JPH07221055A - Method for forming wiring - Google Patents

Method for forming wiring

Info

Publication number
JPH07221055A
JPH07221055A JP1085294A JP1085294A JPH07221055A JP H07221055 A JPH07221055 A JP H07221055A JP 1085294 A JP1085294 A JP 1085294A JP 1085294 A JP1085294 A JP 1085294A JP H07221055 A JPH07221055 A JP H07221055A
Authority
JP
Japan
Prior art keywords
polishing
metal film
film
rate ratio
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1085294A
Other languages
Japanese (ja)
Other versions
JP3554759B2 (en
Inventor
Shunichi Shibuki
俊一 渋木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP01085294A priority Critical patent/JP3554759B2/en
Publication of JPH07221055A publication Critical patent/JPH07221055A/en
Application granted granted Critical
Publication of JP3554759B2 publication Critical patent/JP3554759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To increase the polishing speed ratio for the insulation film of a metal film and easily control the film thickness of the metal film when the polishing is completed by a ground particle liquid where a surface-active agent with a higher polishing speed for the metal surface than the polishing speed for the insulation film is mixed on polishing. CONSTITUTION:A ground particle liquid where a surface-active agent with a higher polishing speed for a metal film 22 than the polishing speed for an insulation film 21 is mixed is used when polishing the metal film 22 on the projecting part of the insulation film 21. Then, the polishing speed for the metal film 22 becomes faster but that for the insulation film 21 does not change almost at all, thus polishing the metal film 22 faster than the insulation film 21. Further. since the surface of the metal film 22a inside a groove 21b cannot be etched easily, the film thickness of the metal film 22 when the polishing is completed can be easily controlled and at the same time the surface of the metal film 22a in the groove 21b and the surface 21c of the insulation film can be positively flattened, thus preventing a polishing device used for forming wiring from being corroded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は配線の形成方法に関し、
より詳細には研磨による半導体装置における配線の形成
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring forming method,
More specifically, the present invention relates to a method for forming wiring in a semiconductor device by polishing.

【0002】[0002]

【従来の技術】研磨による配線の形成方法として、絶縁
膜の上部に溝を形成し、この溝に金属材料を埋め込み、
さらに成膜後、この金属膜の上部を研磨により除去して
配線を形成する方法がある(特開昭62−102543
号公報)。図12は従来の研磨による配線の形成方法を
工程順に示した模式的断面図であり、(a)は絶縁膜に
溝を形成し、この絶縁膜の上面に金属膜を形成した状
態、(b)は研磨により絶縁膜表面まで金属膜を除去し
た状態、(c)は研磨をさらに続行した状態を示してい
る。この方法の場合、まず例えばスパッタリングにより
基板(図示せず)上にSiO2 等の絶縁膜21を形成す
る。絶縁膜21の厚さta は配線となる金属膜22aの
厚さtb と配線となる金属膜22aの下方に位置する絶
縁膜21aの厚さtc との和に等しくなるように設定
(ta =tb +tc )する。次にフォトリソグラフィ技
術を用い、絶縁膜21上にパターニング処理を施し、溝
21bを形成する。この後、絶縁膜21上にアルミニウ
ム合金(Al−SiまたはAl−Cu)の金属膜22を
形成する(a)。次に絶縁膜表面21c上にある金属膜
22を研磨により除去し、全体的に平坦化するとともに
絶縁膜21の溝21bに配線としての金属膜22aを埋
め込み形成する。この研磨には、砥粒としてAl2O3
子等、また砥粒液として硫酸水溶液(pH2.2)、硝
酸水溶液(pH2.2)、酢酸水溶液(pH2.8)等
が用いられる。これらの砥粒液を用いた場合、絶縁膜2
1の研磨速度よりアルミニウム合金からなる金属膜22
の研磨速度が速くなり、研磨終了時における配線となる
金属膜の厚さtb が制御される(b)。
2. Description of the Related Art As a method of forming wiring by polishing, a groove is formed on an insulating film, and a metal material is embedded in the groove.
Further, after forming the film, there is a method of removing the upper portion of the metal film by polishing to form a wiring (Japanese Patent Laid-Open No. 62-102543).
Issue). FIG. 12 is a schematic cross-sectional view showing a method of forming a wiring by conventional polishing in the order of steps. (A) shows a state in which a groove is formed in an insulating film and a metal film is formed on the upper surface of the insulating film, (b) () Shows a state where the metal film is removed to the surface of the insulating film by polishing, and (c) shows a state where polishing is further continued. In this method, first, an insulating film 21 such as SiO 2 is formed on a substrate (not shown) by sputtering, for example. The thickness t a of the insulating film 21 is set to be equal to the sum of the thickness t c of the insulating film 21a which is located below the metal film 22a as the wiring and the thickness t b of the metal film 22a as the wiring ( t a = t b + t c ). Next, using a photolithography technique, a patterning process is performed on the insulating film 21 to form a groove 21b. After that, a metal film 22 of an aluminum alloy (Al-Si or Al-Cu) is formed on the insulating film 21 (a). Next, the metal film 22 on the insulating film surface 21c is removed by polishing to planarize the entire surface and the groove 21b of the insulating film 21 is filled with the metal film 22a as a wiring. In this polishing, Al 2 O 3 particles or the like are used as abrasive grains, and an aqueous solution of sulfuric acid (pH 2.2), an aqueous solution of nitric acid (pH 2.2), an aqueous solution of acetic acid (pH 2.8) or the like is used as an abrasive grain liquid. When these abrasive liquids are used, the insulating film 2
A metal film 22 made of an aluminum alloy at a polishing rate of 1
The polishing rate is increased, and the thickness t b of the metal film to be the wiring at the end of polishing is controlled (b).

【0003】また砥粒としてAl23 粒子、砥粒液と
して界面活性剤水溶液を用い、黄銅、構造用炭素鋼(J
IS−S55C)、チタニウム及び銀の単一金属をラッ
ピング研磨する方法が提案されている(友田ほか:19
93年度精密工学会秋季大会学術講演会講演論文集、p
723〜p724)。
Al 2 O 3 particles are used as abrasive grains, an aqueous surfactant solution is used as abrasive liquid, and brass and structural carbon steel (J
IS-S55C), a method of lapping and polishing a single metal of titanium and silver has been proposed (Tomoda et al .: 19
1993 Proceedings of Japan Society for Precision Engineering, Autumn Conference, Proceedings, p
723-p724).

