JPH0794455A - Formation of wiring - Google Patents

Formation of wiring

Info

Publication number
JPH0794455A
JPH0794455A JP23826393A JP23826393A JPH0794455A JP H0794455 A JPH0794455 A JP H0794455A JP 23826393 A JP23826393 A JP 23826393A JP 23826393 A JP23826393 A JP 23826393A JP H0794455 A JPH0794455 A JP H0794455A
Authority
JP
Japan
Prior art keywords
aqueous solution
polishing
wiring
metal film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23826393A
Other languages
Japanese (ja)
Inventor
Shunichi Shibuki
俊一 渋木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23826393A priority Critical patent/JPH0794455A/en
Publication of JPH0794455A publication Critical patent/JPH0794455A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the corrosion of a wiring forming device by smoothing the surface of a metallic film when the polishing of the metallic film is completed under a condition where the thickness of the film is easily controlled by polishing the metallic film with abrasive grains and a specific abrasive grain liquid. CONSTITUTION:After forming grooves 11b into an insulating film 11 and a metallic film 12 containing copper on the film 11, the entire surface of the insulating film 11 is flattened by removing the film 12 from the surface of the film 11 by polishing and the grooves 11b are filled with metallic films 12a as wiring. At the time of polishing the metallic film 12, an aqueous solution of hydrochloric acid, ammonium persulfate, chromium oxide, phosphoric acid, or ammonium hydroxide or an aqueous solution containing copper chloride ammonium and ammonium hydroxide or containing ammonium hydroxide and hydrogen peroxide, or a mixture of these solutions is used as an abrasive grain liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は配線の形成方法に関し、
より詳細には研磨による半導体装置における配線の形成
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wiring forming method,
More specifically, the present invention relates to a method for forming wiring in a semiconductor device by polishing.

【0002】[0002]

【従来の技術】図13は従来の配線を形成する工程を示
した模式的断面図であり、(a)は絶縁膜に溝を形成
し、この絶縁膜の上面に金属膜を形成した状態、(b)
は研磨により絶縁膜表面まで金属膜を除去した状態、
(c)は研磨をさらに続行した状態を示している。従来
の配線の形成方法は、まずスパッタリング(sputterin
g) により略平坦形状を有する基板(図示せず)上にS
iO2 等の絶縁膜21を形成する。絶縁膜21の厚さt
a は配線となる金属膜22aの厚さtb と金属膜22a
下方に位置する絶縁膜21aの厚さtc との和に等しく
なるように設定(ta =tb +tc )する。次にフォト
リソグラフィ技術を用い、絶縁膜21上の所定箇所にパ
ターニング処理を施し、溝21bを形成する。この後、
絶縁膜21上にAlまたはAl合金等からなる金属膜2
2を形成する(a)。次に絶縁膜表面21c上にある金
属膜22を研磨により除去し、全体的に平坦化するとと
もに絶縁膜21の溝21bに配線としての金属膜22a
を埋め込み形成する。この研磨には、砥粒としてAl2
3 粒子等、また砥粒液として硫酸水溶液、硝酸水溶
液、酢酸水溶液等が挙げられている。これらの砥粒液を
用いた場合、絶縁膜21の研磨速度よりAlまたはAl
合金からなる金属膜22の研磨速度が速くなり、研磨終
了時における配線となる金属膜22aの厚さが容易に制
御される(b)(特開昭62−102543号公報)。
2. Description of the Related Art FIG. 13 is a schematic sectional view showing a step of forming a conventional wiring. FIG. 13A shows a state in which a groove is formed in an insulating film and a metal film is formed on the upper surface of the insulating film. (B)
Is a state where the metal film is removed to the surface of the insulating film by polishing,
(C) shows a state in which polishing is further continued. The conventional wiring formation method is as follows:
g) S on the substrate (not shown) having a substantially flat shape.
An insulating film 21 such as iO 2 is formed. Thickness t of insulating film 21
a is the thickness t b of the metal film 22a to be wiring and the metal film 22a
It is set to be equal to the sum of the thickness t c of the insulating film 21a located below (t a = t b + t c ). Next, using a photolithography technique, patterning processing is performed on a predetermined portion of the insulating film 21 to form a groove 21b. After this,
Metal film 2 made of Al or Al alloy or the like on insulating film 21
2 is formed (a). Next, the metal film 22 on the insulating film surface 21c is removed by polishing to planarize the entire surface, and the metal film 22a as a wiring is formed in the groove 21b of the insulating film 21.
Are formed by embedding. For this polishing, Al 2
O 3 particles and the like, and sulfuric acid aqueous solution, nitric acid aqueous solution, acetic acid aqueous solution and the like are listed as the abrasive liquid. When these abrasive liquids are used, Al or Al may be used depending on the polishing rate of the insulating film 21.
The polishing rate of the metal film 22 made of an alloy is increased, and the thickness of the metal film 22a to be the wiring at the end of polishing is easily controlled (b) (Japanese Patent Laid-Open No. 62-102543).

【0003】[0003]

【発明が解決しようとする課題】近年、LSIの微細
化、高集積化にともない、配線の断線やショートを防止
する必要性がますます高まり、そのため金属膜22の配
線材料としてエレクトロマイグレーション耐性の小さい
Alに代わり、エレクトロマイグレーション耐性の大き
い銅(Cu)が注目されている。
In recent years, with the miniaturization and high integration of LSIs, there is an increasing need to prevent disconnection and short circuit of the wiring, and therefore the electromigration resistance of the wiring material of the metal film 22 is small. Copper (Cu), which has a high electromigration resistance, has been attracting attention in place of Al.

【0004】上記した配線の形成方法において、砥粒液
に硫酸水溶液、酢酸水溶液を用い、銅を含む金属膜22
と絶縁膜21とを研磨する場合、金属膜22の絶縁膜2
1に対する研磨速度比Rが小さい。そのため図13
(c)に示したように、絶縁膜表面21cまで研磨が到
達した後、さらに金属膜22aと絶縁膜21とが研磨さ
れ易く、研磨終了時における配線となる金属膜22aの
厚さtb を制御することが難しく、したがってエレクト
ロマイグレーション耐性の大きい銅を含む金属膜配線を
確実に形成することが難しいという課題があった。
In the above-mentioned wiring forming method, an aqueous solution of sulfuric acid or an aqueous solution of acetic acid is used as the abrasive liquid, and the metal film 22 containing copper is used.
And the insulating film 21 are polished, the insulating film 2 of the metal film 22
The polishing rate ratio R for 1 is small. Therefore, FIG.
As shown (c), the after polishing until the surface of the insulating film 21c has arrived, susceptible further polished metal film 22a and the insulating film 21, the thickness t b of the metal film 22a as the wiring at the end of polishing There is a problem that it is difficult to control, and thus it is difficult to reliably form a metal film wiring containing copper having a high electromigration resistance.

【0005】また上記した配線の形成方法において、砥
粒液に硝酸水溶液を用いた場合、金属膜22の絶縁膜2
1に対する研磨速度比Rは大きくとれるが、研磨装置を
構成する金属部材(特にステンレス鋼)に腐食が発生
し、実用化を図ることが難しいという課題があった。
Further, in the above-mentioned wiring forming method, when the nitric acid aqueous solution is used as the abrasive liquid, the insulating film 2 of the metal film 22 is used.
Although the polishing rate ratio R with respect to 1 can be large, there is a problem that it is difficult to put it into practical use because corrosion occurs in the metal member (especially stainless steel) that constitutes the polishing apparatus.

