−(2) レジスト膜16を除去した跡には、前記工程12−
(1)で形成した鍍金の下地である極薄い金属膜が表出
され、また、それは、各電極などを短絡しているので、
イオン・ミリング法などを適用して除去する。これに依
って、上部電極17、ブリッジ部分18、上部電極引き
出しパッド19、下部電極引き出しパッド20などが完
全にパターン化される。
13- (2) In the trace of the removal of the resist film 16, the step 12-
An extremely thin metal film, which is the base of the plating formed in (1), is exposed, and since it short-circuits each electrode, etc.,
Ion milling method is applied to remove. As a result, the upper electrode 17, the bridge portion 18, the upper electrode lead pad 19, the lower electrode lead pad 20, etc. are completely patterned.

【0045】前記のようにして得られた集積回路用キャ
パシタは、その平面で見た面積が、前記したように、1
00〔μm〕×100〔μm〕であるにも拘わらず、容
量は約300〔pF〕〜400〔pF〕程度にすること
ができた。因みに、従来の技術に依った場合、前記の面
積では、高々4〔pF〕程度であるに過ぎない。
The integrated circuit capacitor obtained as described above has an area in plan view of 1 as described above.
Although the capacitance was 00 [μm] × 100 [μm], the capacitance could be set to about 300 [pF] to 400 [pF]. Incidentally, in the case of the conventional technique, the area is only about 4 [pF] at the most.

【0046】[0046]

【発明の効果】本発明に依る集積回路用キャパシタの製
造方法に於いては、基板上に下部電極を形成してから高
温焼成を必要とする高(強)誘電体膜を導電性をもつ程
度の低温で形成し、高(強)誘電体膜の膜厚に比較し侵
入長が短く且つ高(強)誘電体膜に対する透過率が小さ
い領域の波長をもつ光源からの光を照射し高(強)誘電
体膜の表面を焼成温度に加熱して高抵抗化された薄膜を
生成させる。
In the method of manufacturing a capacitor for an integrated circuit according to the present invention, a high (ferroelectric) dielectric film, which requires high temperature baking after forming a lower electrode on a substrate, has a degree of conductivity. It is formed at a low temperature and has a short penetration depth compared to the film thickness of the high (ferroelectric) dielectric film, and is irradiated with light from a light source having a wavelength in a region where the transmittance to the high (ferroelectric) dielectric film is small. The surface of the (strong) dielectric film is heated to the firing temperature to form a high resistance thin film.

【0047】前記構成を採ることに依り、キャパシタに
於ける実質的な誘電体膜として作用する被膜を薄く形成
することができるので、専有面積が小さいにも拘わら
ず、大きな容量をもつキャパシタを実現することがで
き、従来は困難であったキャパシタのオン・チップ化が
可能となり、集積回路のパッケージは小型化されるの
で、例えばMMICなどには好適である。
By adopting the above-mentioned structure, it is possible to form a thin film that substantially functions as a dielectric film in a capacitor, so that a capacitor having a large capacitance can be realized despite its small occupied area. Since it is possible to realize a capacitor on-chip, which has been difficult in the past, and the package of the integrated circuit can be miniaturized, it is suitable for MMIC, for example.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を解説する為の工程要所に於ける
キャパシタを表す要部切断側面図である。
FIG. 1 is a cutaway side view of an essential part showing a capacitor in a process key point for explaining the principle of the present invention.

【図2】本発明の原理を解説する為の工程要所に於ける
キャパシタを表す要部切断側面図である。
FIG. 2 is a side sectional view showing a main part of a capacitor in a process main part for explaining the principle of the present invention.

【図3】本発明の原理を解説する為の工程要所に於ける
キャパシタを表す要部切断側面図である。
FIG. 3 is a cutaway side view of a main part showing a capacitor in a process main part for explaining the principle of the present invention.

【図4】本発明の原理を解説する為の工程要所に於ける
キャパシタを表す要部切断側面図である。
FIG. 4 is a cutaway side view of a main part showing a capacitor in a process main part for explaining the principle of the present invention.

【図5】本発明の原理を解説する為の工程要所に於ける
キャパシタを表す要部切断側面図である。
FIG. 5 is a cutaway side view of a main part showing a capacitor in a process main part for explaining the principle of the present invention.