【0004】[0004]

【発明が解決しようとする課題】上記した配線の形成方
法において、砥粒液に硫酸水溶液、酢酸水溶液を用い、
絶縁膜21と金属膜22とを研磨する場合、金属膜22
の絶縁膜21に対する研磨速度比Rp (Rp =金属膜の
研磨速度/絶縁膜の研磨速度)は比較的小さい。そのた
め図11(c)に示したように、絶縁膜表面21cまで
研磨が到達した後、さらに絶縁膜21と金属膜22aと
が研磨されて金属膜22aの厚さが薄くなり易い。した
がって研磨終了時に配線となる金属膜22aの厚さをt
b に制御することが難しいという課題があった。
In the above method for forming a wiring, a sulfuric acid aqueous solution or an acetic acid aqueous solution is used as the abrasive liquid,
When polishing the insulating film 21 and the metal film 22, the metal film 22
The polishing rate ratio R p to the insulating film 21 (R p = polishing rate of metal film / polishing rate of insulating film) is relatively small. Therefore, as shown in FIG. 11C, after the polishing reaches the insulating film surface 21c, the insulating film 21 and the metal film 22a are further polished, and the thickness of the metal film 22a tends to be thin. Therefore, when the polishing is completed, the thickness of the metal film 22a to be the wiring is
There was a problem that it was difficult to control b .

【0005】また上記した配線の形成方法においては、
砥粒液に硝酸水溶液等の酸を用いており、これらの砥粒
液は金属膜22自体をエッチングする性質を有する。図
13は砥粒液に硝酸水溶液を用いた場合における従来の
配線の形成方法を工程順に示した模式的断面図であり、
(a)は研磨前の状態、(b)は研磨途中の状態、
(c)は絶縁膜表面まで研磨した状態を示している。こ
の方法の場合、研磨速度比Rp を高めるために砥粒液濃
度を濃くすると、金属膜22を研磨するにつれて溝21
b内の金属膜22a表面もエッチングされ(b)、絶縁
膜表面21cまで研磨が到達した際、配線となる金属膜
22aの厚さtd が薄くなり易い(c)という課題があ
った。また金属膜22a表面がエッチングされるため、
金属膜22a表面と絶縁膜表面21cとが同一面になる
ように平坦化することができないという課題があり、し
たがって砥粒液濃度を濃くして研磨速度比Rp を高める
ことが難しいという課題があった。
Further, in the above wiring forming method,
An acid such as a nitric acid aqueous solution is used as the abrasive liquid, and these abrasive liquids have the property of etching the metal film 22 itself. FIG. 13 is a schematic cross-sectional view showing a conventional wiring forming method in the order of steps when a nitric acid aqueous solution is used as the abrasive liquid.
(A) is a state before polishing, (b) is a state during polishing,
(C) shows a state in which the surface of the insulating film is polished. In the case of this method, if the concentration of the abrasive liquid is increased in order to increase the polishing rate ratio R p , as the metal film 22 is polished, the grooves 21 are formed.
The surface of the metal film 22a in b is also etched (b), and when the polishing reaches the insulating film surface 21c, there is a problem that the thickness t d of the metal film 22a to be the wiring tends to be thin (c). Further, since the surface of the metal film 22a is etched,
There is a problem that the surface of the metal film 22a and the surface 21c of the insulating film cannot be flattened so that they are flush with each other, and therefore it is difficult to increase the concentration of the abrasive liquid and increase the polishing rate ratio R p. there were.

【0006】また上記した配線の形成方法においては、
砥粒液に硝酸水溶液等の酸を用いているため、研磨装置
を構成する金属部材(ステンレス鋼、鋳鉄等)に腐食が
発生し易く、実用化が難しいという課題があった。
Further, in the above-mentioned wiring forming method,
Since an acid such as a nitric acid aqueous solution is used as the abrasive liquid, there is a problem that metal members (stainless steel, cast iron, etc.) constituting the polishing apparatus are likely to be corroded and practical application is difficult.

【0007】本発明はこのような課題に鑑みなされたも
のであり、金属膜の絶縁膜に対する研磨速度比を高める
ことができ、研磨終了時における金属膜の膜厚の制御が
容易で、金属膜の表面と絶縁膜の表面との平坦化を図る
ことができるとともに、配線の形成に用いられる装置の
腐食を防止することができる配線の形成方法を提供する
ことを目的としている。
The present invention has been made in view of the above problems. The polishing rate ratio of a metal film to an insulating film can be increased, the thickness of the metal film can be easily controlled at the end of polishing, and the metal film can be easily controlled. It is an object of the present invention to provide a wiring forming method capable of flattening the surface of the substrate and the surface of the insulating film and preventing corrosion of a device used for forming the wiring.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る配線の形成方法は、表面に凹凸部を有す
る絶縁膜上に金属膜を形成し、前記絶縁膜の凸部上の前
記金属膜を研磨により除去する配線の形成方法におい
て、研磨時に前記絶縁膜に対する研磨速度より前記金属
膜に対する研磨速度が大きい界面活性剤を混入した砥粒
液を用いることを特徴としている。
In order to achieve the above object, a method of forming a wiring according to the present invention is such that a metal film is formed on an insulating film having an uneven portion on the surface, and a metal film is formed on the convex portion of the insulating film. In the method of forming a wiring for removing the metal film by polishing, an abrasive liquid mixed with a surfactant having a polishing rate for the metal film that is higher than a polishing rate for the insulating film is used during polishing.

【0009】[0009]

【作用】図11は砥粒液に所定の界面活性剤を用いた場
合における配線の形成方法を工程順に示した模式的断面
図であり、(a)は研磨前の状態、(b)は研磨途中の
状態、(c)は絶縁膜表面まで研磨した状態を示してい
る。この方法の場合、界面活性剤により砥粒の分散性が
高められるため、金属膜22の研磨が効率的に進行する
一方、界面活性剤のエッチング作用がきわめて少ないた
め、研磨パッドが当たらない溝21b内の金属膜22a
表面はエッチングされないこととなる(b)。また界面
活性剤の添加により、金属膜22に対する研磨速度は速
くなるが、絶縁膜21に対する研磨速度はほとんど変化
しないことを本発明者は見出した。その結果、絶縁膜2
1に比べて金属膜22をより速く研磨し得ることとな
る。さらに金属膜22a表面はエッチングされ難いた
め、研磨終了時における金属膜22の膜厚をtb に容易
に制御し得るとともに、溝21b内の金属膜22a表面
と絶縁膜の表面21cとの平坦化を確実に図り得ること
となる(c)。
FIG. 11 is a schematic cross-sectional view showing, in the order of steps, a method of forming a wiring when a predetermined surfactant is used as an abrasive liquid. (A) is a state before polishing and (b) is a polishing state. A state in the middle, (c) shows a state in which the surface of the insulating film is polished. In the case of this method, the dispersibility of the abrasive grains is enhanced by the surfactant, so that the polishing of the metal film 22 proceeds efficiently, while the etching action of the surfactant is extremely small, so that the groove 21b which does not hit the polishing pad is formed. Metal film 22a inside
The surface will not be etched (b). The present inventor has found that the addition of the surfactant increases the polishing rate for the metal film 22 but hardly changes the polishing rate for the insulating film 21. As a result, the insulating film 2
Therefore, the metal film 22 can be polished more quickly than in No. 1. Further, since the surface of the metal film 22a is difficult to be etched, the film thickness of the metal film 22 at the end of polishing can be easily controlled to t b , and the surface of the metal film 22a in the groove 21b and the surface 21c of the insulating film are flattened. Can be reliably achieved (c).

