JPH07225222A - Fiber break detection method for carbon fiber reinforced plastic tube - Google Patents

Fiber break detection method for carbon fiber reinforced plastic tube

Info

Publication number
JPH07225222A
JPH07225222A JP10163594A JP10163594A JPH07225222A JP H07225222 A JPH07225222 A JP H07225222A JP 10163594 A JP10163594 A JP 10163594A JP 10163594 A JP10163594 A JP 10163594A JP H07225222 A JPH07225222 A JP H07225222A
Authority
JP
Japan
Prior art keywords
fiber
coil
breakage
tubular body
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10163594A
Other languages
Japanese (ja)
Inventor
Kenji Kubomura
健二 久保村
Tsugio Ishida
次雄 石田
Yasuhiro Aikawa
康浩 相川
Takeshi Sasaki
健 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP10163594A priority Critical patent/JPH07225222A/en
Publication of JPH07225222A publication Critical patent/JPH07225222A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method for detecting fiber break by using a rectangular excitation coil for making induction current selectively flow in each direction of the reinforced fiber of carbon fabric reinforced plastic tube. CONSTITUTION:Due to an excitation coil 10a wound around the periphery of CFRP (carbon fiber reinforced plastic) tube l. alternating field H takes place in the direction of tube's axis, and thanks to the magnetic field H, induction current i flaws in the axis direction of the tube 1. Diamagnetic field h takes place based on the induction current i, so, the impedance of a detection coil 10b changes. The detection coil 10b is wound along the inside of the excitation coil 10a. Since, in a carbon fiber reinforced plastic, the electric resistance in the direction of carbon fiber is lower than in perpendicular direction by about three digits, the induction current selectively flows in the fiber direction of 0 deg. direction. Therefore, if fiber break exists in that direction, electric resistance will increase, with the result of decrease in the induction current i and Diamagnetic field h, so, from the impedance changes at the detection coil, fabric break is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばゴルフシャフト
や釣竿などの炭素繊維強化プラスチックス製管状体の繊
維破断検出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting fiber breakage of a carbon fiber reinforced plastic tubular body such as a golf shaft or a fishing rod.

【0002】[0002]

【従来の技術】従来、炭素繊維強化プラスチックス(以
下、CFRPと記述する)の繊維破断を検出する方法と
しては、炭素繊維の導電性を利用して電気抵抗や電磁誘
導電流の変化から繊維破断を検出する方法が文献等に紹
介されている。
2. Description of the Related Art Conventionally, as a method for detecting fiber breakage of carbon fiber reinforced plastics (hereinafter referred to as CFRP), the conductivity of carbon fiber is used to detect fiber breakage from changes in electrical resistance and electromagnetic induction current. A method for detecting is introduced in the literature and the like.

【0003】しかし、いずれも試験片レベルで研究的に
行われている段階で実用的な技術とはなっていない。
However, none of them are practical techniques at the stage of being researched at the test piece level.

【0004】例えば、既刊行物である日本機械学会材料
力学講演会講演論文集(’90―11―28、29 豊
橋市)のp203―205には、一方向強化のCFRP
板の繊維軸方向の電気抵抗を測定しながら引っ張り試験
を行い、電気抵抗の変化から繊維破断を検出している例
が報告されている。
For example, in p203-205 of the published papers of the Japan Society of Mechanical Engineers Material Mechanics Lecture ('90 -11-28, 29 Toyohashi City), which has already been published, one-way reinforced CFRP is included.
An example has been reported in which a tensile test is performed while measuring the electrical resistance of the plate in the fiber axis direction, and fiber breakage is detected from changes in the electrical resistance.

【0005】しかし、この方法は繊維と直角方向の電気
抵抗が繊維方向のそれと比較して3〜4桁高いため、異
なる繊維方向を含む疑似等方性のCFRP材では通電方
向と平行でない繊維の破断は検出困難となり、使用する
ことができない。
However, in this method, the electrical resistance in the direction perpendicular to the fiber is higher by 3 to 4 orders of magnitude than that in the fiber direction. Breakage becomes difficult to detect and cannot be used.

【0006】さらに、試験片の両端面に導電性塗料を塗
布してリード線を取り出す必要があり、製品検査には不
適である。
Further, it is necessary to apply a conductive paint to both end faces of the test piece to take out the lead wire, which is not suitable for product inspection.