【0006】また上記した配線の形成方法において、砥
粒にAl23 を用いる場合、Alに比べて銅が軟質で
あるため、銅を含む金属膜22a表面に傷が付き易く、
配線の特性に悪影響を及ぼすという課題があった。
When Al 2 O 3 is used for the abrasive grains in the above-mentioned wiring forming method, since copper is softer than Al, the surface of the metal film 22a containing copper is easily scratched,
There is a problem that the characteristics of the wiring are adversely affected.

【0007】本発明はこのような課題に鑑みなされたも
のであり、研磨終了時における金属膜の膜厚を容易に制
御することができ、金属膜の表面を平滑にすることがで
きるとともに、配線の形成に用いられる装置の腐食を防
止することができる配線の形成方法を提供することを目
的としている。
The present invention has been made in view of the above problems, and can easily control the film thickness of the metal film at the end of polishing, smooth the surface of the metal film, and provide wiring. It is an object of the present invention to provide a method for forming a wiring capable of preventing corrosion of a device used for forming a wiring.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明に係る配線の形成方法は、凸凹を有する絶縁膜
上に銅を含有する金属膜を形成した後、砥粒及び砥粒液
を用いて研磨により平坦化する配線の形成方法におい
て、前記砥粒液として塩酸水溶液、過硫酸アンモニウム
水溶液、酸化クロム水溶液、リン酸水溶液、水酸化アン
モニウム水溶液、塩化銅アンモニウムと水酸化アンモニ
ウムとを含む水溶液、水酸化アンモニウムと過酸化水素
とを含む水溶液または前記水溶液の混合液を用いること
を特徴としている(1)。
In order to achieve the above-mentioned object, a method of forming a wiring according to the present invention comprises a method of forming a metal film containing copper on an insulating film having irregularities, and then forming an abrasive grain and an abrasive grain liquid. In the method of forming a wiring to be flattened by polishing using, as the abrasive liquid, hydrochloric acid aqueous solution, ammonium persulfate aqueous solution, chromium oxide aqueous solution, phosphoric acid aqueous solution, ammonium hydroxide aqueous solution, and an aqueous solution containing ammonium copper chloride and ammonium hydroxide An aqueous solution containing ammonium hydroxide and hydrogen peroxide or a mixed solution of the aqueous solutions is used (1).

【0009】また本発明に係る配線の形成方法は、凸凹
を有する絶縁膜上に銅を含有する金属膜を形成した後、
砥粒及び砥粒液を用いて研磨により平坦化する配線の形
成方法において、前記砥粒として平均粒径が0.1μm
以下のSiO2 粒子を用いることを特徴としている
(2)。
Further, in the method of forming a wiring according to the present invention, after forming a metal film containing copper on an insulating film having irregularities,
In the method for forming a wiring in which polishing is performed using abrasive grains and an abrasive solution, the average grain size of the abrasive grains is 0.1 μm.
It is characterized by using the following SiO 2 particles (2).

【0010】[0010]

【作用】本発明者は、塩酸水溶液、過硫酸アンモニウム
水溶液、酸化クロム水溶液、リン酸水溶液、水酸化アン
モニウム水溶液、塩化銅アンモニウムと水酸化アンモニ
ウムとを含む水溶液、水酸化アンモニウムと過酸化水素
とを含む水溶液または前記水溶液の混合液を砥粒液とし
て用いて研磨する場合、銅を含む金属膜を研磨する際の
研磨速度RK と絶縁膜としてのSiO2 を研磨する際の
研磨速度RZ との比RK /RZ (以下、RK /RZ を研
磨速度比Rと記す)が1より大きくなることを突き止め
た。砥粒及び砥粒液を用いた研磨の場合、研磨面は局所
的に高温、高圧になり、また活性面が露出した状態にな
っており、砥粒液との化学反応及び機械的エッチングと
が相乗的に作用し、研磨速度比Rが高められることとな
る。そして該研磨速度比Rが1より大きく(例えば5程
度以上に)なる程、研磨の際の前記絶縁膜のストッパ作
用が強まり、研磨が前記絶縁膜の表面に到達すると、研
磨の進行を停止させ得ることとなる。
The present inventor includes an aqueous solution of hydrochloric acid, an aqueous solution of ammonium persulfate, an aqueous solution of chromium oxide, an aqueous solution of phosphoric acid, an aqueous solution of ammonium hydroxide, an aqueous solution containing ammonium copper chloride and ammonium hydroxide, and ammonium hydroxide and hydrogen peroxide. When polishing is performed using an aqueous solution or a mixed solution of the aqueous solutions as an abrasive liquid, a polishing rate R K when polishing a metal film containing copper and a polishing rate R Z when polishing SiO 2 as an insulating film It was found that the ratio R K / R Z (hereinafter, R K / R Z is referred to as a polishing rate ratio R) is larger than 1. In the case of polishing using an abrasive grain and an abrasive liquid, the polishing surface locally becomes high temperature and high pressure, and the active surface is exposed, so that chemical reaction with the abrasive liquid and mechanical etching It acts synergistically and the polishing rate ratio R is increased. As the polishing rate ratio R becomes larger than 1 (for example, about 5 or more), the stopper action of the insulating film during polishing becomes stronger, and when the polishing reaches the surface of the insulating film, the progress of polishing is stopped. You will get it.

【0011】本発明に係る配線の形成方法(1)によれ
ば、砥粒液として塩酸水溶液、過硫酸アンモニウム水溶
液、酸化クロム水溶液、リン酸水溶液、水酸化アンモニ
ウム水溶液、塩化銅アンモニウムと水酸化アンモニウム
とを含む水溶液、水酸化アンモニウムと過酸化水素とを
含む水溶液または前記水溶液の混合液を用いるので、研
磨速度比Rを1より大きくし得ることとなり、研磨の際
の絶縁膜のストッパ作用が強められ、研磨が前記絶縁膜
の表面に到達すると、研磨の進行が抑制されることとな
り、その結果、配線としての金属膜厚の制御を確実に行
ない得ることとなる。また、これらの水溶液はいずれも
研磨装置の構成材料に対する腐食性が弱いため、これら
の水溶液を用いることにより、研磨装置の実用化が容易
となる。
According to the wiring forming method (1) of the present invention, an aqueous solution of hydrochloric acid, an aqueous solution of ammonium persulfate, an aqueous solution of chromium oxide, an aqueous solution of phosphoric acid, an aqueous solution of ammonium hydroxide, copper ammonium chloride and ammonium hydroxide are used as the abrasive liquid. The polishing rate ratio R can be made larger than 1 because the aqueous solution containing the above, the aqueous solution containing the ammonium hydroxide and the hydrogen peroxide, or the mixed solution of the above aqueous solutions is used, and the stopper action of the insulating film at the time of polishing is strengthened. When the polishing reaches the surface of the insulating film, the progress of polishing is suppressed, and as a result, the metal film thickness as the wiring can be surely controlled. Further, since all of these aqueous solutions are weakly corrosive to the constituent materials of the polishing apparatus, use of these aqueous solutions facilitates practical application of the polishing apparatus.