【0010】本発明に係る配線の形成方法によれば、研
磨時に絶縁膜に対する研磨速度より金属膜に対する研磨
速度が大きい界面活性剤を混入した砥粒液を用いるの
で、前記金属膜の前記絶縁膜に対する研磨速度比を高め
得ることとなる。一方、前記金属膜や研磨装置を構成す
る金属材料は前記界面活性剤によりエッチングされ難い
ため、これら複合的作用により研磨終了時における配線
としての前記金属膜の膜厚を容易に制御し得るととも
に、前記金属膜の表面と前記絶縁膜の表面との平坦化を
確実に図り得ることとなり、さらには配線の形成に用い
られる前記研磨装置の腐食を防止し得ることとなる。
According to the wiring forming method of the present invention, since the abrasive grain liquid mixed with the surfactant has a polishing rate for the metal film which is higher than the polishing rate for the insulating film during polishing, the insulating film of the metal film is used. The polishing rate ratio to On the other hand, since the metal film or the metal material constituting the polishing apparatus is difficult to be etched by the surfactant, it is possible to easily control the film thickness of the metal film as the wiring at the end of polishing by these combined actions, The surface of the metal film and the surface of the insulating film can be surely flattened, and further, corrosion of the polishing apparatus used for forming the wiring can be prevented.

【0011】なお、本発明は基板上に形成された絶縁膜
と金属膜とを研磨し、該金属膜の前記絶縁膜に対する研
磨速度比を高めつつ、前記絶縁膜と前記金属膜との表面
を平坦化する方法であり、上記した単一金属のラッピン
グ研磨方法とは異なる技術である。
According to the present invention, the insulating film and the metal film formed on the substrate are polished, and the polishing rate ratio of the metal film to the insulating film is increased, while the surfaces of the insulating film and the metal film are polished. This is a flattening method, which is a technique different from the above-described single metal lapping and polishing method.

【0012】[0012]

【実施例】以下、本発明に係る配線の形成方法の実施例
を図面に基づいて説明する。図1は本発明に係る配線の
形成方法の実施例を工程順に示した模式的断面図であ
り、(a)は絶縁膜に溝を形成し、この絶縁膜の上面に
金属膜を形成した状態、(b)は研磨により絶縁膜表面
まで金属膜を除去した状態を示している。まずECR−
CVD(Electron Cyclotron Resonance Chemical Vapo
r Deposition)法により、略平坦形状を有する基板(図
示せず)上にSiO2 等の絶縁膜11を形成する。次に
フォトリソグラフィ技術を用い、絶縁膜11上の所定箇
所にパターニング処理を施し、溝11bを形成する。こ
の後、ECRスパッタ法により絶縁膜11上にAl−C
u合金またはCuの金属膜12を形成する(a)。次に
絶縁膜表面11c上にある金属膜12を研磨により除去
し、全体的に平坦化するとともに絶縁膜11の溝11b
に配線としての金属膜12aを埋め込み形成する。この
研磨の際、砥粒液として金属膜12の絶縁膜11に対す
る研磨速度比Rp が大きい界面活性剤を混合したものを
使用する(b)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a wiring forming method according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of a wiring forming method according to the present invention in the order of steps. FIG. 1A shows a state in which a groove is formed in an insulating film and a metal film is formed on the upper surface of the insulating film. , (B) show a state where the metal film is removed to the surface of the insulating film by polishing. First, ECR-
CVD (Electron Cyclotron Resonance Chemical Vapo
The insulating film 11 made of SiO 2 or the like is formed on a substrate (not shown) having a substantially flat shape by the r Deposition method. Next, using a photolithography technique, a patterning process is performed on a predetermined portion of the insulating film 11 to form a groove 11b. After that, Al-C is formed on the insulating film 11 by the ECR sputtering method.
A metal film 12 of u alloy or Cu is formed (a). Next, the metal film 12 on the insulating film surface 11c is removed by polishing to planarize the entire surface and the groove 11b of the insulating film 11 is removed.
A metal film 12a as a wiring is embedded and formed. In this polishing, a mixture of a surfactant having a large polishing rate ratio R p of the metal film 12 to the insulating film 11 is used as the abrasive liquid (b).

【0013】以下に、平均粒径が約0.05μmのSi
2 粒子を純水に約15%混合したものに界面活性剤を
添加・混合した砥粒液を用い、この砥粒液中の界面活性
剤濃度と、金属膜12の絶縁膜11に対する研磨速度比
p (以下、単に研磨速度比Rp と記す)と、金属膜1
2の研磨速度に対するエッチング速度比Re (以下、単
にエッチング速度比Re と記す。Re =金属膜のエッチ
ング速度/金属膜の研磨速度)との関係を調査した結果
について説明する。サンプルとしては、6インチのSi
基板上に、ECR−CVD法によりSiO2 の絶縁膜を
形成したもの(A)と、ECRスパッタ法によりAl−
Cu合金またはCuの金属膜を形成したもの(B)とを
用いた。界面活性剤としては、下記の表1に示した酢酸
ステアリルアミン、ポリエチレングリコール、ラウリン
酸ナトリウム、オレイン酸ナトリウムを用いた。
Below, Si having an average particle size of about 0.05 μm is used.
Using an abrasive liquid in which a surfactant is added to and mixed with a mixture of O 2 particles in pure water of about 15%, the concentration of the surfactant in the abrasive liquid and the polishing rate of the metal film 12 with respect to the insulating film 11 are used. Ratio R p (hereinafter, simply referred to as polishing rate ratio R p ) and metal film 1
Etch rate ratio for the two polishing rate R e (hereinafter, simply polishing rate of the etching rate / metal film .R e = metal film, referred to as the etch rate ratio R e) described the results of investigating the relationship between. As a sample, 6 inch Si
A substrate on which an insulating film of SiO 2 is formed by the ECR-CVD method (A) and Al-by the ECR sputtering method
A Cu alloy or a Cu metal film (B) was used. As the surfactant, stearylamine acetate, polyethylene glycol, sodium laurate and sodium oleate shown in Table 1 below were used.