【図6】本発明の原理を解説する為の工程要所に於ける
キャパシタを表す要部切断側面図である。
FIG. 6 is a cutaway side view of a main part showing a capacitor in a process main part for explaining the principle of the present invention.

【図7】本発明一実施例を解説する為の工程要所に於け
る半導体装置の要部切断側面図である。
FIG. 7 is a side sectional view of a main part of a semiconductor device at a process key point for explaining an embodiment of the present invention.

【図8】本発明一実施例を解説する為の工程要所に於け
る半導体装置の要部切断側面図である。
FIG. 8 is a side sectional view of a main part of a semiconductor device in a process key point for explaining an embodiment of the present invention.

【図9】本発明一実施例を解説する為の工程要所に於け
る半導体装置の要部切断側面図である。
FIG. 9 is a side sectional view of a main part of a semiconductor device in a process main part for explaining an embodiment of the present invention.

【図10】本発明一実施例を解説する為の工程要所に於
ける半導体装置の要部切断側面図である。
FIG. 10 is a side sectional view of a main part of a semiconductor device in a process main part for explaining an embodiment of the present invention.

【図11】本発明一実施例を解説する為の工程要所に於
ける半導体装置の要部切断側面図である。
FIG. 11 is a side sectional view of a main part of a semiconductor device at a process key point for explaining an embodiment of the present invention.

【図12】本発明一実施例を解説する為の工程要所に於
ける半導体装置の要部切断側面図である。
FIG. 12 is a sectional side view of a main part of a semiconductor device in a process key point for explaining an embodiment of the present invention.

【図13】本発明一実施例を解説する為の工程要所に於
ける半導体装置の要部切断側面図である。
FIG. 13 is a side sectional view of a main part of a semiconductor device at a process key point for explaining an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 半導体層 12 保護膜 13 下部電極 14 高誘電体膜 14A 高抵抗化膜 15 レジスト膜 16 レジスト膜 17 上部電極 18 ブリッジ部分 19 上部電極引き出しパッド 20 下部電極引き出しパッド 11 semiconductor layer 12 protective film 13 lower electrode 14 high dielectric film 14A high resistance film 15 resist film 16 resist film 17 upper electrode 18 bridge part 19 upper electrode lead pad 20 lower electrode lead pad

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に下部電極を形成してから高温焼成
を必要とする高(強)誘電体膜を導電性をもつ程度の低
温で形成する工程と、 次いで、前記高(強)誘電体膜の膜厚に比較し侵入長が
短く且つ前記高(強)誘電体膜に対する透過率が小さい
領域の波長をもつ光源からの光を照射し前記高(強)誘
電体膜の表面を焼成温度に加熱して高抵抗化された薄膜
を生成させる工程とが含まれてなることを特徴とする集
積回路用キャパシタの製造方法。
1. A step of forming a high (ferroelectric) dielectric film, which requires a high temperature baking after forming a lower electrode on a substrate, at a low temperature such that it has conductivity, and then forming the high (strong) dielectric film. The penetration length is shorter than the film thickness of the body film, and the surface of the high (ferroelectric) dielectric film is baked by irradiating light from a light source having a wavelength in a region where the transmittance to the high (ferroelectric) dielectric film is small. And a step of producing a thin film having a high resistance by heating to a temperature, and a method for manufacturing a capacitor for an integrated circuit.
【請求項2】高(強)誘電体膜を形成する際にイオン・
ビームを照射して物理的に損傷を与えて欠陥を生成させ
ることを特徴とする請求項1記載の集積回路用キャパシ
タの製造方法。
2. When forming a high (ferroelectric) dielectric film, ions
2. The method of manufacturing a capacitor for an integrated circuit according to claim 1, further comprising the step of irradiating a beam to physically damage and generate a defect.
【請求項3】下部電極を構成する金属材料を高(強)誘
電体膜中に拡散させる為の熱処理を行う工程が含まれて
なることを特徴とする請求項1記載の集積回路用キャパ
シタの製造方法。
3. The integrated circuit capacitor according to claim 1, further comprising a step of performing a heat treatment for diffusing a metal material forming the lower electrode into a high (ferroelectric) dielectric film. Production method.
JP1602994A 1994-02-10 1994-02-10 Manufacturing method of capacitor for integrated circuit Pending JPH07226485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1602994A JPH07226485A (en) 1994-02-10 1994-02-10 Manufacturing method of capacitor for integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1602994A JPH07226485A (en) 1994-02-10 1994-02-10 Manufacturing method of capacitor for integrated circuit