【0012】また本発明に係る配線の形成方法(2)に
よれば、砥粒として平均粒径が0.1μm以下のSiO
2 粒子を用いており、Al23 粒子に比べてSiO2
粒子は硬度が低く、かつ細粒のため、銅を含む比較的軟
質の金属膜表面に傷がつき難く、研磨により配線の特性
が損われることがない。
According to the wiring forming method (2) of the present invention, SiO having an average grain size of 0.1 μm or less is used as abrasive grains.
And using 2 particles, SiO 2 than Al 2 O 3 particles
Since the particles have low hardness and are fine particles, the surface of a relatively soft metal film containing copper is not easily scratched, and polishing does not impair the wiring characteristics.

【0013】[0013]

【実施例及び比較例】以下、本発明に係る配線の形成方
法の実施例を図面に基づいて説明する。図1は本発明に
係る配線の形成方法の実施例を工程順に示した模式的断
面図であり、(a)は絶縁膜に溝を形成し、この絶縁膜
の上面に金属膜を形成した状態、(b)は研磨により絶
縁膜表面まで金属膜を除去した状態を示している。半導
体装置における配線を形成するには、まずLP−CVD
(Low Pressure-Chemical Vapor Deposition) 法によ
り、略平坦形状を有する基板(図示せず)上にSiO2
等の絶縁膜11を形成する。次にフォトリソグラフィ技
術を用い、絶縁膜11上の所定箇所にパターニング処理
を施し、溝11bを形成する。この後ECRスパッタ法
により、絶縁膜11上に銅を含む金属膜12を形成する
(a)。次に絶縁膜表面11c上にある金属膜12を研
磨により除去し、全体的に平坦化するとともに、絶縁膜
11の溝11bに配線としての金属膜12aを埋め込み
形成する。この研磨の際、砥粒液として塩酸水溶液、過
硫酸アンモニウム水溶液、酸化クロム水溶液、リン酸水
溶液、水酸化アンモニウム水溶液、塩化銅アンモニウム
と水酸化アンモニウムとを含む水溶液、水酸化アンモニ
ウムと過酸化水素とを含む水溶液またはこれらの水溶液
の混合液を使用する(b)。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the wiring forming method according to the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing an embodiment of a wiring forming method according to the present invention in the order of steps. FIG. 1A shows a state in which a groove is formed in an insulating film and a metal film is formed on the upper surface of the insulating film. , (B) show a state where the metal film is removed to the surface of the insulating film by polishing. To form wiring in a semiconductor device, first, LP-CVD is performed.
(Low Pressure-Chemical Vapor Deposition) method is used to deposit SiO 2 on a substrate (not shown) having a substantially flat shape.
The insulating film 11 is formed. Next, using a photolithography technique, a patterning process is performed on a predetermined portion of the insulating film 11 to form a groove 11b. After that, the metal film 12 containing copper is formed on the insulating film 11 by the ECR sputtering method (a). Next, the metal film 12 on the insulating film surface 11c is removed by polishing to planarize the entire surface, and the groove 11b of the insulating film 11 is embedded with the metal film 12a as a wiring. During this polishing, hydrochloric acid aqueous solution, ammonium persulfate aqueous solution, chromium oxide aqueous solution, phosphoric acid aqueous solution, ammonium hydroxide aqueous solution, aqueous solution containing copper chloride ammonium and ammonium hydroxide, ammonium hydroxide and hydrogen peroxide are used as abrasive liquids. An aqueous solution containing or a mixed solution of these aqueous solutions is used (b).

【0014】以下に、砥粒に平均粒径が約0.1μmの
SiO2 粒子を用い、金属膜12におけるAlと銅との
組成を変え、絶縁膜11としてのSiO2 膜に対する金
属膜12の研磨速度比Rに関し、下記の表1に示した砥
粒液ごとに調査した結果について説明する。なお比較例
1として砥粒液にpH2.2の硫酸水溶液、比較例2と
してpH2.2の硝酸水溶液、比較例3としてpH2.
2の酢酸水溶液を用いてそれぞれ研磨した場合について
併せて説明する。
In the following, SiO 2 particles having an average particle size of about 0.1 μm are used as the abrasive grains, the composition of Al and copper in the metal film 12 is changed, and the SiO 2 film as the insulating film 11 is formed with respect to the metal film 12. With respect to the polishing rate ratio R, the results of investigation for each of the abrasive liquids shown in Table 1 below will be described. It should be noted that as Comparative Example 1, an abrasive grain liquid was used as an aqueous sulfuric acid solution having a pH of 2.2, as Comparative Example 2 an aqueous nitric acid solution having a pH of 2.2, and as Comparative Example 3 a pH of 2.
The case of polishing with the acetic acid aqueous solution of No. 2 will be also described.

【0015】[0015]

【表1】 [Table 1]

【0016】図10、図12は比較例1、比較例3の砥
粒液を用いた場合における研磨速度比Rと銅含有率との
関係を示した曲線図である。図10、図12から明らか
なように比較例1のpH2.2の硫酸水溶液、比較例3
のpH2.2の酢酸水溶液を用いた場合、研磨速度比R
は略1程度であり、銅を含有する金属膜12による配線
の形成には不適当である。
FIGS. 10 and 12 are curve diagrams showing the relationship between the polishing rate ratio R and the copper content when the abrasive liquids of Comparative Examples 1 and 3 were used. As is clear from FIGS. 10 and 12, a sulfuric acid aqueous solution having a pH of 2.2 in Comparative Example 1 and Comparative Example 3
When the acetic acid aqueous solution of pH 2.2 is used, the polishing rate ratio R
Is about 1 and is unsuitable for forming wiring by the metal film 12 containing copper.

【0017】また図11は比較例2の砥粒液を用いた場
合における研磨速度比Rと銅含有率との関係を示した曲
線図である。図11から明らかなように比較例2のpH
2.2の硝酸水溶液を用いた場合、研磨速度比Rは略1
0〜8程度である。しかし、比較例2の砥粒液は研磨装
置の構成材料を腐食するため、研磨による配線の形成に
は不適当である。
FIG. 11 is a curve diagram showing the relationship between the polishing rate ratio R and the copper content when the abrasive grain liquid of Comparative Example 2 was used. As is clear from FIG. 11, the pH of Comparative Example 2
When the nitric acid aqueous solution of 2.2 is used, the polishing rate ratio R is about 1
It is about 0-8. However, the abrasive liquid of Comparative Example 2 corrodes the constituent materials of the polishing apparatus and is not suitable for forming wiring by polishing.

【0018】一方、図2は実施例1の砥粒液を用いた場
合における研磨速度比Rと銅含有率との関係を示した曲
線図である。図2から明らかなように、砥粒液として塩
酸3%水溶液を用いた場合、金属膜12における銅の含
有量が多くなるにつれて研磨速度比Rは略20から徐々
に低下するが、銅の含有量が略40%以上になると、研
磨速度比Rは略一定(R≒10)になる。
On the other hand, FIG. 2 is a curve diagram showing the relationship between the polishing rate ratio R and the copper content when the abrasive liquid of Example 1 is used. As is clear from FIG. 2, when a 3% hydrochloric acid aqueous solution is used as the abrasive liquid, the polishing rate ratio R gradually decreases from about 20 as the content of copper in the metal film 12 increases, but the content of copper does not increase. When the amount is about 40% or more, the polishing rate ratio R becomes substantially constant (R≈10).

【0019】この結果から明らかなように、実施例1に
係る配線の形成方法(1)によれば、研磨速度比Rを2
0〜10にすることができ、研磨の際の絶縁膜11のス
トッパ効果を強めることができ、研磨が絶縁膜の表面に
到達すると、研磨の進行を停止させることができ、その
結果、配線としての金属膜12aの厚さの制御を確実に
行なうことができる。また、塩酸3%水溶液は研磨装置
の構成材料に対する腐食性が弱いため、砥粒液として実
用的である。
As is clear from these results, according to the wiring forming method (1) of Example 1, the polishing rate ratio R was 2
0-10, the stopper effect of the insulating film 11 at the time of polishing can be strengthened, and when the polishing reaches the surface of the insulating film, the progress of polishing can be stopped, and as a result, as a wiring. It is possible to reliably control the thickness of the metal film 12a. Further, a 3% hydrochloric acid aqueous solution has a weak corrosiveness with respect to the constituent materials of the polishing apparatus, and is therefore practical as an abrasive liquid.

【0020】なお実施例1の場合は砥粒液に塩酸3%水
溶液を用いたが、この濃度に限定されるものではなく、
別の濃度の塩酸水溶液も使用可能である。
In Example 1, a 3% hydrochloric acid aqueous solution was used as the abrasive liquid, but the concentration is not limited to this.
An aqueous solution of hydrochloric acid having another concentration can also be used.

【0021】また図3は実施例2の砥粒液を用いた場合
における研磨速度比Rと銅含有率との関係を示した曲線
図である。図3から明らかなように、砥粒液として過硫
酸アンモニウム5%水溶液を用いた場合、金属膜12に
おける銅の含有量が多くなるにつれて研磨速度比Rは略
5から徐々に上昇し、銅の含有量が略80%以上になる
と、研磨速度比Rは一定(R≒14)になる。
FIG. 3 is a curve diagram showing the relationship between the polishing rate ratio R and the copper content when the abrasive liquid of Example 2 is used. As is clear from FIG. 3, when an ammonium persulfate 5% aqueous solution is used as the abrasive liquid, the polishing rate ratio R gradually increases from approximately 5 as the content of copper in the metal film 12 increases, and the content of copper is increased. When the amount is about 80% or more, the polishing rate ratio R becomes constant (R≈14).

【0022】この結果から明らかなように、実施例2に
係る配線の形成方法(1)によれば、研磨速度比Rを5
〜14にすることができ、また研磨装置に対する腐食性
も弱いため、実施例1の場合と略同様の効果を得ること
ができる。
As is clear from this result, according to the wiring forming method (1) of the second embodiment, the polishing rate ratio R is 5
Since it can be set to 14 and the corrosiveness with respect to the polishing apparatus is weak, it is possible to obtain substantially the same effect as that of the first embodiment.

【0023】なお実施例2の場合、砥粒液に過硫酸アン
モニウム5%水溶液を用いたが、この濃度に限定される
ものではなく、別の濃度の過硫酸アンモニウム水溶液も
使用可能である。
In Example 2, a 5% ammonium persulfate aqueous solution was used as the abrasive liquid, but the concentration is not limited to this, and an ammonium persulfate aqueous solution having another concentration can be used.

【0024】また図4は実施例3の砥粒液を用いた場合
における研磨速度比Rと銅含有率との関係を示した曲線
図である。図4から明らかなように、砥粒液として酸化
クロム(6)飽和水溶液を用いた場合、金属膜12にお
ける銅の含有量が多くなるにつれて研磨速度比Rは略3
から徐々に上昇し、銅の含有量が略80%以上になる
と、研磨速度比Rは略一定(R≒13)になる。
FIG. 4 is a curve diagram showing the relationship between the polishing rate ratio R and the copper content when the abrasive liquid of Example 3 is used. As is clear from FIG. 4, when a chromium oxide (6) saturated aqueous solution is used as the abrasive liquid, the polishing rate ratio R is approximately 3 as the content of copper in the metal film 12 increases.
Then, when the copper content becomes about 80% or more, the polishing rate ratio R becomes substantially constant (R≈13).

【0025】この結果から明らかなように、実施例3に
係る配線の形成方法(1)によれば、研磨速度比Rを3
〜13にすることができ、また研磨装置に対する腐食性
も弱いため、実施例1の場合と略同様の効果を得ること
ができる。
As is clear from these results, according to the wiring forming method (1) of the third embodiment, the polishing rate ratio R is 3
To 13 and the corrosiveness with respect to the polishing apparatus is weak, it is possible to obtain substantially the same effect as that of the first embodiment.

【0026】なお実施例3の場合、砥粒液に酸化クロム
(6価)飽和水溶液を用いたが、酸化クロム(6価)飽
和水溶液に限定されるものではなく、(3価)、(4
価)、(5価)の酸化クロム水溶液も使用可能である。
また実施例3の場合は砥粒液に酸化クロム(6価)飽和
水溶液を用いたが、何らこの濃度に限定されるものでは
なく、別の濃度の酸化クロム水溶液も使用可能である。
In the case of Example 3, a chromium oxide (hexavalent) saturated aqueous solution was used as the abrasive liquid, but it is not limited to the chromium oxide (hexavalent) saturated aqueous solution, and (3 valent), (4)
It is also possible to use (valent), (pentavalent) chromium oxide aqueous solutions.
Further, in the case of Example 3, a chromium oxide (hexavalent) saturated aqueous solution was used as the abrasive liquid, but the concentration is not limited to this, and a chromium oxide aqueous solution having another concentration can be used.

【0027】また図5は実施例4の砥粒液を用いた場合
における研磨速度比Rと銅含有率との関係を示した曲線
図である。図5から明らかなように、砥粒液としてリン
酸3%水溶液を用いた場合、金属膜12における銅の含
有量が多くなるにつれて研磨速度比Rは略13から漸増
し、銅の含有量が略100%になると、研磨速度比Rは
略14.5となる。
FIG. 5 is a curve diagram showing the relationship between the polishing rate ratio R and the copper content when the abrasive liquid of Example 4 was used. As is clear from FIG. 5, when the phosphoric acid 3% aqueous solution is used as the abrasive liquid, the polishing rate ratio R gradually increases from about 13 as the content of copper in the metal film 12 increases, and the content of copper is When the polishing rate ratio R becomes approximately 100%, the polishing rate ratio R becomes approximately 14.5.

【0028】この結果から明らかなように、実施例4に
係る配線の形成方法(1)によれば、研磨速度比Rを1
3〜14.5にすることができ、また研磨装置に対する
腐食性も弱いため、実施例1の場合と略同様の効果を得
ることができる。
As is clear from these results, according to the wiring forming method (1) of the fourth embodiment, the polishing rate ratio R is 1
It can be set to 3 to 14.5, and the corrosiveness to the polishing apparatus is weak, so that the same effect as in the case of Example 1 can be obtained.

【0029】なお実施例4の場合、砥粒液にリン酸3%
水溶液を用いたが、この濃度に限定されるものではな
く、別の濃度のリン酸水溶液も使用可能である。
In the case of Example 4, 3% phosphoric acid was added to the abrasive grain liquid.
Although an aqueous solution was used, the concentration is not limited to this, and an aqueous solution of phosphoric acid having another concentration can be used.

【0030】また図6は実施例5の砥粒液を用いた場合
における研磨速度比Rと銅含有率との関係を示した曲線
図である。図6から明らかなように、砥粒液として水酸
化アンモニウム5%水溶液を用いた場合、金属膜12に
おける銅の含有量が多くなるにつれて研磨速度比Rは略
5から漸増し、銅の含有量が略80%以上になると、研
磨速度比Rは略一定(R=10.5)になる。
FIG. 6 is a curve diagram showing the relationship between the polishing rate ratio R and the copper content when the abrasive liquid of Example 5 is used. As is clear from FIG. 6, when an ammonium hydroxide 5% aqueous solution is used as the abrasive liquid, the polishing rate ratio R gradually increases from approximately 5 as the content of copper in the metal film 12 increases, and the content of copper is increased. Is about 80% or more, the polishing rate ratio R becomes substantially constant (R = 10.5).

【0031】この結果から明らかなように、実施例5に
係る配線の形成方法(1)によれば、研磨速度比Rを5
〜10.5にすることができ、また研磨装置に対する腐
食性も弱いため、実施例1の場合と略同様の効果を得る
ことができる。
As is clear from this result, according to the wiring forming method (1) of the fifth embodiment, the polishing rate ratio R is 5
Since it can be set to ˜10.5 and the corrosiveness against the polishing apparatus is weak, it is possible to obtain substantially the same effect as that of the first embodiment.

【0032】なお実施例5の場合、砥粒液に水酸化アン
モニウム5%水溶液を用いたが、この濃度に限定される
ものではなく、別の濃度の水酸化アンモニウム水溶液も
使用可能である。
In Example 5, a 5% ammonium hydroxide aqueous solution was used as the abrasive liquid, but the concentration is not limited to this, and an ammonium hydroxide aqueous solution having another concentration can be used.

【0033】また図7は実施例6の砥粒液を用いた場合
における研磨速度比Rと銅含有率との関係を示した曲線
図である。図7から明らかなように、砥粒液として塩化
銅(2価)アンモニウム5%水溶液と水酸化アンモニウ
ム10%水溶液との混合液を用いた場合、金属膜12に
おける銅の含有量が多くなるにつれて研磨速度比Rは略
6から徐々に上昇し、銅の含有量が略80%以上になる
と、研磨速度比Rは略一定(R=12)になる。
FIG. 7 is a curve diagram showing the relationship between the polishing rate ratio R and the copper content when the abrasive liquid of Example 6 is used. As is clear from FIG. 7, when a mixed solution of a 5% aqueous solution of copper (divalent) ammonium chloride and a 10% aqueous solution of ammonium hydroxide was used as the abrasive liquid, as the content of copper in the metal film 12 increased, The polishing rate ratio R gradually increases from about 6, and when the copper content is about 80% or more, the polishing rate ratio R becomes substantially constant (R = 12).

【0034】この結果から明らかなように、実施例6に
係る配線の形成方法(1)によれば、研磨速度比Rを6
〜12にすることができ、また研磨装置に対する腐食性
も弱いため、実施例1の場合と略同様の効果を得ること
ができる。
As is clear from these results, according to the wiring forming method (1) of the sixth embodiment, the polishing rate ratio R is 6
Since it can be set to 12 and the corrosiveness against the polishing apparatus is weak, it is possible to obtain substantially the same effect as in the case of the first embodiment.

【0035】なお実施例6の場合、砥粒液の一部に塩化
銅(2価)アンモニウム5%水溶液を用いたが、塩化銅
(2価)アンモニウム5%水溶液に限定されるものでは
なく、塩化銅(1価)アンモニウム水溶液も使用可能で
ある。また実施例6の場合は砥粒液に塩化銅(2価)ア
ンモニウム5%水溶液+水酸化アンモニウム10%水溶
液を用いたが、何らこの濃度に限定されるものではな
く、別の濃度の塩化銅アンモニウム水溶液+水酸化アン
モニウム水溶液も使用可能である。
In the case of Example 6, a 5% aqueous solution of copper (divalent) ammonium chloride was used as a part of the abrasive grain liquid, but it is not limited to a 5% aqueous solution of copper (divalent) ammonium chloride. An aqueous solution of copper chloride (monovalent) ammonium can also be used. Further, in the case of Example 6, a 5% copper chloride (divalent) ammonium aqueous solution + a 10% ammonium hydroxide aqueous solution was used as the abrasive liquid, but the concentration is not limited to this, and copper chloride of another concentration is used. An ammonium aqueous solution + ammonium hydroxide aqueous solution can also be used.

【0036】また図8は実施例7の砥粒液を用いた場合
における研磨速度比Rと銅含有率との関係を示した曲線
図である。図8から明らかなように、砥粒液として水酸
化アンモニウム5%水溶液と過酸化水素5%水溶液との
混合液を用いた場合、金属膜12における銅の含有量が
多くなるにつれて研磨速度比Rは略5から徐々に上昇
し、銅の含有量が略80%以上になると、研磨速度比R
は略一定(R=16)になる。
FIG. 8 is a curve diagram showing the relationship between the polishing rate ratio R and the copper content when the abrasive liquid of Example 7 was used. As is apparent from FIG. 8, when a mixed solution of an ammonium hydroxide 5% aqueous solution and a hydrogen peroxide 5% aqueous solution is used as the abrasive liquid, the polishing rate ratio R increases as the content of copper in the metal film 12 increases. Gradually increases from about 5, and when the copper content is about 80% or more, the polishing rate ratio R
Is approximately constant (R = 16).

【0037】この結果から明らかなように、実施例7に
係る配線の形成方法(1)によれば、研磨速度比Rを5
〜16にすることができ、また研磨装置に対する腐食性
も弱いため、実施例1の場合と略同様の効果を得ること
ができる。
As is clear from these results, according to the wiring forming method (1) of the seventh embodiment, the polishing rate ratio R is 5
Since it can be set to 16 and the corrosiveness with respect to the polishing apparatus is weak, it is possible to obtain substantially the same effect as that of the first embodiment.

【0038】なお実施例7の場合、砥粒液に水酸化アン
モニウム5%水溶液+過酸化水素5%水溶液を用いた
が、この濃度に限定されるものではなく、別の濃度の水
酸化アンモニウム水溶液+過酸化水素水溶液も使用可能
である。
In Example 7, an ammonium hydroxide 5% aqueous solution + hydrogen peroxide 5% aqueous solution was used as the abrasive grain liquid, but the concentration is not limited to this, and an ammonium hydroxide aqueous solution having another concentration is used. + Aqueous hydrogen peroxide solution can also be used.

【0039】また別の実施例では、塩酸水溶液、過硫酸
アンモニウム水溶液、酸化クロム水溶液、リン酸水溶
液、水酸化アンモニウム水溶液、塩化銅アンモニウムと
水酸化アンモニウムとを含む水溶液または水酸化アンモ
ニウムと過酸化水素とを含む水溶液を混合した溶液も砥
粒液として用いることが可能である。
In another embodiment, an aqueous solution of hydrochloric acid, an aqueous solution of ammonium persulfate, an aqueous solution of chromium oxide, an aqueous solution of phosphoric acid, an aqueous solution of ammonium hydroxide, an aqueous solution containing ammonium copper chloride and ammonium hydroxide, or ammonium hydroxide and hydrogen peroxide. It is also possible to use a solution in which an aqueous solution containing is mixed as the abrasive grain liquid.

【0040】なお、上記した実施例1乃至実施例7の場
合、砥粒に平均粒径が略0.1μmのSiO2 粒子を用
いたが、別の実施例では、砥粒に平均粒径が略0.02
〜5.0μmのSiO2 粒子あるいは平均粒径が略0.
5μmのAl23 粒子を用い、実施例1の場合と略同
様の効果を得ることができる。
In Examples 1 to 7 described above, SiO 2 particles having an average particle size of about 0.1 μm were used as the abrasive grains, but in another example, the abrasive particles had an average particle size of about 0.1 μm. Approximately 0.02
SiO 2 particles or the average particle size is substantially zero ~5.0Myuemu.
By using Al 2 O 3 particles of 5 μm, it is possible to obtain substantially the same effect as in the case of Example 1.

【0041】次に、実施例8として平均粒径が略0.1
μmのSiO2 粒子を水に懸濁させたものを用い、銅を
含有する金属膜12を研磨した場合について、表面粗さ
を測定した結果について説明する。なお比較例4として
平均粒径が略0.1μmのAl23 粒子を水に懸濁さ
せたものを用いて研磨した。この結果を下記の表2に示
す。
Next, as Example 8, the average particle size was about 0.1.
The results of measuring the surface roughness of the case where the copper-containing metal film 12 is polished by using the SiO 2 particles of μm suspended in water will be described. As Comparative Example 4, Al 2 O 3 particles having an average particle diameter of about 0.1 μm suspended in water were used for polishing. The results are shown in Table 2 below.

【0042】[0042]

【表2】 [Table 2]

【0043】表2から明らかなように、銅を含有する金
属膜12を研磨する場合、配線としての金属膜12aに
おける表面粗さは、砥粒としてAl23 粒子よりもS
iO2 粒子を用いる方が優れていることが分かる。
As is clear from Table 2, when polishing the metal film 12 containing copper, the surface roughness of the metal film 12a as a wiring is S more than that of Al 2 O 3 particles as abrasive grains.
It can be seen that it is better to use iO 2 particles.

【0044】また図9は研磨後における銅を含む金属膜
12aの表面粗さとSiO2 粒子の平均粒径との関係を
示した曲線図である。実施例9として平均粒径が0.0
2μm、0.05μm、0.1μmのSiO2 粒子を水
に懸濁させたものを用い、比較例5として平均粒径が
0.5μm、1μm、1.5μm、2μm、3μmのS
iO2 粒子を水に懸濁させたものを用いた。図9から明
らかなように、砥粒として平均粒径が0.1μm以下の
SiO2 粒子を用いた場合、銅を含む金属膜12aの表
面粗さRa が略0.01μmになる。
FIG. 9 is a curve diagram showing the relationship between the surface roughness of the metal film 12a containing copper after polishing and the average particle size of SiO 2 particles. In Example 9, the average particle size is 0.0
As SiO 2 particles of 2 μm, 0.05 μm, and 0.1 μm suspended in water, S having an average particle diameter of 0.5 μm, 1 μm, 1.5 μm, 2 μm, and 3 μm was used as Comparative Example 5.
A suspension of iO 2 particles in water was used. As apparent from FIG. 9, when the average particle size as the abrasive grains used the following SiO 2 particles 0.1 [mu] m, a surface roughness R a of the metal film 12a containing copper is substantially 0.01 [mu] m.

【0045】これらの結果から明らかなように、実施例
8、実施例9に係る配線の形成方法では、Al23
子に比べてSiO2 粒子は硬度が低く、細粒のため、銅
を含む比較的軟質の金属膜表面を傷付けることがなく、
研磨により配線の特性が損われるのを防止することがで
きる。
As is clear from these results, in the wiring forming methods according to Examples 8 and 9, the hardness of SiO 2 particles is lower than that of Al 2 O 3 particles, and copper is used because it is a fine grain. Including the relatively soft metal film surface without damaging,
It is possible to prevent the characteristics of the wiring from being damaged by polishing.

【0046】なお、実施例8、実施例9では平均粒径が
0.1μm以下のSiO2 粒子を水に懸濁させたものを
用いたが、別の実施例では、SiO2 粒子を塩酸水溶
液、過硫酸アンモニウム水溶液、酸化クロム水溶液、リ
ン酸水溶液、水酸化アンモニウム水溶液、塩化銅アンモ
ニウムと水酸化アンモニウムとを含む水溶液、水酸化ア
ンモニウムと過酸化水素とを含む水溶液または前記水溶
液の混合液に混合したものを用いてもよく、この場合、
実施例1の場合と同様の効果が得られるとともに実施例
8、実施例9の場合と同様の効果も得ることができる。
In Examples 8 and 9, SiO 2 particles having an average particle size of 0.1 μm or less were suspended in water, but in another Example, the SiO 2 particles were used in an aqueous hydrochloric acid solution. , An aqueous solution of ammonium persulfate, an aqueous solution of chromium oxide, an aqueous solution of phosphoric acid, an aqueous solution of ammonium hydroxide, an aqueous solution containing ammonium cupric chloride and ammonium hydroxide, an aqueous solution containing ammonium hydroxide and hydrogen peroxide, or a mixed solution of the above aqueous solutions. You may use a thing, in this case,
The same effect as that of the first embodiment can be obtained, and the same effect as that of the eighth and ninth embodiments can be obtained.

【0047】また上記した実施例1乃至実施例9の場
合、金属膜12の形成にECRスパッタ法を用いたが、
その他例えばCu(HFA)2 、Cu(DPM)2 、C
u(AcAc)2 、Cu(FOD)2 、Cu(PPM)
2 等のガスを用いたCVD法等を使用しても金属膜12
を形成することができる。
Further, in the case of the above-mentioned Examples 1 to 9, the ECR sputtering method was used for forming the metal film 12,
Others such as Cu (HFA) 2 , Cu (DPM) 2 , C
u (AcAc) 2 , Cu (FOD) 2 , Cu (PPM)
Even if a CVD method using a gas such as 2 is used, the metal film 12
Can be formed.

【0048】また、上記した実施例1乃至実施例9の場
合、絶縁膜11としてSiO2 膜の結果であるが、他の
絶縁膜SiN、SiON、SiOF、SOG、BPSG
等においても略同様の結果を得ることができる。
In addition, in the case of the above-mentioned first to ninth embodiments, although the result is the SiO 2 film as the insulating film 11, other insulating films SiN, SiON, SiOF, SOG, BPSG.
The same result can be obtained even in the case of "etc."

【0049】[0049]

【発明の効果】以上詳述したように本発明に係る配線の
形成方法(1)にあっては、砥粒液として塩酸水溶液、
過硫酸アンモニウム水溶液、酸化クロム水溶液、リン酸
水溶液、水酸化アンモニウム水溶液、塩化銅アンモニウ
ムと水酸化アンモニウムとを含む水溶液、水酸化アンモ
ニウムと過酸化水素とを含む水溶液または前記水溶液の
混合液を用いるので、研磨速度比Rを1より大きくする
ことができ、研磨の際の絶縁膜のストッパ効果を強める
ことができ、研磨が前記絶縁膜の表面に到達すると、研
磨の進行を抑制することができ、その結果、配線として
の金属膜厚の制御を確実に行なうことができる。また、
これらの水溶液はいずれも研磨装置の構成材料に対する
腐食性が弱いため、これらの水溶液を用いることによ
り、研磨装置の実用化を容易にすることができる。
As described in detail above, in the wiring forming method (1) according to the present invention, a hydrochloric acid aqueous solution is used as the abrasive liquid.
Since an aqueous solution of ammonium persulfate, an aqueous solution of chromium oxide, an aqueous solution of phosphoric acid, an aqueous solution of ammonium hydroxide, an aqueous solution containing ammonium copper chloride and ammonium hydroxide, an aqueous solution containing ammonium hydroxide and hydrogen peroxide or a mixed solution of the above aqueous solutions is used, The polishing rate ratio R can be made larger than 1, the stopper effect of the insulating film at the time of polishing can be strengthened, and when the polishing reaches the surface of the insulating film, the progress of polishing can be suppressed. As a result, it is possible to reliably control the metal film thickness of the wiring. Also,
Since all of these aqueous solutions are weakly corrosive to the constituent materials of the polishing apparatus, use of these aqueous solutions can facilitate the practical use of the polishing apparatus.

【0050】また本発明に係る配線の形成方法(2)に
あっては、砥粒として平均粒径が0.1μm以下のSi
2 粒子を用いており、Al23 粒子に比べてSiO
2 粒子は硬度が低く、かつ細粒のため、銅を含む比較的
軟質の金属膜表面を傷付けることがなく、研磨により配
線の特性が損われるのを防止することができる。
Further, in the wiring forming method (2) according to the present invention, Si having an average grain size of 0.1 μm or less as abrasive grains is used.
O 2 particles are used, and compared with Al 2 O 3 particles, SiO 2 is used.
Since the two particles have low hardness and are fine particles, the surface of the relatively soft metal film containing copper is not damaged, and the characteristics of the wiring can be prevented from being damaged by polishing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る配線の形成方法の実施例を工程順
に示した模式的断面図であり、(a)は絶縁膜に溝を形
成し、この絶縁膜の上面に金属膜を形成した状態、
(b)は研磨により絶縁膜表面まで金属膜を除去した状
態を示している。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a wiring forming method according to the present invention in the order of steps. FIG. 1A shows a groove formed in an insulating film and a metal film formed on the upper surface of the insulating film. Status,
(B) shows a state where the metal film is removed to the surface of the insulating film by polishing.

【図2】実施例1の塩酸3%水溶液を砥粒液として用い
た場合における研磨速度比Rと銅含有率との関係を示し
た曲線図である。
FIG. 2 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content rate when a 3% hydrochloric acid aqueous solution of Example 1 is used as an abrasive grain liquid.

【図3】実施例2の過硫酸アンモニウム5%水溶液を砥
粒液として用いた場合における研磨速度比Rと銅含有率
との関係を示した曲線図である。
FIG. 3 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content rate when an ammonium persulfate 5% aqueous solution of Example 2 is used as an abrasive grain liquid.

【図4】実施例3の酸化クロム(6)飽和水溶液を砥粒
液として用いた場合における研磨速度比Rと銅含有率と
の関係を示した曲線図である。
FIG. 4 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content when a chromium oxide (6) saturated aqueous solution of Example 3 is used as an abrasive liquid.

【図5】実施例4のリン酸3%水溶液を砥粒液として用
いた場合における研磨速度比Rと銅含有率との関係を示
した曲線図である。
FIG. 5 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content rate when a 3% phosphoric acid aqueous solution of Example 4 is used as an abrasive grain liquid.

【図6】実施例5の水酸化アンモニウム5%水溶液を砥
粒液として用いた場合における研磨速度比Rと銅含有率
との関係を示した曲線図である。
FIG. 6 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content rate when an ammonium hydroxide 5% aqueous solution of Example 5 was used as an abrasive grain liquid.

【図7】実施例6の塩化銅(2)アンモニウム5%水溶
液と水酸化アンモニウム10%水溶液との混合液を砥粒
液として用いた場合における研磨速度比Rと銅含有率と
の関係を示した曲線図である。
FIG. 7 shows the relationship between the polishing rate ratio R and the copper content when a mixed solution of a 5% ammonium chloride (2) aqueous solution and a 10% ammonium hydroxide aqueous solution of Example 6 was used as an abrasive grain liquid. FIG.

【図8】実施例7の水酸化アンモニウム5%水溶液と過
酸化水素5%水溶液との混合液を砥粒液として用いた場
合における研磨速度比Rと銅含有率との関係を示した曲
線図である。
FIG. 8 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content rate when a mixed solution of an ammonium hydroxide 5% aqueous solution and a hydrogen peroxide 5% aqueous solution of Example 7 was used as an abrasive grain liquid. Is.

【図9】研磨後における銅を含む金属膜の表面粗さとS
iO2 粒子の平均粒径との関係を示した曲線図である。
FIG. 9 shows the surface roughness and S of a metal film containing copper after polishing.
FIG. 6 is a curve diagram showing a relationship with the average particle size of iO 2 particles.

【図10】比較例1のpH2.2の硫酸水溶液を砥粒液
として用いた場合における研磨速度比Rと銅含有率との
関係を示した曲線図である。
10 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content rate when a sulfuric acid aqueous solution having a pH of 2.2 of Comparative Example 1 is used as an abrasive grain liquid. FIG.

【図11】比較例2のpH2.2の硝酸水溶液を砥粒液
として用いた場合における研磨速度比Rと銅含有率との
関係を示した曲線図である。
11 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content rate when a nitric acid aqueous solution having a pH of 2.2 of Comparative Example 2 is used as an abrasive grain liquid. FIG.

【図12】比較例3のpH2.2の酢酸水溶液を砥粒液
として用いた場合における研磨速度比Rと銅含有率との
関係を示した曲線図である。
FIG. 12 is a curve diagram showing a relationship between a polishing rate ratio R and a copper content rate when an acetic acid aqueous solution having a pH of 2.2 of Comparative Example 3 is used as an abrasive grain liquid.

【図13】従来の配線を形成する工程を示した模式的断
面図であり、(a)は絶縁膜に溝を形成し、この絶縁膜
の上面に金属膜を形成した状態、(b)は研磨により絶
縁膜表面まで金属膜を除去した状態、(c)は研磨をさ
らに続行した状態を示している。
FIG. 13 is a schematic cross-sectional view showing a step of forming a conventional wiring, (a) shows a state where a groove is formed in an insulating film and a metal film is formed on the upper surface of the insulating film, (b) shows The state where the metal film is removed up to the surface of the insulating film by polishing, and (c) shows the state where polishing is further continued.

【符号の説明】[Explanation of symbols]

11 絶縁膜 12 金属膜 12a 配線としての金属膜 11 Insulating film 12 Metal film 12a Metal film as wiring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 凸凹を有する絶縁膜上に銅を含有する金
属膜を形成した後、砥粒及び砥粒液を用いて研磨により
平坦化する配線の形成方法において、前記砥粒液として
塩酸水溶液、過硫酸アンモニウム水溶液、酸化クロム水
溶液、リン酸水溶液、水酸化アンモニウム水溶液、塩化
銅アンモニウムと水酸化アンモニウムとを含む水溶液、
水酸化アンモニウムと過酸化水素とを含む水溶液または
前記水溶液の混合液を用いることを特徴とする配線の形
成方法。
1. A method of forming a wiring in which a metal film containing copper is formed on an insulating film having irregularities and then flattened by polishing with an abrasive grain and an abrasive grain solution, and an aqueous hydrochloric acid solution is used as the abrasive grain solution. , Ammonium persulfate aqueous solution, chromium oxide aqueous solution, phosphoric acid aqueous solution, ammonium hydroxide aqueous solution, aqueous solution containing ammonium copper chloride and ammonium hydroxide,
A method for forming a wiring, which comprises using an aqueous solution containing ammonium hydroxide and hydrogen peroxide or a mixed solution of the aqueous solutions.
【請求項2】 凸凹を有する絶縁膜上に銅を含有する金
属膜を形成した後、砥粒及び砥粒液を用いて研磨により
平坦化する配線の形成方法において、前記砥粒として平
均粒径が0.1μm以下のSiO2 粒子を用いることを
特徴とする配線の形成方法。
2. A method for forming a wiring, comprising: forming a metal film containing copper on an insulating film having irregularities, and then planarizing the metal film by polishing with an abrasive grain and an abrasive grain solution; A method of forming a wiring, wherein SiO 2 particles having a particle size of 0.1 μm or less are used.
JP23826393A 1993-09-24 1993-09-24 Formation of wiring Pending JPH0794455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23826393A JPH0794455A (en) 1993-09-24 1993-09-24 Formation of wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23826393A JPH0794455A (en) 1993-09-24 1993-09-24 Formation of wiring

Publications (1)

Publication Number Publication Date
JPH0794455A true JPH0794455A (en) 1995-04-07

Family

ID=17027586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23826393A Pending JPH0794455A (en) 1993-09-24 1993-09-24 Formation of wiring

Country Status (1)

Country Link
JP (1) JPH0794455A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726099A (en) * 1995-11-07 1998-03-10 International Business Machines Corporation Method of chemically mechanically polishing an electronic component using a non-selective ammonium persulfate slurry
JPH10125639A (en) * 1996-10-21 1998-05-15 Motorola Inc Polishing method for semiconductor wafer
WO1998054756A1 (en) * 1997-05-26 1998-12-03 Hitachi, Ltd. Polishing method and semiconductor device manufacturing method using the same
US5993685A (en) * 1997-04-02 1999-11-30 Advanced Technology Materials Planarization composition for removing metal films
US6235071B1 (en) 1998-02-26 2001-05-22 Nec Corporation Chemical mechanical polishing method for highly accurate in-plane uniformity in polishing rate over position
JP2001185515A (en) * 1999-12-27 2001-07-06 Hitachi Ltd Polishing method, wire forming method, method for manufacturing semiconductor device and semiconductor integrated circuit device
US6509273B1 (en) 1999-04-28 2003-01-21 Hitachi, Ltd. Method for manufacturing a semiconductor device
US6562719B2 (en) 2000-08-04 2003-05-13 Hitachi, Ltd. Methods of polishing, interconnect-fabrication, and producing semiconductor devices
KR100387257B1 (en) * 1999-12-28 2003-06-11 주식회사 하이닉스반도체 Method of forming a metal line in a semiconductor device
JP2007243206A (en) * 2007-04-12 2007-09-20 Hitachi Ltd Method for manufacturing semiconductor device
US7279425B2 (en) 1997-10-31 2007-10-09 Hitachi, Ltd. Polishing method
JP2010034581A (en) * 2009-11-04 2010-02-12 Jsr Corp Aqueous dispersing element for chemical mechanical polishing

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5726099A (en) * 1995-11-07 1998-03-10 International Business Machines Corporation Method of chemically mechanically polishing an electronic component using a non-selective ammonium persulfate slurry
JPH10125639A (en) * 1996-10-21 1998-05-15 Motorola Inc Polishing method for semiconductor wafer
US5993685A (en) * 1997-04-02 1999-11-30 Advanced Technology Materials Planarization composition for removing metal films
US6267909B1 (en) * 1997-04-02 2001-07-31 Advanced Technology & Materials Inc. Planarization composition for removing metal films
WO1998054756A1 (en) * 1997-05-26 1998-12-03 Hitachi, Ltd. Polishing method and semiconductor device manufacturing method using the same
US7563716B2 (en) 1997-10-31 2009-07-21 Renesas Technology Corp. Polishing method
US7279425B2 (en) 1997-10-31 2007-10-09 Hitachi, Ltd. Polishing method
US6235071B1 (en) 1998-02-26 2001-05-22 Nec Corporation Chemical mechanical polishing method for highly accurate in-plane uniformity in polishing rate over position
US6509273B1 (en) 1999-04-28 2003-01-21 Hitachi, Ltd. Method for manufacturing a semiconductor device
US7183212B2 (en) 1999-12-27 2007-02-27 Renesas Technology Corp. Polishing method, metallization fabrication method, method for manufacturing semiconductor device and semiconductor device
US6774041B1 (en) 1999-12-27 2004-08-10 Renesas Technology Corp. Polishing method, metallization fabrication method, method for manufacturing semiconductor device and semiconductor device
KR100746883B1 (en) * 1999-12-27 2007-08-07 가부시키가이샤 히타치세이사쿠쇼 Method of manufacturing semiconductor device
JP2001185515A (en) * 1999-12-27 2001-07-06 Hitachi Ltd Polishing method, wire forming method, method for manufacturing semiconductor device and semiconductor integrated circuit device
KR100387257B1 (en) * 1999-12-28 2003-06-11 주식회사 하이닉스반도체 Method of forming a metal line in a semiconductor device
US6750128B2 (en) 2000-08-04 2004-06-15 Renesas Technology Corporation Methods of polishing, interconnect-fabrication, and producing semiconductor devices
US6562719B2 (en) 2000-08-04 2003-05-13 Hitachi, Ltd. Methods of polishing, interconnect-fabrication, and producing semiconductor devices
JP2007243206A (en) * 2007-04-12 2007-09-20 Hitachi Ltd Method for manufacturing semiconductor device
JP4618267B2 (en) * 2007-04-12 2011-01-26 株式会社日立製作所 Manufacturing method of semiconductor device
JP2010034581A (en) * 2009-11-04 2010-02-12 Jsr Corp Aqueous dispersing element for chemical mechanical polishing

Similar Documents

Publication Publication Date Title
US5759971A (en) Semiconductor wafer cleaning liquid
US6924227B2 (en) Slurry for chemical mechanical polishing and method of manufacturing semiconductor device
US6482749B1 (en) Method for etching a wafer edge using a potassium-based chemical oxidizer in the presence of hydrofluoric acid
JPH0794455A (en) Formation of wiring
US5944907A (en) Cleaning device and method
WO1998044061A1 (en) Planarization composition for removing metal films
TW543093B (en) Method of reducing in-trench smearing during polishing
CN101065457A (en) Chemical mechanical polishing method and polishing composition
US7731864B2 (en) Slurry for chemical mechanical polishing of aluminum
WO1996021942A1 (en) Method of cleaning substrates
US6355565B2 (en) Chemical-mechanical-polishing slurry and method for polishing metal/oxide layers
JP3192968B2 (en) Polishing liquid for copper-based metal and method for manufacturing semiconductor device
WO1999067056A1 (en) Composition for the chemical mechanical polishing of metal layers
US20060261041A1 (en) Method for manufacturing metal line contact plug of semiconductor device
WO2006068091A1 (en) Fine treatment agent and fine treatment method using same
CN1303518A (en) Post-etching alkaline treatment process
US6057240A (en) Aqueous surfactant solution method for stripping metal plasma etch deposited oxidized metal impregnated polymer residue layers from patterned metal layers
EP2426705A1 (en) Method for cleaning of semiconductor substrate and acidic solution
JP2003173998A (en) Method for cleaning semiconductor substrate
JPH07221055A (en) Method for forming wiring
US6537919B1 (en) Process to remove micro-scratches
JP2000212776A (en) Aqueous dispersion for mechanochemical polishing
WO2001071788A1 (en) Water for storing silicon wafers and storing method
US6235071B1 (en) Chemical mechanical polishing method for highly accurate in-plane uniformity in polishing rate over position
US5587046A (en) Process for treating semiconductor material with an acid-containing fluid