【0014】[0014]

【表1】 [Table 1]

【0015】研磨装置はシリコンウエハの研磨に通常用
いられるものを使用し、研磨圧力は100g/cm2
前記基板と前記研磨装置における研磨定盤との相対速度
は60cm/secに設定した。研磨速度比Rp はサン
プル(A)とサンプル(B)とを同一条件で研磨し、単
一時間当たりにおける金属膜の研磨量(深さ)/絶縁膜
の研磨量(深さ)により測定した。エッチング速度比R
e はサンプル(B)の金属膜を砥粒液により常温でエッ
チングし、単一時間当たりにおける金属膜のエッチング
量(深さ)/金属膜の研磨量(深さ)により測定した。
なお比較例として平均粒径が約0.05μmのSiO2
粒子を純水に約15%混合したものに、表1に示した硫
酸、酢酸、硝酸を添加・混合した砥粒液をそれぞれ用
い、Al−Cu合金の金属膜とSiO2 の絶縁膜とを研
磨またはエッチングした場合について併せて説明する。
The polishing apparatus used is one normally used for polishing silicon wafers, and the polishing pressure is 100 g / cm 2 ,
The relative speed between the substrate and the polishing platen in the polishing apparatus was set to 60 cm / sec. The polishing rate ratio R p was measured by polishing the sample (A) and the sample (B) under the same conditions, and polishing the metal film (depth) / insulating film (depth) per single time. . Etching rate ratio R
e was measured by etching the metal film of the sample (B) at room temperature with an abrasive liquid and etching the metal film per unit time (depth) / polishing amount of the metal film (depth).
As a comparative example, SiO 2 having an average particle size of about 0.05 μm
A metal film of an Al—Cu alloy and an insulating film of SiO 2 were prepared by using the abrasive liquids in which sulfuric acid, acetic acid, and nitric acid shown in Table 1 were added and mixed in a mixture of particles in pure water of about 15%. The case of polishing or etching will be described together.

【0016】図8、図9は比較例1、比較例2のそれぞ
れ硫酸、酢酸を添加・混合した砥粒液を用いた場合にお
ける重量%濃度と、研磨速度比Rp 及びエッチング速度
比Re との関係を示した曲線図である。図8、図9から
明らかなように、硫酸、酢酸を添加・混合した砥粒液を
用いた場合、砥粒液中の硫酸、酢酸濃度が増えるにつれ
て研磨速度比Rp が増大するとともに、エッチング速度
比Re も増大する。したがって絶縁膜表面11cによる
金属膜12a(ともに図1)の研磨停止効果は大きくな
るが、金属膜12aがエッチングされ易くなり、金属膜
12a表面と絶縁膜表面11c(ともに図1)との平坦
化が困難となり、配線となる金属膜12a(図1)の所
望膜厚も得難くなる。
FIGS. 8 and 9 show the weight% concentration, the polishing rate ratio R p and the etching rate ratio R e in the case of using the abrasive liquids in which sulfuric acid and acetic acid were added and mixed in Comparative Examples 1 and 2, respectively. It is a curve figure showing the relation with. As is clear from FIG. 8 and FIG. 9, in the case of using an abrasive grain liquid to which sulfuric acid and acetic acid are added and mixed, the polishing rate ratio R p increases as the concentration of sulfuric acid and acetic acid in the abrasive grain liquid increases, and etching is performed. The speed ratio R e also increases. Therefore, the polishing stop effect of the metal film 12a (both in FIG. 1) by the insulating film surface 11c becomes large, but the metal film 12a is easily etched, and the surface of the metal film 12a and the insulating film surface 11c (both in FIG. 1) are flattened. It becomes difficult to obtain the desired film thickness of the metal film 12a (FIG. 1) which will be the wiring.

【0017】また図10は比較例3の硝酸を添加・混合
した砥粒液を用いた場合における重量%濃度と、研磨速
度比Rp 及びエッチング速度比Re との関係を示した曲
線図である。図10から明らかなように、硝酸を添加・
混合した砥粒液を用いた場合、硝酸が低濃度の際は研磨
速度比Rp が比較的高く、かつエッチング速度比Re
小さくなっており、平坦化が容易となり、所定の金属膜
厚も比較的得易い。しかし、砥粒液中の硝酸濃度が増え
るにつれて研磨速度比Rp は一層増大するとともに、エ
ッチング速度比Re も増大しており、絶縁膜の研磨停止
効果はより大きくなるが、平坦化が困難となり、金属膜
の所望膜厚も得難くなる。
FIG. 10 is a curve diagram showing the relationship between the weight% concentration and the polishing rate ratio R p and the etching rate ratio R e in the case of using the abrasive liquid in which nitric acid was added and mixed in Comparative Example 3. is there. As is clear from FIG. 10, nitric acid was added.
When a mixed abrasive liquid is used, the polishing rate ratio R p is relatively high and the etching rate ratio R e is small when nitric acid is at a low concentration, facilitating the flattening and achieving a predetermined metal film thickness. Is relatively easy to obtain. However, as the nitric acid concentration in the abrasive liquid increases, the polishing rate ratio R p further increases and the etching rate ratio R e also increases, so that the polishing stop effect of the insulating film becomes larger, but the planarization is difficult. Therefore, it becomes difficult to obtain the desired film thickness of the metal film.

【0018】一方、図2は実施例1の酢酸ステアリルア
ミンを混合した砥粒液を用いた場合における重量%濃度
と、研磨速度比Rp 及びエッチング速度比Re との関係
を示した曲線図である。図2から明らかなように、酢酸
ステアリルアミンを混合した砥粒液を用いた場合、砥粒
液中の酢酸ステアリルアミン濃度が0.01%から20
%に増えるにつれて研磨速度比Rp は略2から略20に
増大するが、エッチング速度比Re は略0に維持され
る。
On the other hand, FIG. 2 is a curve diagram showing the relationship between the weight% concentration and the polishing rate ratio R p and the etching rate ratio R e in the case of using the abrasive liquid mixed with stearylamine acetate in Example 1. Is. As is clear from FIG. 2, when the abrasive liquid containing stearylamine acetate was used, the concentration of stearylamine acetate in the abrasive liquid was 0.01% to 20%.
The polishing rate ratio R p increases from approximately 2 to approximately 20 as the percentage increases, while the etching rate ratio R e is maintained at approximately 0.

【0019】上記した説明及び測定結果から明らかなよ
うに、実施例1に係る配線の形成方法によれば、研磨速
度比Rp を高めることができる。一方、金属膜12や研
磨装置を構成する金属材料は酢酸ステアリルアミンによ
りエッチングされ難いため、これら複合的効果により研
磨終了時における配線としての金属膜12aの膜厚を容
易に制御することができるとともに、金属膜12aの表
面と絶縁膜の表面11cとの平坦化を確実に図ることが
でき、さらには配線の形成に用いられる前記研磨装置の
腐食を防止することができる。特に酢酸ステアリルアミ
ンを0.1%以上混合した砥粒液を用いると、研磨速度
比Rp を大きく高めることができ、平坦化と配線の膜厚
制御とをより一層確実に実現することができる。
As is clear from the above description and measurement results, the polishing rate ratio R p can be increased by the method of forming a wiring according to the first embodiment. On the other hand, since the metal film 12 and the metal material constituting the polishing apparatus are difficult to be etched by stearylamine acetate, the combined effect of these effects makes it possible to easily control the film thickness of the metal film 12a as wiring at the end of polishing. Therefore, the surface of the metal film 12a and the surface 11c of the insulating film can be surely flattened, and corrosion of the polishing apparatus used for forming the wiring can be prevented. In particular, when an abrasive grain liquid containing 0.1% or more of stearylamine acetate is used, the polishing rate ratio R p can be greatly increased, and flattening and wiring film thickness control can be realized more reliably. .