【0007】また、第4回新素材及びその製品の非破壊
評価シンポジウム講演論文集(平成5年1月)のp47
〜52には、人工の繊維破断傷を入れた一方向強化CF
RP積層板および0°と90°の二方向強化CFRP積
層板について電磁誘導試験法(渦電流法)によって検査
した例が報告されている。
[0007] In addition, p47 of the proceedings of the 4th non-destructive evaluation symposium of new materials and their products (January 1993)
-52 is unidirectionally reinforced CF with artificial fiber breaking scratches
An example in which an RP laminate and a 0 ° and 90 ° bidirectionally reinforced CFRP laminate are inspected by an electromagnetic induction test method (eddy current method) is reported.

【0008】しかし、一方向強化材では上述したCFR
Pの電気的異方性によって誘導電流が流れ難いため検出
ができない、と記述している。
However, in the unidirectional reinforcing material, the above-mentioned CFR is used.
It is described that the detection cannot be performed because the induced current is difficult to flow due to the electrical anisotropy of P.

【0009】また、二方向強化材については、異方性が
緩和されることによって誘導電流が流れ易くなり検出が
できたとしているが、繊維破断傷は0°層と90°層の
両方に入れてあり、どちらかの層のみに入れた場合は感
度が無いことが一方向強化の結果から予想できる。
Regarding the bidirectional reinforcing material, the anisotropy is alleviated, so that induced current can easily flow and can be detected, but the fiber breaking scratches are included in both the 0 ° layer and the 90 ° layer. It can be predicted from the result of the unidirectional strengthening that there is no sensitivity when only one of the layers is placed.

【0010】この方法の問題点は板面内に渦状の誘導電
流を流しているために電気抵抗の異方性の影響を強く受
けるためで、実用的な技術としては改善すべきものであ
る。
The problem with this method is that it is strongly affected by the anisotropy of electrical resistance because a spiral induced current is flowing in the plate surface, and it should be improved as a practical technique.

【0011】[0011]

【発明が解決しようとする課題】本発明は上記従来技術
の問題点に鑑みてなされたもので、CFRP管状体の繊
維破断を繊維方向に関係なく高感度で検出できる、繊維
破断検出方法の提供を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and provides a fiber breakage detection method capable of detecting fiber breakage of a CFRP tubular body with high sensitivity regardless of the fiber direction. With the goal.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明はCFRP管状体の繊維破断検出方法は、強
化繊維の方向毎に選択的に誘導電流を流すための励磁コ
イル群を設け、該励磁コイルのインピーダンス変化か
ら、または前記励磁コイル群と対をなす検出コイルを別
に設け、該検出コイルのインピーダンス変化から強化繊
維の破断を検出することを特徴とするものである。
In order to solve the above problems, the present invention provides a method of detecting fiber breakage of a CFRP tubular body, wherein an exciting coil group for selectively passing an induced current is provided in each direction of reinforcing fibers. It is characterized in that the breakage of the reinforcing fiber is detected from the impedance change of the exciting coil or a detection coil paired with the exciting coil group is separately provided and the change of the impedance of the detecting coil is detected.

【0013】[0013]

【作用】本発明を図面に基づき詳細に説明する。図1は
本発明の一実施態様を示す説明図である。繊維方向がそ
れぞれ0°、±45°、90°の四種類のプリプレグで
積層されたCFRP管状体1(例えば、ゴルフシャフト
や釣竿など)が、円筒状ボビン2、3、4、5を貫通し
て走行する。
The present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory diagram showing an embodiment of the present invention. A CFRP tubular body 1 (for example, a golf shaft or a fishing rod) laminated with four types of prepregs having fiber directions of 0 °, ± 45 °, and 90 ° penetrates the cylindrical bobbins 2, 3, 4, and 5, respectively. Run.

【0014】該円筒状ボビンの外周面上には0°、90
°、+45°、−45゜のそれぞれの繊維方向に選択的
に誘導電流を流すための励磁コイル9a、10a、11
a、12aが配置されており、また円筒状ボビンの内周
面上には検出コイル9b、10b、11b、12bがそ
れぞれ配置されている。
On the outer peripheral surface of the cylindrical bobbin, 0 °, 90 °
Exciting coils 9a, 10a, 11 for selectively flowing an induced current in the respective fiber directions of °, +45 °, and -45 °
a and 12a are arranged, and detection coils 9b, 10b, 11b and 12b are arranged on the inner peripheral surface of the cylindrical bobbin.