Publications (1)

Publication Number Publication Date
JPH07226485A true JPH07226485A (en) 1995-08-22

Family

ID=11905152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1602994A Pending JPH07226485A (en) 1994-02-10 1994-02-10 Manufacturing method of capacitor for integrated circuit

Country Status (1)

Country Link
JP (1) JPH07226485A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352889B1 (en) 1998-01-08 2002-03-05 Matsushita Electric Industrial Co., Ltd. Method for fabricating capacitor and method for fabricating semiconductor device
US6838353B1 (en) 1996-07-08 2005-01-04 Micron Technology, Inc. Devices having improved capacitance and methods of their fabrication
US7057877B2 (en) 2003-08-27 2006-06-06 Seiko Epson Corporation Capacitor, method of manufacture thereof and semiconductor device
US7176100B2 (en) 2004-01-29 2007-02-13 Seiko Epson Corporation Capacitor and its manufacturing method, and semiconductor device
US7190567B2 (en) 2003-12-04 2007-03-13 Seiko Epson Corporation Capacitor and its manufacturing method, and semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6838353B1 (en) 1996-07-08 2005-01-04 Micron Technology, Inc. Devices having improved capacitance and methods of their fabrication
US7126205B2 (en) 1996-07-08 2006-10-24 Micron Technology, Inc. Devices having improved capacitance and methods of their fabrication
US7205599B2 (en) * 1996-07-08 2007-04-17 Micron Technology, Inc. Devices having improved capacitance
US6352889B1 (en) 1998-01-08 2002-03-05 Matsushita Electric Industrial Co., Ltd. Method for fabricating capacitor and method for fabricating semiconductor device
US7057877B2 (en) 2003-08-27 2006-06-06 Seiko Epson Corporation Capacitor, method of manufacture thereof and semiconductor device
US7190567B2 (en) 2003-12-04 2007-03-13 Seiko Epson Corporation Capacitor and its manufacturing method, and semiconductor device
US7176100B2 (en) 2004-01-29 2007-02-13 Seiko Epson Corporation Capacitor and its manufacturing method, and semiconductor device

Similar Documents

Publication Publication Date Title
US5811868A (en) Integrated high-performance decoupling capacitor
US5329152A (en) Ablative etch resistant coating for laser personalization of integrated circuits
NL7909363A (en) INTEGRATED SEMICONDUCTOR CHAIN AND METHOD FOR MAKING IT.
JPS6281709A (en) Manufacture of semiconductor device
JP2003519434A (en) Method for manufacturing a semiconductor component
US5874369A (en) Method for forming vias in a dielectric film
US4284659A (en) Insulation layer reflow
JPH07226485A (en) Manufacturing method of capacitor for integrated circuit
JP2000225479A (en) Method for finely adjusting passive electronic element
US20020182854A1 (en) Method of manufacturing a semiconductor device with a contact hole
JP2020537354A (en) A method for controlling the amount of radiation having a predetermined wavelength to be absorbed by a structure arranged on a semiconductor.
JPH01125937A (en) Manufacture of integrated circuit
JPH10214797A (en) Formation of pattern containing noble metal
RU2813743C1 (en) Method for manufacturing superconducting qubits with focused ion beam annealing
JPS59114853A (en) Laminated integrated circuit element
JPH05247658A (en) Formation of metal oxide thin film
JPH06216157A (en) Manufacture for mis-type semiconductor device
KR100997303B1 (en) Method of fabricating mim capacitor
NL1010431C2 (en) Method of manufacturing a local connection.
KR100445410B1 (en) METHOD FOR FABRICATING BIT LINE OF SEMICONDUCTOR DEVICE USING CVD-Ti LAYER, CVD-TiN LAYER, AND TUNGSTEN LAYER HAVING SPECIFIC RESISTANCE LOWER THAN SPECIFIC RESISTANCE OF TUNGSTEN SILICIDE LAYER
JPS63299157A (en) Capacitor element
KR100260521B1 (en) Method of manufacturing a semiconductor device
JPS59114854A (en) Laminated integrated circuit element
JPS59148329A (en) Fabrication of high melting point metal nitride film
JP2009252936A (en) Pattern formation method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021008