【0020】また図3は実施例2のポリエチレングリコ
ールを混合した砥粒液を用いた場合における重量%濃度
と、研磨速度比Rp 及びエッチング速度比Re との関係
を示した曲線図である。図3から明らかなように、ポリ
エチレングリコールを混合した砥粒液を用いた場合、砥
粒液中のポリエチレングリコール濃度が0.01%から
20%に増えるにつれて研磨速度比Rp は略2から略1
0に増大するが、エッチング速度比Re は略0に維持さ
れる。
FIG. 3 is a curve diagram showing the relationship between the weight% concentration and the polishing rate ratio R p and the etching rate ratio R e in the case of using the abrasive liquid mixed with polyethylene glycol of Example 2. . As is clear from FIG. 3, when the abrasive grain liquid mixed with polyethylene glycol is used, the polishing rate ratio R p is approximately 2 to approximately as the polyethylene glycol concentration in the abrasive grain liquid increases from 0.01% to 20%. 1
Although it increases to 0, the etching rate ratio R e is maintained at about 0.

【0021】上記した説明及び測定結果から明らかなよ
うに、実施例2に係る配線の形成方法によれば、砥粒液
にポリエチレングリコールが混合されているため、研磨
速度比Rp を高めることができる。一方、金属膜12や
研磨装置を構成する金属材料はポリエチレングリコール
によりエッチングされ難いため、これら複合的効果によ
り実施例1の場合と略同様の効果を得ることができる。
As is clear from the above description and measurement results, according to the wiring forming method of the second embodiment, since the abrasive grain liquid contains polyethylene glycol, the polishing rate ratio R p can be increased. it can. On the other hand, since the metal film 12 and the metal material forming the polishing apparatus are difficult to be etched by polyethylene glycol, the effect similar to that of the first embodiment can be obtained due to the combined effect of these.

【0022】また図4は実施例3のラウリン酸ナトリウ
ムを混合した砥粒液を用いた場合における重量%濃度
と、研磨速度比Rp 及びエッチング速度比Re との関係
を示した曲線図である。図4から明らかなように、ラウ
リン酸ナトリウムを混合した砥粒液を用いた場合、砥粒
液中のラウリン酸ナトリウム濃度が0.01%から20
%に増えるにつれて研磨速度比Rp は略2から略12に
増大するが、エッチング速度比Re は略0に維持され
る。
FIG. 4 is a curve diagram showing the relationship between the weight% concentration and the polishing rate ratio R p and the etching rate ratio R e in the case of using the abrasive liquid containing sodium laurate of Example 3. is there. As is clear from FIG. 4, when the abrasive liquid containing sodium laurate is used, the concentration of sodium laurate in the abrasive liquid is 0.01% to 20%.
As the polishing rate ratio R p increases, the polishing rate ratio R p increases from about 2 to about 12, but the etching rate ratio R e is maintained at about 0.

【0023】上記した説明及び測定結果から明らかなよ
うに、実施例3に係る配線の形成方法によれば、砥粒液
にラウリン酸ナトリウムが混合されているため、研磨速
度比Rp を高めることができる。一方、金属膜12や研
磨装置を構成する金属材料はラウリン酸ナトリウムによ
りエッチングされ難いため、これら複合的効果により実
施例1の場合と略同様の効果を得ることができる。
As is clear from the above description and measurement results, according to the wiring forming method of Example 3, the polishing rate ratio R p should be increased because sodium laurate is mixed in the abrasive grain liquid. You can On the other hand, since the metal film 12 and the metal material forming the polishing apparatus are difficult to be etched by sodium laurate, the effects similar to those of the first embodiment can be obtained due to the combined effects thereof.

【0024】また図5は実施例4のオレイン酸ナトリウ
ムを混合した砥粒液を用いた場合における重量%濃度
と、研磨速度比Rp 及びエッチング速度比Re との関係
を示した曲線図である。図5から明らかなように、オレ
イン酸ナトリウムを混合した砥粒液を用いた場合、砥粒
液中のオレイン酸ナトリウム濃度が0.01%から20
%に増えるにつれて研磨速度比Rp は略2から略18に
増大するが、エッチング速度比Re は略0に維持され
る。
FIG. 5 is a curve diagram showing the relationship between the weight% concentration, the polishing rate ratio R p, and the etching rate ratio R e in the case of using the abrasive liquid containing sodium oleate of Example 4. is there. As is clear from FIG. 5, when the abrasive liquid containing sodium oleate was used, the concentration of sodium oleate in the abrasive liquid was 0.01% to 20%.
The polishing rate ratio R p increases from approximately 2 to approximately 18 as the percentage increases, while the etching rate ratio R e is maintained at approximately 0.

【0025】上記した説明及び測定結果から明らかなよ
うに、実施例4に係る配線の形成方法によれば、砥粒液
にオレイン酸ナトリウムが混合されているため、研磨速
度比Rp を高めることができる。一方、金属膜12や研
磨装置を構成する金属材料はオレイン酸ナトリウムによ
りエッチングされ難いため、これら複合的効果により実
施例1の場合と略同様の効果を得ることができる。
As is clear from the above description and measurement results, according to the wiring forming method of Example 4, the polishing rate ratio R p is increased because sodium oleate is mixed in the abrasive grain liquid. You can On the other hand, since the metal film 12 and the metal material forming the polishing apparatus are difficult to be etched by sodium oleate, it is possible to obtain substantially the same effect as that of the first embodiment due to the combined effect of these.

【0026】また図6は実施例5の酢酸ステアリルアミ
ンと硫酸0.05%とを混合した砥粒液を用いた場合に
おける酢酸ステアリルアミンの重量%濃度と、研磨速度
比Rp 及びエッチング速度比Re との関係を示した曲線
図である。図6から明らかなように、酢酸ステアリルア
ミンと硫酸0.05%とを混合した砥粒液を用いた場
合、砥粒液中の酢酸ステアリルアミン濃度が0.01%
から20%に増えるにつれて研磨速度比Rp は略3から
略22に増大するが、エッチング速度比Re は略0.0
2に維持される。
Further, FIG. 6 shows the weight% concentration of stearylamine acetate, the polishing rate ratio R p, and the etching rate ratio in the case of using the abrasive liquid in which stearylamine acetate was mixed with 0.05% sulfuric acid in Example 5. is a curve diagram showing the relationship between R e. As is clear from FIG. 6, when an abrasive grain liquid in which stearylamine acetate and 0.05% sulfuric acid are mixed is used, the stearylamine acetate concentration in the abrasive grain liquid is 0.01%.
The polishing rate ratio R p increases from approximately 3 to approximately 22 as the etching rate ratio increases from 20% to 20%, but the etching rate ratio R e increases to approximately 0.0.
Maintained at 2.

