JPH07211569A - Manufacture of polymer complex rare-earth magnet - Google Patents

Manufacture of polymer complex rare-earth magnet

Info

Publication number
JPH07211569A
JPH07211569A JP6023214A JP2321494A JPH07211569A JP H07211569 A JPH07211569 A JP H07211569A JP 6023214 A JP6023214 A JP 6023214A JP 2321494 A JP2321494 A JP 2321494A JP H07211569 A JPH07211569 A JP H07211569A
Authority
JP
Japan
Prior art keywords
magnet
magnet powder
powder
mixed
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6023214A
Other languages
Japanese (ja)
Inventor
Tatsuya Endo
達也 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP6023214A priority Critical patent/JPH07211569A/en
Publication of JPH07211569A publication Critical patent/JPH07211569A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a manufacturing method of a polymer complex rare-earth magnet whose magnetic characteristic and mechanical strength are excellent. CONSTITUTION:In the manufacturing method of a polymer complex rare-earth magnet, a one-liquid epoxy resin is mixed with a rare-earth-based magnet powder, a coated magnet powder is prepared, the coated magnet powder is molded, and a molded product is formed. In the manufacturing method, 2-ethyl hexyl titanate and 3-cyanopropyl triethoxysilane in 0.1 to 0.5wt.% are mixed with the magnet powder, and two kinds of coated magnet powders are prepared. Then, the two kinds of coated magnet powders are mixed, a one-liquid epoxy resin is mixed with a mixed magnet powder, this mixture is molded by applying a molding pressure of 6 ton/cm<2> and an application magnetic field of 15kOe, a molded body is obtained, the molded body is hardened and treated at 150 deg.C for one hour, and the polymer complex rare-earth magnet whose magnetic characteristic and mechanical strength are excellent is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気特性及び機械的特性
に優れた高分子複合型希土類磁石の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polymer composite type rare earth magnet having excellent magnetic properties and mechanical properties.

【0002】[0002]

【従来の技術】磁石粉末とバインダーとを混合し押出し
成形、圧縮成形あるいは射出成形により高分子複合型希
土類磁石を製造することはJISC2502永久磁石材
料等において周知である。磁石粉末とバインダーの混合
物を圧縮成形によって製造する場合、磁気特性、機械的
強度を高める方法として成形圧力を高める粉末粒度の調
整を行う等の方法で密度及び機械的強度を向上させる方
法が提唱されており、これらの製造方法の改善が進んで
いるものの、未だ充分とは言えない。このような不具合
を改善する方法の一つとして磁性粉末を各種カップリン
グ剤で被覆処理を行う方法が提唱されている。この方法
は磁石粉末の表面を親水性から親油性に変え、バインダ
ーとの馴じみを良くする効果があり、従って充填率、配
向性、機械的強度の改善が出来るとされている。しか
し、これらの方法を採った場合でも磁石特性を高める程
機械的強度は低下し、機械的強度を高めれば磁気特性は
低下し、磁気特性及び機械的強度の双方とも高めるまで
には至っていない。当然ながら磁気特性については、非
磁性のバインダー及び添加物が混合されるためにその体
積分だけ、磁気特性が劣化する。特に近年小型モータ
ー、OA機器等への展開が期待されており、複合磁石と
しても増々薄肉形状のものが要求されてきており磁気特
性をそこなわずに機械的強度を向上させることが重要な
課題となっている。
2. Description of the Related Art It is well known in JISC2502 permanent magnet materials and the like that a magnetic powder and a binder are mixed and the polymer composite rare earth magnet is manufactured by extrusion molding, compression molding or injection molding. When a mixture of magnet powder and binder is produced by compression molding, a method of improving density and mechanical strength is proposed as a method of increasing magnetic properties and mechanical strength, such as adjusting powder particle size to increase molding pressure. Although these manufacturing methods are being improved, it is still not sufficient. As one of methods for improving such a problem, a method of coating magnetic powder with various coupling agents has been proposed. It is said that this method has the effect of changing the surface of the magnet powder from hydrophilic to lipophilic and improving the compatibility with the binder, and therefore it is possible to improve the filling rate, orientation and mechanical strength. However, even if these methods are adopted, the mechanical strength is lowered as the magnet characteristics are enhanced, and the magnetic characteristics are lowered if the mechanical strength is enhanced, and both the magnetic characteristics and the mechanical strength have not been enhanced. As a matter of course, with respect to the magnetic properties, the nonmagnetic binder and the additives are mixed, so that the magnetic properties are deteriorated by the volume. In particular, in recent years, it is expected to be applied to small motors, OA equipment, etc., and composite magnets are increasingly required to have thin-walled shapes, and it is important to improve mechanical strength without impairing magnetic characteristics. Has become.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、磁気
特性及び機械的強度に優れた高分子複合型希土類磁石の
製造方法を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a polymer composite type rare earth magnet having excellent magnetic properties and mechanical strength.