【0015】なお、管の軸方向を0°方向、円周方向を
90°方向としている。上記励磁コイルは、チャンネル
毎に周波数が変えられる4チャンネルの高周波電源6に
それぞれ接続されており、上記検出コイルはインピーダ
ンス測定装置7にそれぞれ接続されている。
The axial direction of the tube is 0 ° and the circumferential direction is 90 °. The exciting coils are connected to four-channel high-frequency power sources 6 whose frequencies can be changed for each channel, and the detection coils are connected to an impedance measuring device 7, respectively.

【0016】該インピーダンス測定装置7はインピーダ
ンス変化を電圧に変換して出力し、レコーダー8によっ
て電圧が記録される。
The impedance measuring device 7 converts the impedance change into a voltage and outputs the voltage, and the recorder 8 records the voltage.

【0017】次に、図1の構成によって強化繊維の破断
を検出する手段について図2〜5を参照しながら説明す
る。
Next, the means for detecting the breakage of the reinforcing fiber with the configuration of FIG. 1 will be described with reference to FIGS.

【0018】図2〜3は90°方向の繊維の破断を検出
する場合の説明図で、CFRP管状体1の外周上に配置
された矩形の励磁コイル9aによって管径方向の交番磁
界Hが発生し、該磁界Hにより図2に示したように管状
体1には円周方向に誘導電流iが流れる。
2 to 3 are explanatory views for detecting the breakage of the fiber in the 90 ° direction, and an alternating magnetic field H in the tube radial direction is generated by the rectangular exciting coil 9a arranged on the outer periphery of the CFRP tubular body 1. Then, due to the magnetic field H, an induced current i flows in the circumferential direction in the tubular body 1 as shown in FIG.

【0019】この誘導電流iにより反磁界hが発生し、
図3に示した検出コイル9bのインピーダンスが変化す
る。
A demagnetizing field h is generated by this induced current i,
The impedance of the detection coil 9b shown in FIG. 3 changes.

【0020】検出コイル9bは励磁コイル9aと管状体
1の間に配置してあり、矩形のコイルとなっており、ノ
イズの低減、感度向上等の目的から図示のような差動コ
イルとすることが望ましい。
The detection coil 9b is arranged between the exciting coil 9a and the tubular body 1 and is a rectangular coil. For the purpose of reducing noise and improving sensitivity, the detection coil 9b should be a differential coil as shown in the figure. Is desirable.

【0021】CFRPのプリプレグでは、繊維方向の電
気抵抗が直角方向に比べ三桁程度小さいため、上記誘導
電流は繊維方向が90°のプリプレグに選択的に流れ
る。
In the CFRP prepreg, the electric resistance in the fiber direction is smaller by about three orders of magnitude than that in the perpendicular direction, so that the induced current selectively flows in the prepreg having the fiber direction of 90 °.

【0022】従って、この方向の繊維に破断があれば電
気抵抗が増加し、誘導電流iの減少、反磁界hの減少と
なり、検出コイルのインピーダンス変化から繊維破断を
検出できる。
Therefore, if there is a break in the fiber in this direction, the electrical resistance increases, the induced current i decreases, the demagnetizing field h decreases, and the break of the fiber can be detected from the impedance change of the detection coil.

【0023】図4〜5は0°方向の繊維の破断を検出す
る場合の説明図で、CFRP管状体1の外周面上に配置
された矩形の励磁コイル10aによって管径方向の交番
磁界Hが発生し、該磁界Hにより図4に示したように管
状体1には管軸方向に誘導電流iが流れる。
FIGS. 4 to 5 are explanatory views for detecting the breakage of the fiber in the 0 ° direction. The rectangular exciting coil 10a arranged on the outer peripheral surface of the CFRP tubular body 1 causes an alternating magnetic field H in the radial direction of the tube. The generated magnetic field H causes an induced current i to flow in the tubular body 1 in the tube axis direction as shown in FIG.