【0027】上記した説明及び測定結果から明らかなよ
うに、実施例5に係る配線の形成方法によれば、砥粒液
に酢酸ステアリルアミンと硫酸0.05%とが混合され
ているため、研磨速度比Rp を高めることができる。一
方、金属膜12や研磨装置を構成する金属材料は酢酸ス
テアリルアミンと硫酸0.05%とによりエッチングさ
れ難いため、これら複合的効果により実施例1の場合と
略同様の効果を得ることができる。
As is clear from the above description and measurement results, according to the wiring forming method of Example 5, since stearylamine acetate and 0.05% sulfuric acid are mixed in the abrasive liquid, polishing is performed. The speed ratio R p can be increased. On the other hand, the metal material constituting the metal film 12 and the polishing apparatus is difficult to be etched by stearylamine acetate and 0.05% sulfuric acid, and therefore, the combined effect of these can obtain substantially the same effect as that of the first embodiment. .

【0028】また図7は実施例6の酢酸ステアリルアミ
ンを混合した砥粒液を用い、Al−Cuの金属膜に代え
てCuの金属膜12(図1)を形成した基板を研磨した
場合における酢酸ステアリルアミンの重量%濃度と、研
磨速度比Rp 及びエッチング速度比Re との関係を示し
た曲線図である。図7から明らかなように、酢酸ステア
リルアミンを混合した砥粒液を用いた場合、砥粒液中の
酢酸ステアリルアミン濃度が0.01%から20%に増
えるにつれて研磨速度比Rp は略2から略15に増大す
るが、エッチング速度比Re は略0に維持される。
Further, FIG. 7 shows a case in which the substrate having the Cu metal film 12 (FIG. 1) instead of the Al—Cu metal film formed thereon was polished by using the abrasive liquid mixed with stearylamine acetate in Example 6. FIG. 6 is a curve diagram showing the relationship between the weight% concentration of stearylamine acetate and the polishing rate ratio R p and etching rate ratio R e . As is clear from FIG. 7, in the case of using the abrasive liquid mixed with stearylamine acetate, the polishing rate ratio R p is approximately 2 as the stearylamine acetate concentration in the abrasive liquid increases from 0.01% to 20%. However, the etching rate ratio R e is maintained at about 0.

【0029】上記した説明及び測定結果から明らかなよ
うに、実施例6に係る配線の形成方法によれば、砥粒液
に酢酸ステアリルアミンが混合されているため、金属膜
12がCuである場合でも、研磨速度比Rp を高めるこ
とができる。一方、金属膜12や研磨装置を構成する金
属材料は酢酸ステアリルアミンによりエッチングされ難
いため、これら複合的効果により実施例1の場合と略同
様の効果を得ることができる。
As is clear from the above description and measurement results, according to the wiring forming method of the sixth embodiment, since stearylamine acetate is mixed in the abrasive liquid, the metal film 12 is made of Cu. However, the polishing rate ratio R p can be increased. On the other hand, since the metal film 12 and the metal material forming the polishing apparatus are difficult to be etched by stearylamine acetate, it is possible to obtain substantially the same effect as in the case of the first embodiment due to these combined effects.

【0030】なお、上記した実施例では金属膜12とし
てAl−Cu合金またはCuを用いたが、別の実施例で
はAl、W、Ag、Au、Al−Si合金、Al−Si
−Cu合金等を用いることも可能である。
Although the Al--Cu alloy or Cu is used as the metal film 12 in the above-described embodiment, in another embodiment, Al, W, Ag, Au, Al--Si alloy, Al--Si is used.
It is also possible to use a Cu alloy or the like.

【0031】また、上記した実施例では絶縁膜11とし
てECR−CVDまたはECRスパッタリングにより形
成したSiO2 膜を用いたが、別の実施例ではTEOS
−CVD、p−CVD、熱CVD、熱酸化、スパッタリ
ング等の方法により形成したSiO2 膜を用いることも
可能である。
Although the SiO 2 film formed by ECR-CVD or ECR sputtering is used as the insulating film 11 in the above-mentioned embodiment, TEOS is used in another embodiment.
-CVD, p-CVD, thermal CVD, thermal oxidation, it is also possible to use a SiO 2 film formed by a method such as sputtering.

【0032】また、上記した実施例では絶縁膜11とし
てSiO2 膜を用いたが、別の実施例ではSiN、Si
ON、SiOF、PSG、BPSG、SOG膜等を用い
ることも可能である。
Further, although the SiO 2 film is used as the insulating film 11 in the above-mentioned embodiment, SiN, Si are used in another embodiment.
It is also possible to use ON, SiOF, PSG, BPSG, SOG films and the like.

【0033】また、上記した実施例では砥粒に平均粒径
が略0.05μmのSiO2 粒子を用いたが、別の実施
例では平均粒径が略0.05μmのAl23 粒子を用
いることも可能である。
Although SiO 2 particles having an average particle size of approximately 0.05 μm were used as the abrasive grains in the above-mentioned examples, Al 2 O 3 particles having an average particle size of approximately 0.05 μm were used in another example. It is also possible to use.

【0034】また、上記した実施例では平均粒径が略
0.05μmの砥粒を用いたが、別の実施例では平均粒
径が0.05μmでない砥粒を用いることも可能であ
る。
Further, in the above-mentioned embodiment, the abrasive grains having an average particle diameter of about 0.05 μm are used, but in another embodiment, it is possible to use the abrasive grains having an average particle diameter of not 0.05 μm.

【0035】また、上記した実施例では界面活性剤とし
て酢酸ステアリルアミン、ポリエチレングリコール、ラ
ウリン酸ナトリウム、オレイン酸ナトリウムを用いた
が、別の実施例ではドデシルベンゼンスルフォン酸ナト
リウム、ラウリル硫酸ナトリウム、ブチルナフタレンス
ルフォン酸ナトリウム、トリメチルステアリルアンモニ
ウムクロリド、ラウリルアミン酢酸塩、ポリエチレング
リコールモノラウリルエーテル、ソルビタンモノラウレ
ート等の界面活性剤を用いることも可能である。
Although stearylamine acetate, polyethylene glycol, sodium laurate, and sodium oleate were used as surfactants in the above-described examples, in another example, sodium dodecylbenzene sulfonate, sodium lauryl sulfate, and butylnaphthalene were used. It is also possible to use surfactants such as sodium sulfonate, trimethylstearyl ammonium chloride, laurylamine acetate, polyethylene glycol monolauryl ether, sorbitan monolaurate.