【0004】[0004]

【課題を解決するための手段】本発明は、希土類系磁石
粉末に樹脂を混合して成形して成る高分子複合型磁石の
製造方法において、該磁石粉末に対して2−エチルヘキ
シルチタネートを0.1〜0.5wt%混合、被覆して磁
石粉末とし、一方希土類系磁石粉末に対して3−シア
ノプロピル−トリエトキシシランを0.1〜0.5wt%
混合、被覆して磁石粉末とし、各々の前記被覆処理し
た磁石粉末と磁石粉末とを混合し、さらに、樹脂を
用いて成形することを特徴とする高分子複合型希土類磁
石の製造方法であり、また、3−シアノプロピル−トリ
エトキシシランを被覆処理した磁石粉末と2−エチル
ヘキシルチタネートを被覆処理した磁石粉末の混合重
量比を1:3から1:13とすることを特徴とする高分
子複合型希土類磁石の製造方法である。
The present invention relates to a method for producing a polymer composite magnet, which is produced by mixing a rare earth magnet powder with a resin and molding the mixture, in which 0.2-ethylhexyl titanate is added to the magnet powder. 1 to 0.5 wt% is mixed and coated to form a magnet powder, while 0.1 to 0.5 wt% of 3-cyanopropyl-triethoxysilane is added to the rare earth magnet powder.
A method for producing a polymer composite type rare earth magnet, which is characterized in that mixing and coating are performed to obtain a magnet powder, each of the coated magnet powder and the magnet powder is mixed, and the resin powder is molded using a resin. Also, the polymer composite type is characterized in that the mixing weight ratio of the magnet powder coated with 3-cyanopropyl-triethoxysilane and the magnet powder coated with 2-ethylhexyl titanate is 1: 3 to 1:13. It is a method for manufacturing a rare earth magnet.

【0005】[0005]