【0024】この誘導電流iにより反磁界hが発生し、
図5に示した検出コイル10bのインピーダンスが変化
する。
A demagnetizing field h is generated by this induced current i,
The impedance of the detection coil 10b shown in FIG. 5 changes.

【0025】検出コイル10bは励磁コイル10aと管
状体1の間に配置してあり、矩形の差動コイルとなって
いる。前述した理由によって、この場合の誘導電流iは
繊維方向が0°方向のプリプレグに選択的に流れ、検出
コイルのインピーダンス変化から同方向の繊維破断を高
感度で検出する。
The detection coil 10b is arranged between the exciting coil 10a and the tubular body 1 and is a rectangular differential coil. For the reason described above, the induced current i in this case selectively flows in the prepreg in which the fiber direction is 0 °, and the fiber breakage in the same direction is detected with high sensitivity from the impedance change of the detection coil.

【0026】±45°方向の繊維の破断を検出する場合
は、図4〜5に示した矩形の励磁コイルと検出コイルと
同じものをCFRP管状体の外周面上、±45°方向に
それぞれ配置すればよい。
When detecting the breakage of the fiber in the ± 45 ° direction, the same rectangular exciting coil and detecting coil as shown in FIGS. 4 to 5 are arranged in the ± 45 ° direction on the outer peripheral surface of the CFRP tubular body. do it.

【0027】90°方向の繊維に選択的に誘導電流を流
すためには、CFRP管状体の外周状を360°巻いた
コイルでも効果があるが、強化繊維のうちCFRP管状
体の軸に対して+80°から−80°方向に強化された
繊維に選択的に誘導電流を流すためには繊維方向に添っ
た矩形のコイルはCFRP管状体の外周状を360゜巻
いたコイルよりも効果がある。
A coil in which the outer circumference of the CFRP tubular body is wound by 360 ° is also effective in selectively passing an induced current through the fibers in the 90 ° direction. The rectangular coil along the fiber direction is more effective than the coil obtained by winding the outer circumference of the CFRP tubular body through 360 ° in order to selectively flow the induced current to the fiber reinforced in the + 80 ° to -80 ° direction.

【0028】以上は特許請求項3の方法に関する作用を
説明したものであるが、請求項1、2の方法については
励磁コイルを検出コイルとしても用いるだけであり、作
用は同じである。なお、この場合も励磁コイルを差動型
とすることが望ましい。
Although the above has described the operation relating to the method of claim 3, the method of claims 1 and 2 is the same since the exciting coil is also used as the detection coil. Also in this case, it is desirable that the exciting coil is of the differential type.

【0029】[0029]

【実施例】図1の装置構成により、外径25mm、肉厚
1.4mm、長さ1000mmで、内側から順に繊維方
向が+45°、−45°、0°、90°のプリプレグが
各2層づつ合計8層から成る、CFRP管状体において
90°のプリプレグには先端から200mm、0°のプ
リプレグには400mm、−45°のプリプレグには6
00mm、+45゜のプリプレグには800mmの各位
置に繊維方向と直角に長さ5mmの人工傷を入れた試験
体を検査した。
EXAMPLE With the apparatus configuration of FIG. 1, two layers of prepregs having an outer diameter of 25 mm, a wall thickness of 1.4 mm, a length of 1000 mm, and a fiber direction of + 45 °, −45 °, 0 °, and 90 ° are arranged in this order from the inside. In a CFRP tubular body consisting of 8 layers each, 200 mm from the tip for a 90 ° prepreg, 400 mm for a 0 ° prepreg, and 6 for a -45 ° prepreg.
A test body in which artificial scratches having a length of 5 mm were inserted into the prepregs of 00 mm and + 45 ° at positions of 800 mm at right angles to the fiber direction was inspected.

【0030】図6〜9が検査結果で、図6、図7、図
8、図9は検出コイル9b、10b、11b、12bの
それぞれのインピーダンス変化に比例した電圧出力であ
る。
6 to 9 show the inspection results, and FIGS. 6, 7, 8 and 9 show the voltage output proportional to the impedance change of each of the detection coils 9b, 10b, 11b and 12b.

【0031】図6から、検出コイル9bは90°方向の
繊維の破断を最も高感度で検出し、±45゜方向の繊維
の破断に対してもある一定の感度を有するが、0°方向
の繊維の破断に対しては殆ど感度が無いことがわかる。
From FIG. 6, the detection coil 9b detects the breakage of the fiber in the 90 ° direction with the highest sensitivity, and has a certain sensitivity to the breakage of the fiber in the ± 45 ° direction, but in the 0 ° direction. It can be seen that there is almost no sensitivity to fiber breakage.

【0032】また、図7、図8、図9からも類似のこと
が言える。つまり、各検出コイルは誘導電流が選択的に
流れる方向の繊維の破断を最も高感度で、またその方向
と±45°異なる方向の繊維の破断はある感度で検出で
きることを、しかし90°異なる方向の繊維の破断につ
いては殆ど感度が無いことを示している。
The same can be said from FIGS. 7, 8 and 9. In other words, each detection coil can detect the breakage of the fiber in the direction in which the induced current selectively flows with the highest sensitivity, and the breakage of the fiber in the direction different by ± 45 ° with a certain sensitivity, but in the direction different by 90 °. It shows that there is almost no sensitivity to the breaking of the fiber.

【0033】上記実施例から、各繊維方向に選択的に誘
導電流を流すことによって、各方向の繊維の破断を見逃
すことなく同一感度で検出できることが確認された。
From the above examples, it was confirmed that by selectively passing an induced current in each fiber direction, it is possible to detect with the same sensitivity without missing the breakage of the fiber in each direction.

【0034】[0034]

【発明の効果】以上のように、この発明によれば強化繊
維の方向毎に選択的に誘導電流を流すための励磁コイル
群を設け、該コイル群のインピーダンス変化、もしくは
上記励磁コイル群と対をなす検出コイル群のインピーダ
ンス変化を測定するように構成したので、複数の繊維方
向を有するCFRP管状体の繊維破断を破断繊維の方向
によらず、定量的且つ高速に検査可能となる。
As described above, according to the present invention, an exciting coil group for selectively passing an induced current in each direction of the reinforcing fiber is provided, and the impedance change of the exciting coil group or the exciting coil group is paired with the exciting coil group. Since it is configured to measure the impedance change of the detection coil group that forms the, the fiber breakage of the CFRP tubular body having a plurality of fiber directions can be quantitatively and rapidly inspected regardless of the direction of the broken fiber.

【0035】そのため、CFRP製のゴルフシャフトや
釣竿等の製品検査技術として本発明は非常に有効であ
る。
Therefore, the present invention is very effective as a product inspection technique for CFRP golf shafts and fishing rods.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法の一実施例を示した装置構成説明
図である。
FIG. 1 is an explanatory diagram of an apparatus configuration showing an embodiment of a method of the present invention.

【図2】本発明において90°方向(周方向)の繊維の
破断を検出するための励磁コイルと検出コイルの形状、
および該励磁コイルによって材料中に発生する誘導電流
の方向を示した説明図である。
FIG. 2 shows the shapes of the exciting coil and the detecting coil for detecting the breakage of the fiber in the 90 ° direction (circumferential direction) in the present invention,
FIG. 3 is an explanatory diagram showing the directions of induced currents generated in a material by the exciting coil.

【図3】本発明において90°方向(周方向)の繊維の
破断を検出するための励磁コイルと検出コイルの形状、
および該励磁コイルによって材料中に発生する誘導電流
の方向を示した説明図である。
FIG. 3 shows shapes of an exciting coil and a detecting coil for detecting breakage of a fiber in a 90 ° direction (circumferential direction) in the present invention,
FIG. 3 is an explanatory diagram showing the directions of induced currents generated in a material by the exciting coil.

【図4】本発明において0°方向(管軸方向)の繊維の
破断を検出するための励磁コイルと検出コイルの形状、
および該励磁コイルによって材料中に発生する誘導電流
の方向を示した説明図である。
FIG. 4 shows the shapes of an exciting coil and a detecting coil for detecting breakage of fibers in the 0 ° direction (tube axis direction) in the present invention,
FIG. 3 is an explanatory diagram showing the directions of induced currents generated in a material by the exciting coil.

【図5】本発明において0°方向(管軸方向)の繊維の
破断を検出するための励磁コイルと検出コイルの形状、
および該励磁コイルによって材料中に発生する誘導電流
の方向を示した説明図である。
FIG. 5 shows shapes of an exciting coil and a detecting coil for detecting fiber breakage in the 0 ° direction (tube axis direction) in the present invention,
FIG. 3 is an explanatory diagram showing the directions of induced currents generated in a material by the exciting coil.

【図6】本発明による検査結果の一例を示した出力電圧
を示す図である。
FIG. 6 is a diagram showing an output voltage showing an example of a test result according to the present invention.

【図7】本発明による検査結果の一例を示した出力電圧
を示す図である。
FIG. 7 is a diagram showing an output voltage showing an example of a test result according to the present invention.

【図8】本発明による検査結果の一例を示した出力電圧
を示す図である。
FIG. 8 is a diagram showing an output voltage showing an example of a test result according to the present invention.

【図9】本発明による検査結果の一例を示した出力電圧
を示す図である。
FIG. 9 is a diagram showing an output voltage showing an example of a test result according to the present invention.

【符号の説明】[Explanation of symbols]

1 CFRP管状体 2 コイルボビン 3 コイルボビン 4 コイルボビン 5 コイルボビン 6 高周波電源 7 インピーダンス測定装置 8 レコーダー 9a 励磁コイル 9b 検出コイル 10a 励磁コイル 10b 検出コイル DESCRIPTION OF SYMBOLS 1 CFRP tubular body 2 Coil bobbin 3 Coil bobbin 4 Coil bobbin 5 Coil bobbin 6 High frequency power source 7 Impedance measuring device 8 Recorder 9a Excitation coil 9b Detection coil 10a Excitation coil 10b Detection coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相川 康浩 相模原市淵野辺5―10―1 新日本製鐵株 式会社エレクトロニクス研究所内 (72)発明者 佐々木 健 東京都中央区銀座五丁目13番16号 新日鐵 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiro Aikawa 5-10-1 Fuchinobe, Sagamihara City Inside the Electronics Research Laboratory, Nippon Steel Corporation (72) Inventor Ken Sasaki 5-13-16 Ginza, Chuo-ku, Tokyo Nippon Steel Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の強化繊維方向を有する炭素繊維強
化プラスチックス製管状体において、強化繊維の各方向
毎にそれぞれ選択的に誘導電流を流すための励磁コイル
群を設け、上記励磁コイルのそれぞれのインピーダンス
変化から、前記強化繊維の各方向毎の繊維破断を検出す
ることを特徴とする、炭素繊維強化プラスチックス製管
状体の繊維破断検出方法。
1. A carbon fiber reinforced plastic tubular body having a plurality of reinforcing fiber directions, wherein an exciting coil group for selectively passing an induced current is provided in each direction of the reinforcing fibers, and each of the exciting coils is provided. A method for detecting fiber breakage of a tubular body made of carbon fiber reinforced plastics, characterized in that the fiber breakage in each direction of the reinforcing fiber is detected from the impedance change.
【請求項2】 複数の強化繊維方向を有する炭素繊維強
化プラスチックス製管状体において、強化繊維のうち上
記管状体の軸に対して+80°から−80°方向に強化
された繊維に選択的に誘導電流を流すための励磁コイル
群を設け、上記励磁コイルのそれぞれのインピーダンス
変化から、前記強化繊維の各方向毎の繊維破断を検出す
ることを特徴とする、炭素繊維強化プラスチックス製管
状体の繊維破断検出方法。
2. A carbon fiber reinforced plastic tubular body having a plurality of reinforcing fiber directions, wherein among the reinforcing fibers, fibers reinforced in a direction of + 80 ° to −80 ° with respect to the axis of the tubular body are selectively selected. Providing an exciting coil group for flowing an induced current, from each impedance change of the exciting coil, detecting fiber breakage in each direction of the reinforcing fiber, characterized in that the tubular body made of carbon fiber reinforced plastics Fiber breakage detection method.
【請求項3】 請求項1と2において、励磁コイル群と
は別に該励磁コイルと対をなす検出コイル群を設け、上
記検出コイルのそれぞれのインピーダンス変化から、強
化繊維の各方向毎の繊維破断を検出することを特徴とす
る、炭素繊維強化プラスチックス製管状体の繊維破断検
出方法。
3. The fiber breakage according to claim 1 and 2, wherein a detection coil group forming a pair with the excitation coil is provided separately from the excitation coil group, and a fiber breakage occurs in each direction of the reinforcing fiber from a change in impedance of each of the detection coils. A method for detecting fiber breakage in a tubular body made of carbon fiber reinforced plastics, which comprises:
JP10163594A 1993-12-14 1994-04-15 Fiber break detection method for carbon fiber reinforced plastic tube Withdrawn JPH07225222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10163594A JPH07225222A (en) 1993-12-14 1994-04-15 Fiber break detection method for carbon fiber reinforced plastic tube

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-342003 1993-12-14
JP34200393 1993-12-14
JP10163594A JPH07225222A (en) 1993-12-14 1994-04-15 Fiber break detection method for carbon fiber reinforced plastic tube

Publications (1)

Publication Number Publication Date
JPH07225222A true JPH07225222A (en) 1995-08-22

Family

ID=26442493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163594A Withdrawn JPH07225222A (en) 1993-12-14 1994-04-15 Fiber break detection method for carbon fiber reinforced plastic tube

Country Status (1)

Country Link
JP (1) JPH07225222A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139115A (en) * 2006-11-30 2008-06-19 Nippon Petroleum Refining Co Ltd Nondestructive inspection method on multilayer body
KR20190055596A (en) * 2017-11-15 2019-05-23 (주)엘지하우시스 Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material prepared by the same
US10605777B2 (en) 2016-03-16 2020-03-31 Ihi Corporation Method for inspecting electroconductive composite material and device for inspecting electroconductive composite material
CN111796020A (en) * 2020-08-27 2020-10-20 厦门大学 Eddy current detection method and system for layering defects of carbon fiber composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008139115A (en) * 2006-11-30 2008-06-19 Nippon Petroleum Refining Co Ltd Nondestructive inspection method on multilayer body
US10605777B2 (en) 2016-03-16 2020-03-31 Ihi Corporation Method for inspecting electroconductive composite material and device for inspecting electroconductive composite material
KR20190055596A (en) * 2017-11-15 2019-05-23 (주)엘지하우시스 Method for manufacturing fiber-reinforced composite material and fiber-reinforced composite material prepared by the same
CN111796020A (en) * 2020-08-27 2020-10-20 厦门大学 Eddy current detection method and system for layering defects of carbon fiber composite material

Similar Documents

Publication Publication Date Title
US4855676A (en) Ferromagnetic eddy current probe having transmit and receive coil assemblies
EP2406623B1 (en) Eddy current flaw detection probe
JP5201495B2 (en) Magnetic flaw detection method and magnetic flaw detection apparatus
US3697867A (en) Vibration sensor utilizing eddy currents induced in member vibrating in the field of a magnet
CN102565728B (en) Method for measuring magnetic permeability of cylindrical soft magnetic material
Chen et al. A giant-magnetoresistance sensor for magnetic-flux-leakage nondestructive testing of a pipeline
WO2017082770A1 (en) Method for eddy-current testing of electrically conductive objects and device for realizing said method
CN103728365A (en) Nonlinearity-magnetization-based coil system of magnetic particle content detection device
JP3580905B2 (en) Magnetic sensor
JPH07225222A (en) Fiber break detection method for carbon fiber reinforced plastic tube
Wu et al. Giant circumferential magnetoelectric effect in Pb (Zr, Ti) O3/Mn-Zn-ferrite cylindrical composite
US2964699A (en) Probe device for flaw detection
JP2019032209A (en) Fiber-reinforced composite cable inspection method and inspection device
US4659990A (en) Eddy current test system including a member of high permeability material effective to concentrate flux in a very small region of a part
JP3572452B2 (en) Eddy current probe
JP4305271B2 (en) Magnetostrictive torque sensor
JPS6232355A (en) Eddy current flaw inspector
JPH07229875A (en) Flaw inspection device for tubular member made of carbon fiber-reinforced plastic
JPH07167839A (en) Inspection coil for electromagnetic induction flaw detection and flaw detecting method
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
JP6373471B1 (en) Inspection method and inspection apparatus for fiber reinforced composite cable
CN107748813B (en) Giant magneto-impedance modeling method of amorphous wire under non-axial magnetic field action
JPS59226858A (en) Flaw detector
JP7301506B2 (en) Eddy current flaw detector and eddy current flaw detection method
CN85103661B (en) Apparatus for measuring the concentration of magnetic suspended fluid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010703