【0036】[0036]

【発明の効果】以上詳述したように本発明に係る配線の
形成方法にあっては、研磨時に前記絶縁膜に対する研磨
速度より前記金属膜に対する研磨速度が大きい界面活性
剤を混入した砥粒液を用いるので、前記金属膜の前記絶
縁膜に対する研磨速度比を高めることができる。一方、
前記金属膜や研磨装置を構成する金属材料は前記界面活
性剤によりエッチングされ難いため、これら複合的作用
により研磨終了時における配線としての前記金属膜の膜
厚を容易に制御することができるとともに、前記金属膜
の表面と前記絶縁膜の表面との平坦化を確実に図ること
ができ、さらには配線の形成に用いられる前記研磨装置
の腐食を防止することができる。
As described above in detail, in the method of forming a wiring according to the present invention, the abrasive liquid containing a surfactant having a polishing rate for the metal film which is higher than the polishing rate for the insulating film during polishing. Therefore, the polishing rate ratio of the metal film to the insulating film can be increased. on the other hand,
Since the metal material constituting the metal film or the polishing apparatus is difficult to be etched by the surfactant, it is possible to easily control the film thickness of the metal film as the wiring at the end of polishing by these combined actions, It is possible to surely flatten the surface of the metal film and the surface of the insulating film, and further to prevent corrosion of the polishing apparatus used for forming the wiring.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る配線の形成方法の実施例を工程順
に示した模式的断面図であり、(a)は絶縁膜に溝を形
成し、この絶縁膜の上面に金属膜を形成した状態、
(b)は研磨により絶縁膜表面まで金属膜を除去した状
態を示している。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a wiring forming method according to the present invention in the order of steps. FIG. 1A shows a groove formed in an insulating film and a metal film formed on the upper surface of the insulating film. Status,
(B) shows a state where the metal film is removed to the surface of the insulating film by polishing.

【図2】実施例1の酢酸ステアリルアミンを混合した砥
粒液を用いた場合における重量%濃度と、研磨速度比R
p 及びエッチング速度比Re との関係を示した曲線図で
ある。
FIG. 2 is a weight% concentration and a polishing rate ratio R in the case of using an abrasive liquid mixed with stearylamine acetate in Example 1.
FIG. 7 is a curve diagram showing the relationship between p and the etching rate ratio R e .

【図3】実施例2のポリエチレングリコールを混合した
砥粒液を用いた場合における重量%濃度と、研磨速度比
p 及びエッチング速度比Re との関係を示した曲線図
である。
FIG. 3 is a curve diagram showing a relationship between a weight% concentration and a polishing rate ratio R p and an etching rate ratio R e in the case of using an abrasive grain liquid mixed with polyethylene glycol of Example 2.

【図4】実施例3のラウリン酸ナトリウムを混合した砥
粒液を用いた場合における重量%濃度と、研磨速度比R
p 及びエッチング速度比Re との関係を示した曲線図で
ある。
FIG. 4 is a weight% concentration and a polishing rate ratio R in the case of using an abrasive liquid mixed with sodium laurate of Example 3.
FIG. 7 is a curve diagram showing the relationship between p and the etching rate ratio R e .

【図5】実施例4のオレイン酸ナトリウムを混合した砥
粒液を用いた場合における重量%濃度と、研磨速度比R
p 及びエッチング速度比Re との関係を示した曲線図で
ある。
5 is a weight% concentration and a polishing rate ratio R in the case of using an abrasive liquid mixed with sodium oleate of Example 4. FIG.
FIG. 7 is a curve diagram showing the relationship between p and the etching rate ratio R e .

【図6】実施例5の酢酸ステアリルアミンと硫酸0.0
5%とを混合した砥粒液を用いた場合における酢酸ステ
アリルアミンの重量%濃度と、研磨速度比Rp 及びエッ
チング速度比Re との関係を示した曲線図である。
FIG. 6 Stearylamine acetate and sulfuric acid of Example 5 0.0
FIG. 5 is a curve diagram showing the relationship between the weight% concentration of stearylamine acetate and the polishing rate ratio R p and the etching rate ratio R e in the case of using an abrasive liquid mixed with 5%.

【図7】実施例6の酢酸ステアリルアミンを混合した砥
粒液を用い、Cuの金属膜を形成した基板の場合におけ
る酢酸ステアリルアミンの重量%濃度と、研磨速度比R
p 及びエッチング速度比Re との関係を示した曲線図で
ある。
FIG. 7 is a graph showing a stearylamine acetate weight% concentration and a polishing rate ratio R in the case of a substrate on which a Cu metal film is formed, using the abrasive liquid mixed with stearylamine acetate in Example 6.
FIG. 7 is a curve diagram showing the relationship between p and the etching rate ratio R e .

【図8】比較例1の硫酸を混合した砥粒液を用いた場合
における重量%濃度と、研磨速度比Rp 及びエッチング
速度比Re との関係を示した曲線図である。
FIG. 8 is a curve diagram showing the relationship between the weight% concentration, the polishing rate ratio R p, and the etching rate ratio R e in the case of using the abrasive liquid in which sulfuric acid was mixed in Comparative Example 1.

【図9】比較例2の酢酸を混合した砥粒液を用いた場合
における重量%濃度と、研磨速度比Rp 及びエッチング
速度比Re との関係を示した曲線図である。
FIG. 9 is a curve diagram showing the relationship between the weight% concentration and the polishing rate ratio R p and the etching rate ratio R e in the case of using an acetic acid liquid mixed with acetic acid of Comparative Example 2.

【図10】比較例3の硝酸を混合した砥粒液を用いた場
合における重量%濃度と、研磨速度比Rp 及びエッチン
グ速度比Re との関係を示した曲線図である。
FIG. 10 is a curve diagram showing the relationship between the weight% concentration and the polishing rate ratio R p and the etching rate ratio R e in the case of using the abrasive grain liquid in which nitric acid was mixed in Comparative Example 3.

【図11】砥粒液に所定の界面活性剤を用いた場合にお
ける配線を形成する工程を模式的に示した断面図であ
り、(a)は研磨前の状態、(b)は研磨途中の状態、
(c)は絶縁膜表面まで研磨した状態を示している。
FIG. 11 is a cross-sectional view schematically showing a step of forming a wiring when a predetermined surfactant is used as an abrasive liquid, (a) showing a state before polishing and (b) showing a state during polishing. Status,
(C) shows a state in which the surface of the insulating film is polished.

【図12】従来の配線の形成方法を工程順に示した模式
的断面図であり、(a)は絶縁膜に溝を形成し、この絶
縁膜の上面に金属膜を形成した状態、(b)は研磨によ
り絶縁膜表面まで金属膜を除去した状態、(c)は研磨
をさらに続行した状態を示している。
FIG. 12 is a schematic cross-sectional view showing a conventional wiring forming method in the order of steps, FIG. 12A shows a state in which a groove is formed in an insulating film and a metal film is formed on the upper surface of the insulating film, and FIG. Shows a state where the metal film is removed to the surface of the insulating film by polishing, and (c) shows a state where the polishing is further continued.