【作用】本発明の磁石材料はバインダーと磁石粉末を混
合する際、予め2−エチルヘキシルチタネート0.1〜
0.5wt%被覆処理した磁石粉末と、3−シアノプ
ロピル−トリエトキシシラン0.1〜0.5wt%被覆処
理した磁石粉末を混合したものを用いることによって
双方の処理効果により磁石粉末の充填量を増し、磁石粉
末の配向度が大きくなり、磁気特性及び機械的強度が高
められ、さらに双方の被覆処理剤を同時に添加して被覆
処理を行った場合よりも双方の処理効果が向上し、磁気
特性及び機械的強度が著しく改善されることにある。本
発明にて用いられる表面処理剤は次の構造式で表され
る。2−エチルヘキシルチタネートは[C49CH(C
25)CH2O]4Tiであり、3−シアノプロピル−ト
リエトキシシランはNC(CH23Si(OC253
である。用いる被覆処理剤の量は本発明の目的に最もか
なう条件として2−エチルヘキシルチタネート被覆処理
磁石粉末と3−シアノプロピル−トリエトキシシラン被
覆処理磁石粉末の混合比率は2−エチルヘキシルチタネ
ート被覆処理磁石粉末量が多すぎても少なすぎても磁気
特性、機械的強度の低下を招き、重量比で1:3から
1:13さらに好ましくは1:7から1:9である。処
理方法は一般に言われている乾式法即ち各被覆処理剤を
直接又は小量の溶媒に溶解し、磁石粉末を攪拌しながら
滴下又はスプレー処理する方法及び湿式法即ち多量の溶
媒に各被覆処理剤を溶かし磁石粉末と攪拌混合した後、
溶媒を乾燥除去する方法のいずれでもよい。本発明によ
る処理を施した磁石粉末は次に樹脂と混合し圧縮成形さ
れ複合磁石体が得られる。このような方法にて得られた
磁石材料組成物は圧縮成形に限られず押出成形、射出成
形に供してもかまわない。
The magnetic material of the present invention is prepared by mixing 2-ethylhexyl titanate with 0.1 to 2-ethylhexyl titanate before mixing the binder and the magnetic powder.
By using a mixture of magnet powder coated with 0.5 wt% and magnet powder coated with 3-cyanopropyl-triethoxysilane 0.1-0.5 wt%, the filling amount of magnet powder due to both treatment effects. , The magnetic powder has a higher degree of orientation, magnetic properties and mechanical strength are improved, and both treatment effects are improved compared to the case where coating treatment is performed by simultaneously adding both coating treatment agents. The properties and mechanical strength are significantly improved. The surface treatment agent used in the present invention is represented by the following structural formula. 2-Ethylhexyl titanate is [C 4 H 9 CH (C
2 H 5) CH 2 O] a 4 Ti, 3- cyanopropyl - triethoxysilane NC (CH 2) 3 Si ( OC 2 H 5) 3
Is. The amount of the coating agent used is the most suitable for the purpose of the present invention. The mixing ratio of the 2-ethylhexyl titanate-coated magnet powder and the 3-cyanopropyl-triethoxysilane-coated magnet powder is the amount of the 2-ethylhexyl titanate-coated magnet powder. If it is too large or too small, the magnetic properties and mechanical strength are deteriorated, and the weight ratio is 1: 3 to 1:13, more preferably 1: 7 to 1: 9. The treatment method is generally known as a dry method, that is, a method of dissolving each coating treatment agent directly or in a small amount of solvent and dropping or spraying magnet powder while stirring, and a wet method, that is, a method of coating treatment with a large amount of solvent. After stirring and mixing with magnet powder by stirring,
Any method of removing the solvent by drying may be used. The magnet powder treated according to the present invention is then mixed with a resin and compression molded to obtain a composite magnet body. The magnet material composition obtained by such a method is not limited to compression molding and may be subjected to extrusion molding or injection molding.

【0006】[0006]

【実施例】以下実施例をもってさらに具体的に説明す
る。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0007】[実施例1]Sm2Co17系磁石合金の平
均粒径30μmの粉末に3−シアノプロピル−トリエト
キシシランを該磁石粉末に対して0,0.1,0.2,
0.3,0.4,0.5,0.6wt%添加し充分混合した
後、120℃で30分の処理を行った。ついで上記処理
後の磁石粉末に対して一液性エポキシ樹脂を3.0wt
%添加し充分混合したのち、得られた混合磁石粉末を圧
縮成形機にて成形圧力6ton/cm2、印加磁場15
KOe(1194KA/m)の条件で成形を行い9×1
0×10mmの成形体を得た。この成形体に150℃で
1時間の硬化処理を施した。得られた磁石の成形品の評
価結果を図1(a)及び表1に示した。得られた磁石の
成形品は試料として10個である。諸特性は10個の平
均値として評価した。
[Example 1] 3-cyanopropyl-triethoxysilane was added to a powder of Sm 2 Co 17 type magnet alloy having an average particle size of 30 μm in an amount of 0, 0.1, 0.2.
After adding 0.3%, 0.4%, 0.5% and 0.6% by weight and thoroughly mixing, a treatment was carried out at 120 ° C. for 30 minutes. Then, one-part epoxy resin was added to the treated magnetic powder in an amount of 3.0 wt.
%, And thoroughly mixed, the resulting mixed magnet powder was molded with a compression molding machine at a molding pressure of 6 ton / cm 2 and an applied magnetic field of 15
Molded under the condition of KOe (1194 KA / m) 9 × 1
A molded body of 0 × 10 mm was obtained. The molded body was cured at 150 ° C. for 1 hour. The evaluation results of the obtained magnet molded product are shown in FIG. The number of molded articles of the obtained magnet is 10 as a sample. Various characteristics were evaluated as an average value of 10 pieces.

【0008】[実施例2]Sm2Co17系磁石合金の平
均粒径30μmの粉末に2−エチルヘキシルチタネート
を該磁石粉末に対して0,0.1,0.2,0.3,0.
4,0.5,0.6wt%添加し充分混合した後120℃
で30分の処理を行った。ついで上記処理後の磁石粉末
に対して一液性エポキシ樹脂を3.0wt%添加し充分
混合したのち、得られた混合磁性粉末を圧縮成形機にて
成形圧力6ton/cm2、印加磁場15KOe(11
94KA/m)の条件で成形を行い9×10×10mm
の成形体を得た。この成形体を150℃で1時間の硬化
処理を施した。得られた磁石の成形品の評価結果を図1
(b)及び表2に示した。得られた磁石の成形品は試料
として10個である。諸特性は10個の平均値として評
価した。
[Example 2] 2 -ethylhexyl titanate was added to powder of Sm 2 Co 17 system magnet alloy having an average particle size of 30 µm, and the amount of the magnet powder was 0, 0.1, 0.2, 0.3, 0.3.
After adding 4, 0.5 and 0.6 wt% and mixing well, 120 ℃
Was processed for 30 minutes. Then, 3.0 wt% of one-component epoxy resin was added to the magnet powder after the above treatment and thoroughly mixed, and the obtained mixed magnetic powder was molded with a compression molding machine at a molding pressure of 6 ton / cm 2 and an applied magnetic field of 15 KOe ( 11
Molded under the condition of 94 KA / m) 9 × 10 × 10 mm
A molded body of was obtained. The molded body was cured at 150 ° C. for 1 hour. Fig. 1 shows the evaluation results of the obtained magnet molded products.
The results are shown in (b) and Table 2. The number of molded articles of the obtained magnet is 10 as a sample. Various characteristics were evaluated as an average value of 10 pieces.

【0009】図1(a)及び図1(b)より3−シアノ
プロピル−トリエトキシシランと2−エチルヘキシルチ
タネートの磁石粉末に対する添加量については好ましく
は0.1〜0.5wt%、さらに好ましくは0.2〜0.3
wt%であることが判明した。
From FIGS. 1 (a) and 1 (b), the amount of 3-cyanopropyl-triethoxysilane and 2-ethylhexyl titanate added to the magnet powder is preferably 0.1 to 0.5 wt%, and further preferably. 0.2-0.3
It was found to be wt%.

【0010】[実施例3]Sm2Co17系磁石合金の平
均粒径30μmの粉末に3−シアノプロピル−トリエト
キシシランを該磁石粉末に対して0.2wt%添加し充
分混合した後120℃で30分の処理を行った。また前
記Sm2Co17系磁石合金の平均粒径30μmの粉末に
2−エチルヘキシルチタネートを0.2wt%添加し充
分混合した後120℃で30分の処理を行った。各被覆
処理をした磁石粉末を重量比で1:1から1:15まで
の割合で充分混合した。ついでこの処理を施した各々の
磁石粉末に対して一液性エポキシ樹脂を3.0wt%添
加し充分混合したのち、得られた各々の混合磁石粉末を
圧縮成形機にて成形圧力6ton/cm2、印加磁場1
5KOe(1194KA/m)の条件で成形を行い9×
10×10mmの成形体を得た。この成形体を150℃
で1時間の硬化処理を施した。得られた磁石の成形品の
評価結果を図2及び表3,4に示した。得られた磁石の
成形品は試料として10個である。諸特性は10個の平
均値として評価した。
[Example 3] To a powder of Sm 2 Co 17 type magnet alloy having an average particle diameter of 30 μm, 0.2 wt% of 3-cyanopropyl-triethoxysilane was added to the magnet powder and thoroughly mixed, and then 120 ° C. Was processed for 30 minutes. Further, 0.2 wt% of 2-ethylhexyl titanate was added to the powder of the Sm 2 Co 17 system magnet alloy having an average particle size of 30 μm, and they were sufficiently mixed and then treated at 120 ° C. for 30 minutes. The magnet powders subjected to the respective coating treatments were thoroughly mixed in a weight ratio of 1: 1 to 1:15. Then, 3.0 wt% of one-component epoxy resin was added to each of the magnet powders subjected to this treatment and thoroughly mixed, and the resulting mixed magnet powders were molded at a compression pressure of 6 ton / cm 2 by a compression molding machine. , Applied magnetic field 1
Molded under the condition of 5KOe (1194KA / m) 9 ×
A molded body of 10 × 10 mm was obtained. This molded body at 150 ° C
It was cured for 1 hour. The evaluation results of the obtained magnet molded products are shown in FIG. 2 and Tables 3 and 4. The number of molded articles of the obtained magnet is 10 as a sample. Various characteristics were evaluated as an average value of 10 pieces.

【0011】[比較例1]比較例1は実施例3において
3−シアノプロピル−トリエトキシシラン及び2−エチ
ルヘキシルチタネートの表面処理を行わず、それ以外は
実施例3と全く同様にして試料を得た。この結果を図2
及び表3,4に示した。得られた磁石の成形品は試料と
して10個である。諸特性は10個の平均値として評価
した。
Comparative Example 1 In Comparative Example 1, a sample was obtained in the same manner as in Example 3 except that the surface treatment of 3-cyanopropyl-triethoxysilane and 2-ethylhexyl titanate was not performed in Example 3. It was This result is shown in Figure 2.
And Tables 3 and 4. The number of molded articles of the obtained magnet is 10 as a sample. Various characteristics were evaluated as an average value of 10 pieces.

【0012】[比較例2]3−シアノプロピル−トリエ
トキシシランと2−エチルヘキシルチタネートを実施例
3と同一添加割合、総量となるように双方同時に混合し
被覆処理を行い、それ以外は実施例3と全く同様にして
試料を得た。この結果を図2及び表3,4に示した。得
られた磁石の成形品は試料として10個である。諸特性
は10個の平均値として評価した。
[Comparative Example 2] 3-Cyanopropyl-triethoxysilane and 2-ethylhexyl titanate were simultaneously mixed so as to have the same addition ratio and total amount as in Example 3, and coating treatment was carried out. Otherwise, in Example 3 A sample was obtained in exactly the same manner as. The results are shown in FIG. 2 and Tables 3 and 4. The number of molded articles of the obtained magnet is 10 as a sample. Various characteristics were evaluated as an average value of 10 pieces.

【0013】[実施例4]ゼネラルモーターズ社製のR
−T−B系希土類永久磁石粉末MQ−1平均粒径30μ
mの粉末に3−シアノプロピル−トリエトキシシランを
該磁石粉末に対して0.3wt%添加し充分混合した後
120℃で30分の処理を行った。また該磁石粉末に2
−エチルヘキシルチタネートを0.3wt%添加し充分
混合した後120℃で30分の処理を行った。各被覆処
理磁石粉末を重量比で1:1から1:15の割合で充分
混合した。ついで該処理磁石粉末に対して一液性エポキ
シ樹脂を3.0wt%添加し充分混合したのち、得られ
た混合磁石粉末を圧縮成形機にて成形圧力6ton/c
2の条件で成形を行い9×10×10mmの成形体を
得た。この成形体を150℃で1時間の硬化処理を施し
た。得られた成形品の評価結果を図3及び表5,6に示
した。得られた磁石の成形品は試料として10個であ
る。諸特性は10個の平均値として評価した。
[Example 4] R manufactured by General Motors
-TB rare earth permanent magnet powder MQ-1 average particle size 30μ
3-cyanopropyl-triethoxysilane was added to the powder of m in an amount of 0.3 wt% with respect to the magnet powder and mixed well, and then treated at 120 ° C for 30 minutes. In addition, 2 in the magnet powder
-Ethylhexyl titanate was added at 0.3 wt% and mixed well, and then treated at 120 ° C for 30 minutes. The coated magnet powders were thoroughly mixed in a weight ratio of 1: 1 to 1:15. Then, 3.0 wt% of one-component epoxy resin was added to the treated magnet powder and mixed well, and the obtained mixed magnet powder was molded at a molding pressure of 6 ton / c by a compression molding machine.
Molding was performed under the condition of m 2 to obtain a molded body of 9 × 10 × 10 mm. The molded body was cured at 150 ° C. for 1 hour. The evaluation results of the obtained molded products are shown in FIG. 3 and Tables 5 and 6. The number of molded articles of the obtained magnet is 10 as a sample. Various characteristics were evaluated as an average value of 10 pieces.

【0014】[比較例3]比較例3は実施例4において
3−シアノプロピル−トリエトキシシラン及び2−エチ
ルヘキシルチタネートの表面処理を行わず、それ以外は
実施例4と全く同様にして試料を得た。この結果を図3
及び表5,6に示した。得られた磁石の成形品は試料と
して10個である。諸特性は10個の平均値として評価
した。
Comparative Example 3 In Comparative Example 3, a sample was obtained in the same manner as in Example 4, except that the surface treatment of 3-cyanopropyl-triethoxysilane and 2-ethylhexyl titanate was not performed in Example 4. It was This result is shown in Figure 3.
And Tables 5 and 6. The number of molded articles of the obtained magnet is 10 as a sample. Various characteristics were evaluated as an average value of 10 pieces.

【0015】[比較例4]3−シアノプロピル−トリエ
トキシシランと2−エチルヘキシルチタネートを実施例
4と同一添加割合、総量となるように双方同時に混合し
被覆処理を行い、それ以外は実施例4と同様にして試料
を得た。この結果を図3及び表5,6に示した。得られ
た磁石の成形品は試料として10個である。諸特性は1
0個の平均値として評価した。
[Comparative Example 4] 3-Cyanopropyl-triethoxysilane and 2-ethylhexyl titanate were simultaneously mixed so that the same addition ratio and total amount as in Example 4 were obtained, and coating treatment was carried out. A sample was obtained in the same manner as in. The results are shown in FIG. 3 and Tables 5 and 6. The number of molded articles of the obtained magnet is 10 as a sample. Various characteristics are 1
It was evaluated as an average value of 0 pieces.

【0016】図2及び図3より未処理及び双方同時添加
よりも磁気特性、機械的強度の向上がみられる。また処
理粉末の混合比については3−シアノプロピル−トリエ
トキシシランと2−エチルヘキシルチタネートが好まし
くは1:3から1:13、さらに好ましくは1:7から
1:9であることがわかる。
As shown in FIGS. 2 and 3, magnetic properties and mechanical strength are improved as compared with untreated and simultaneous addition of both. Further, regarding the mixing ratio of the treated powder, it is found that 3-cyanopropyl-triethoxysilane and 2-ethylhexyl titanate are preferably 1: 3 to 1:13, more preferably 1: 7 to 1: 9.

【0017】以上述べた希土類永久磁石粉末は、焼結R
−T−B系磁石の粉末として例えばNd2Fe14B等の
粉末があげられるがこれらに限定されるものではない。
またSm−Co系希土類磁石についてもSmCo5型希
土類磁石の粉末、他にCe(CoFeCuM)5磁石S
mR(CoFeCuM)z磁石(R=Pr,Ne,C
e)等の粉末があげられるがこれらに限定されるもので
はない。
The rare earth permanent magnet powder described above is sintered R
Examples of the powder of the -TB magnet include Nd 2 Fe 14 B powder and the like, but the powder is not limited thereto.
As for the Sm-Co rare earth magnet, SmCo 5 type rare earth magnet powder, Ce (CoFeCuM) 5 magnet S
mR (CoFeCuM) z magnet (R = Pr, Ne, C
Examples thereof include powders such as e), but are not limited thereto.

【0018】[0018]

【発明の効果】以上に述べたごとく本発明の被覆処理法
により磁気特性の向上、機械強度の改善効果を得ること
が出来た。今後、高分子複合型磁石がOA機器を中心に
ますます需要が拡大されると同時に小型化、薄型化、軽
量化されつつある傾向から本発明の工業的価値は極めて
大きいものである。
As described above, the effect of improving the magnetic properties and the mechanical strength can be obtained by the coating method of the present invention. In the future, the demand for polymer composite magnets mainly in OA equipment will be further expanded, and at the same time, the trend will be toward miniaturization, thinning and weight reduction, so that the industrial value of the present invention will be extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1及び実施例2に係る3−シア
ノプロピル−トリエトキシシラン及び2−エチルヘキシ
ルチタネートの磁石粉末に対する添加量と成形体の機械
的強度及び磁気特性との関係を示す図。図1(a)は本
発明の実施例1に係る3−シアノプロピル−トリエトキ
シシランの磁石粉末に対する添加量と成形品の機械的強
度、磁気特性との関係を示す図。図1(b)は本発明の
実施例2に係る2−エチルヘキシルチタネートの磁石粉
末に対する添加量と成形品の機械的強度、磁気特性との
関係を示す図。
FIG. 1 shows the relationship between the amount of 3-cyanopropyl-triethoxysilane and 2-ethylhexyl titanate added to a magnet powder and the mechanical strength and magnetic properties of a molded body according to Examples 1 and 2 of the present invention. Fig. FIG. 1A is a diagram showing the relationship between the amount of 3-cyanopropyl-triethoxysilane added to the magnet powder according to Example 1 of the present invention and the mechanical strength and magnetic properties of the molded product. FIG. 1 (b) is a diagram showing the relationship between the amount of 2-ethylhexyl titanate added to the magnet powder and the mechanical strength and magnetic properties of the molded product according to Example 2 of the present invention.

【図2】本発明の実施例3に係る磁石粉末の3−シアノ
プロピル−トリエトキシシラン:2−エチルヘキシルチ
タネートの混合比と成形品の機械的強度、磁気特性との
関係を示す図。図2(a)は本発明の実施例3に係る被
覆磁石粉末の混合比と成形品の機械的強度(抗折強度)
との関係を示す図。図2(b)は本発明の実施例3に係
る被覆磁石粉末の混合比と成形品の磁気特性との関係を
示す図。
FIG. 2 is a diagram showing the relationship between the mixing ratio of 3-cyanopropyl-triethoxysilane: 2-ethylhexyl titanate of the magnet powder according to Example 3 of the present invention and the mechanical strength and magnetic properties of the molded product. FIG. 2 (a) shows the mixing ratio of the coated magnet powder according to Example 3 of the present invention and the mechanical strength of the molded product (the bending strength).
FIG. FIG. 2B is a diagram showing the relationship between the mixing ratio of the coated magnet powder according to Example 3 of the present invention and the magnetic characteristics of the molded product.

【図3】本発明の実施例4に係る磁石粉末の3−シアノ
プロピル−トリエトキシシラン:2−エチルヘキシルチ
タネートの混合比と成形品の機械的強度、磁気特性との
関係を示す図。図3(a)は本発明の実施例4に係る被
覆磁石粉末の混合比と成形品の機械的強度(抗折強度)
との関係を示す図。図3(b)は本発明の実施例4に係
る被覆磁石粉末の混合比と成形品の磁気特性との関係を
示す図。
FIG. 3 is a diagram showing the relationship between the mixing ratio of 3-cyanopropyl-triethoxysilane: 2-ethylhexyl titanate in the magnet powder according to Example 4 of the present invention and the mechanical strength and magnetic properties of the molded product. FIG. 3 (a) shows the mixing ratio of the coated magnet powder according to Example 4 of the present invention and the mechanical strength (flexural strength) of the molded product.
FIG. FIG. 3B is a diagram showing the relationship between the mixing ratio of the coated magnet powder and the magnetic characteristics of the molded product according to Example 4 of the present invention.

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 希土類系磁石粉末に樹脂を混合して成形
して成る高分子複合型磁石の製造方法において、該磁石
粉末に対して2−エチルヘキシルチタネートを0.1〜
0.5wt%混合、被覆して磁石粉末とし、一方希土
類系磁石粉末に対して3−シアノプロピル−トリエトキ
シシランを0.1〜0.5wt%混合、被覆して磁石粉末
とし、各々の前記被覆処理した磁石粉末と磁石粉末
とを混合し、さらに、樹脂を用いて成形することを特
徴とする高分子複合型希土類磁石の製造方法。
1. A method for producing a polymer composite-type magnet, which is obtained by mixing a rare earth magnet powder with a resin and molding the mixture, wherein 2-ethylhexyl titanate is added to the magnet powder in an amount of 0.1 to 0.1%.
0.5 wt% is mixed and coated to make a magnet powder, while 0.1-0.5 wt% of 3-cyanopropyl-triethoxysilane is mixed to a rare earth magnet powder and coated to be a magnet powder. A method for producing a polymer composite type rare earth magnet, which comprises mixing a coated magnet powder with a magnet powder and molding the resin powder with a resin.
【請求項2】 3−シアノプロピル−トリエトキシシラ
ンを被覆処理した磁石粉末と2−エチルヘキシルチタ
ネートを被覆処理した磁石粉末の混合重量比を1:3
から1:13とすることを特徴とする請求項1記載の高
分子複合型希土類磁石の製造方法。
2. A mixing weight ratio of the magnet powder coated with 3-cyanopropyl-triethoxysilane and the magnet powder coated with 2-ethylhexyl titanate is 1: 3.
The ratio is 1:13 to 1:13. The method for producing a polymer composite rare earth magnet according to claim 1, wherein
JP6023214A 1994-01-24 1994-01-24 Manufacture of polymer complex rare-earth magnet Pending JPH07211569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6023214A JPH07211569A (en) 1994-01-24 1994-01-24 Manufacture of polymer complex rare-earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023214A JPH07211569A (en) 1994-01-24 1994-01-24 Manufacture of polymer complex rare-earth magnet

Publications (1)

Publication Number Publication Date
JPH07211569A true JPH07211569A (en) 1995-08-11

Family

ID=12104420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023214A Pending JPH07211569A (en) 1994-01-24 1994-01-24 Manufacture of polymer complex rare-earth magnet

Country Status (1)

Country Link
JP (1) JPH07211569A (en)

Similar Documents

Publication Publication Date Title
EP1444706B1 (en) Inductive component and method for producing same
WO2001091141A1 (en) Inductive component and method for the production thereof
DE68912157T2 (en) Process for the production of resin-bonded magnets.
JPH07211569A (en) Manufacture of polymer complex rare-earth magnet
JP3028337B2 (en) Rare earth magnet alloy powder, method for producing the same, and polymer composite rare earth magnet using the same
JP7404912B2 (en) Composite magnetic material precursor for magnetic cores, composite materials for magnetic cores, magnetic cores and electronic components
CN114806157A (en) Neodymium-iron-boron magnetic composite material and preparation method thereof
JPH07135104A (en) Manufacture of polymer-rare earth composite magnet
JP4127077B2 (en) Rare earth bonded magnet manufacturing method
EP0441616B1 (en) Anisotropic plastic bonded magnet of the Nd-Fe-B-type and method for making same
EP4231319A1 (en) Magnetic composite material composition, inductance magnetic core and preparation method therefor
JPH0230564B2 (en) PURASUCHITSUKUMAGUNETSUTOSOSEIBUTSU
JPS58157118A (en) Manufacture of resin-bonded type rare earth cobalt magnet
JPH0450725B2 (en)
JP2719792B2 (en) Manufacturing method of composite magnet
JP2000173810A (en) Magnetic anisotropic bond magnet and its manufacture
JP3475897B2 (en) Manufacturing method of resin-bonded magnet
JPH0480903A (en) Manufacture of forming material for bonded magnet
JP2724740B2 (en) Manufacturing method of radial anisotropic bonded magnet
KR0162042B1 (en) Method of manufacturing rare earth plastic magnet
JP3312255B2 (en) Manufacturing method of bonded magnet
JP2000077220A (en) Granulated powder of rare earth magnet and manufacture of the same, and resin bonded magnet using the same and manufacture of the magnet
JPH0247204A (en) Rare earth powder for magnet and production thereof
JPH06236806A (en) Anisotropic resin-bonded rare-earth magnet
JPH02116105A (en) Manufacture of resin-bonded permanent magnet of rare-earth-iron-boron