【図13】砥粒液に硝酸水溶液を用いた場合における従
来の配線の形成方法を工程順に示した模式的断面図であ
り、(a)は研磨前の状態、(b)は研磨途中の状態、
(c)は絶縁膜表面まで研磨した状態を示している。
13A and 13B are schematic cross-sectional views showing, in the order of steps, a conventional method of forming a wiring when a nitric acid aqueous solution is used as an abrasive liquid, (a) showing a state before polishing and (b) showing a state during polishing. ,
(C) shows a state in which the surface of the insulating film is polished.

【符号の説明】[Explanation of symbols]

11 絶縁膜 12、12a 金属膜 11 Insulating film 12, 12a Metal film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に凹凸部を有する絶縁膜上に金属膜
を形成し、前記絶縁膜の凸部上の前記金属膜を研磨によ
り除去する配線の形成方法において、研磨時に前記絶縁
膜に対する研磨速度より前記金属膜に対する研磨速度が
大きい界面活性剤を混入した砥粒液を用いることを特徴
とする配線の形成方法。
1. A method for forming a wiring in which a metal film is formed on an insulating film having an uneven portion on the surface and the metal film on the convex portion of the insulating film is removed by polishing. A method for forming a wiring, which comprises using an abrasive liquid containing a surfactant having a polishing rate for the metal film higher than the polishing rate.
JP01085294A 1994-02-02 1994-02-02 Wiring forming method and abrasive liquid Expired - Fee Related JP3554759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01085294A JP3554759B2 (en) 1994-02-02 1994-02-02 Wiring forming method and abrasive liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01085294A JP3554759B2 (en) 1994-02-02 1994-02-02 Wiring forming method and abrasive liquid

Publications (2)

Publication Number Publication Date
JPH07221055A true JPH07221055A (en) 1995-08-18
JP3554759B2 JP3554759B2 (en) 2004-08-18

Family

ID=11761895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01085294A Expired - Fee Related JP3554759B2 (en) 1994-02-02 1994-02-02 Wiring forming method and abrasive liquid

Country Status (1)

Country Link
JP (1) JP3554759B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998037576A1 (en) * 1997-02-19 1998-08-27 Hitachi, Ltd. Method for manufacturing semiconductor device and system therefor
US6224464B1 (en) 1994-07-08 2001-05-01 Kabushiki Kaisha Toshiba Polishing method and polisher used in the method
JP2002025953A (en) * 2000-06-30 2002-01-25 Jsr Corp Acqueous dispersed body for chemical mechanical polishing
JP2008042216A (en) * 2007-09-11 2008-02-21 Jsr Corp Aqueous dispersing element for chemical mechanical polishing
JP2010034581A (en) * 2009-11-04 2010-02-12 Jsr Corp Aqueous dispersing element for chemical mechanical polishing
JP2010166087A (en) * 2010-04-12 2010-07-29 Jsr Corp Aqueous dispersion for chemical mechanical polishing
JP2010226141A (en) * 2010-06-22 2010-10-07 Jsr Corp Aqueous dispersing element for chemical mechanical polishing
JP2013048263A (en) * 2012-10-05 2013-03-07 Jsr Corp Aqueous dispersing material for chemical mechanical polishing
JP2015199840A (en) * 2014-04-08 2015-11-12 山口精研工業株式会社 Composition for polishing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224464B1 (en) 1994-07-08 2001-05-01 Kabushiki Kaisha Toshiba Polishing method and polisher used in the method
US6419557B2 (en) 1994-07-08 2002-07-16 Kabushiki Kaisha Toshiba Polishing method and polisher used in the method
WO1998037576A1 (en) * 1997-02-19 1998-08-27 Hitachi, Ltd. Method for manufacturing semiconductor device and system therefor
JP2002025953A (en) * 2000-06-30 2002-01-25 Jsr Corp Acqueous dispersed body for chemical mechanical polishing
JP2008042216A (en) * 2007-09-11 2008-02-21 Jsr Corp Aqueous dispersing element for chemical mechanical polishing
JP2010034581A (en) * 2009-11-04 2010-02-12 Jsr Corp Aqueous dispersing element for chemical mechanical polishing
JP2010166087A (en) * 2010-04-12 2010-07-29 Jsr Corp Aqueous dispersion for chemical mechanical polishing
JP2010226141A (en) * 2010-06-22 2010-10-07 Jsr Corp Aqueous dispersing element for chemical mechanical polishing
JP2013048263A (en) * 2012-10-05 2013-03-07 Jsr Corp Aqueous dispersing material for chemical mechanical polishing
JP2015199840A (en) * 2014-04-08 2015-11-12 山口精研工業株式会社 Composition for polishing

Also Published As

Publication number Publication date
JP3554759B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
CA1245517A (en) Chem-mech polishing method for producing coplanar metal/insulator films on a substrate
JP2505914B2 (en) Method of manufacturing semiconductor device
Steigerwald et al. Chemical processes in the chemical mechanical polishing of copper
JP4095731B2 (en) Semiconductor device manufacturing method and semiconductor device
US8685857B2 (en) Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device
US6602117B1 (en) Slurry for use with fixed-abrasive polishing pads in polishing semiconductor device conductive structures that include copper and tungsten and polishing methods
JP4278020B2 (en) Abrasive particles and method for producing abrasives
US5166093A (en) Method to reduce the reflectivity of a semi-conductor metallic surface
JPH11238709A (en) Chemical mechanical polishing(cmp) slurry of copper and application method thereof
JPH0669187A (en) Treatment method of semiconductor
JP3192968B2 (en) Polishing liquid for copper-based metal and method for manufacturing semiconductor device
US7731864B2 (en) Slurry for chemical mechanical polishing of aluminum
JPH0745616A (en) Manufacture of semiconductor device
JP3172008B2 (en) Method for manufacturing semiconductor device
JPH11111656A (en) Manufacture of semiconductor device
JP3554759B2 (en) Wiring forming method and abrasive liquid
JP2003183632A (en) Chemical-mechanical polishing composition for metal and metal/dielectric substance structural material, having high selectivity
WO2006042466A1 (en) The system, method and abrasive slurry for chemical mechanical polishing
JP4202826B2 (en) Chemical mechanical polishing method of organic film and manufacturing method of semiconductor device
JPH08264538A (en) Formation of interconnection
JPH0794455A (en) Formation of wiring
JPS63117423A (en) Method of etching silicon dioxide
JPH07193034A (en) Polishing method
JP2000277612A (en) Manufacture of semiconductor device
JP2003277731A (en) Abrasive particle and abrasive material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040406

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20040408

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees