JPH07209169A - Method and device for measuring spatial distribution of concentration and grain size of floating particle group - Google Patents

Method and device for measuring spatial distribution of concentration and grain size of floating particle group

Info

Publication number
JPH07209169A
JPH07209169A JP6019808A JP1980894A JPH07209169A JP H07209169 A JPH07209169 A JP H07209169A JP 6019808 A JP6019808 A JP 6019808A JP 1980894 A JP1980894 A JP 1980894A JP H07209169 A JPH07209169 A JP H07209169A
Authority
JP
Japan
Prior art keywords
light
concentration
particle size
lens
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6019808A
Other languages
Japanese (ja)
Other versions
JP2664042B2 (en
Inventor
Shigeru Hayashi
茂 林
Morio Shimizu
盛生 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Aerospace Laboratory of Japan
Original Assignee
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Aerospace Laboratory of Japan filed Critical National Aerospace Laboratory of Japan
Priority to JP6019808A priority Critical patent/JP2664042B2/en
Publication of JPH07209169A publication Critical patent/JPH07209169A/en
Application granted granted Critical
Publication of JP2664042B2 publication Critical patent/JP2664042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To measure the concentration, particle distribution, and its spatial distribution of a particle group in a relatively large space by scanning fluxes of laser beams in the vertical direction to the fluxes over the distribution region of the particle group to be measured. CONSTITUTION:Laser fluxes 2 from a laser 1 are focused at a focusing lens 3 and are made incident on a rotary reflection mirror 4. Reflected fluxes of laser 5 are swung by the rotation of the reflection mirror 4. Since the focus of an incidence lens 6 is located near the reflection mirror 4, the axis of emitted laser fluxes 9 are constantly maintained to be in parallel with the light axis of the lens 6. Then, parallel fluxes of light 9 are formed in a measurement space 8, thus scanning the space 8 according to the rotation of the reflection mirror 4. Diffraction light and strength-advance light are focused by a light reception lens 14 and are detected by a multiple photoelectric conversion sensor 12 laid out on the focusing surface. The position of the fluxes of light 9 in the space 8 is obtained from the time from the moment when a photo detector 10 provided at a scanning edge detected light and the rotary speed of the reflection mirror 4 by calculation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、浮遊する微粒子群の
濃度とその粒度の空間分布を測定する方法とその装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the concentration of floating particles and the spatial distribution of the particle size.

【0002】[0002]

【従来の技術】液体を微粒化する装置はさまざまな産業
分野で利用されている。形成される噴霧の粒度分布は、
製品の品質や性能、あるいは歩留まりに直接影響を与え
るので、それらの特性を迅速に、再現性よく測定できる
測定法が常に求められてきた。提案された各種の測定法
の中、現在、粒子群を平行なレーザー光束によって照射
し、その散乱強度パターンから粒度分布を決定する粒度
分布測定法とその装置が広く使用されている。この方法
と装置においては、粒子から散乱される光を前方に置い
たレンズで受光し、そのレンズの焦点に配置した多重光
電変換センサーによって散乱強度パターンが検出され、
粒径による散乱強度パターンの特徴的な変化が、粒径の
決定に利用されている。この方法は、非接触かつきわめ
て短時間に、再現性よく精度の高い測定結果を得ること
ができるという優れた特徴を持っており、噴霧だけでな
く粉体の粒度測定にも活用されている。
Devices for atomizing liquids are used in various industrial fields. The particle size distribution of the spray formed is
Since the quality and performance of products or the yield are directly affected, there has always been a demand for a measurement method capable of measuring those characteristics rapidly and with good reproducibility. Among the various measuring methods proposed, a particle size distribution measuring method and an apparatus for irradiating a particle group with a parallel laser beam and determining the particle size distribution from the scattering intensity pattern are widely used at present. In this method and apparatus, the light scattered from the particles is received by a lens placed in front, and the scattered photoelectric pattern is detected by the multiple photoelectric conversion sensor arranged at the focal point of the lens,
Characteristic changes in the scattering intensity pattern with particle size have been used to determine particle size. This method has an excellent feature that it is possible to obtain highly reproducible and highly accurate measurement results in a non-contact manner in an extremely short time, and is utilized not only for spraying but also for particle size measurement of powder.

【0003】この方法においては、散乱強度パターンが
検出される瞬間にレーザー光束の中に存在するすべての
粒子が測定の対象となるが、レーザー光束方向あるいは
それに垂直な面内で、粒度分布や濃度がどのように変化
しているかはわからない。粒子形成後の粒径およびその
分布のみを知れば良い場合にはこの方法および装置も有
力である。しかし、液体燃料を燃焼室内に噴霧する場合
等、粒子の空間分布が問題となる場合も多く、とくに噴
霧装置の改良を図る場合には、その知見は不可欠とな
る。
In this method, all particles existing in the laser beam at the moment when the scattered intensity pattern is detected are to be measured, but the particle size distribution and the concentration are measured in the laser beam direction or in a plane perpendicular to the direction. I don't know how is changing. This method and apparatus are also effective when only the particle size after particle formation and its distribution need be known. However, in many cases, for example, when the liquid fuel is sprayed into the combustion chamber, the spatial distribution of particles becomes a problem, and in particular, when the improvement of the spraying device is aimed at, the knowledge is indispensable.

【0004】噴霧の中で、粒子の濃度や粒度分布は一様
ではなく、噴射方向に垂直な断面においても、図5に示
すように、中心部と周辺部ではかなり異なる。そのた
め、従来装置によって粒子群全体の粒度分布を求めるた
めには、前記の粒度測定装置、あるいは噴霧ノズルを移
動装置に取付け、平行移動させて複数の位置において散
乱強度の測定を行い、それらから全体の粒度分布を決定
することが必要になる。ある断面における場所ごとの噴
霧の特性の違いを知るためには、さらに回転により角度
をかえて散乱強度の測定を行う必要がある。それぞれの
測定位置におけるレーザー光束の中の粒子群の濃度と粒
度分布から、噴霧全体の粒度分布や測定断面における粒
度や濃度の分布が決定される。
In the spray, the concentration and particle size distribution of the particles are not uniform, and even in the cross section perpendicular to the injection direction, as shown in FIG. 5, the central part and the peripheral part are considerably different. Therefore, in order to obtain the particle size distribution of the entire particle group by the conventional device, the particle size measuring device or the spray nozzle is attached to the moving device, the parallel movement is performed, and the scattering intensity is measured at a plurality of positions. It is necessary to determine the particle size distribution of In order to know the difference in spray characteristics at different locations in a given cross section, it is necessary to measure the scattering intensity by changing the angle by rotation. The particle size distribution and particle size distribution of the entire spray and the particle size and density distribution in the measurement cross section are determined from the concentration and particle size distribution of the particle group in the laser beam at each measurement position.

【0005】しかしながら、コンピュータ制御による自
動移動装置は高価で、一方、手動の移動装置では時間が
かかるという問題があった。そのため、噴霧全体の粒度
分布の測定においても、ある一方向、たとえば軸対称噴
霧では直径方向の測定で間に合わせることがほとんどで
あった。噴霧特性の相対的な比較や異常の検知のために
はそれでも良かった。しかし近年、より厳密な比較が求
められるようになった。たとえば、口から吸引する薬品
を微粒化するためのネプライザーなどでは噴霧粒子群全
体の粒度分布の測定が必須になっている。粒子群全体の
粒度分布の測定のために、粒子群全体を一度に照射でき
る太いレーザー光束を使用することが考えられるが、こ
れは、瞬時測定は可能なものの、強度の一様なレーザー
光束を必要とするために、装置が非常に高価になるか、
きわめて小さい噴霧にしか適用できないために、実用に
はなっていない。しかも、このような装置では、粒度の
空間分布を測定することは出来ない。
However, a computer-controlled automatic moving device is expensive, while a manual moving device takes time. Therefore, even in the measurement of the particle size distribution of the entire spray, in most cases, in one direction, for example, in the axially symmetric spray, the measurement in the diametrical direction is in time. Still good for relative comparison of spray characteristics and detection of anomalies. However, in recent years, stricter comparisons have been demanded. For example, it is essential to measure the particle size distribution of the entire spray particle group in a neprise for atomizing a medicine sucked from the mouth. To measure the particle size distribution of the entire particle group, it is possible to use a thick laser beam that can irradiate the entire particle group at one time. The equipment will be very expensive to
It is not practical because it can only be applied to very small sprays. Moreover, such a device cannot measure the spatial distribution of particle size.

【0006】[0006]

【発明が解決しようとする課題】本発明者等は、先にレ
ーザービームを照射して得られる前方微小角散乱光を、
その集光面に配置した環状光ディテクタで検出し、得ら
れた散乱光のパターンから浮遊粒子の濃度および粒径を
測定する方法と装置を提案した(特公平3−55780
号)。この発明は、上記の方法および装置をさらに発展
させ、比較的大きい空間中において、粒子群の濃度と粒
度分布、およびその空間分布を測定できる実用的な方法
と装置とを得ようとするものである。
DISCLOSURE OF THE INVENTION The inventors of the present invention have proposed that the forward minute angle scattered light obtained by irradiating a laser beam is
We proposed a method and apparatus for detecting the concentration of suspended particles and the particle size from the obtained scattered light pattern by detecting with an annular photodetector arranged on the condensing surface (Japanese Patent Publication No. 3-55780).
issue). The present invention intends to further develop the above method and apparatus to obtain a practical method and apparatus capable of measuring the concentration and particle size distribution of particle groups and their spatial distribution in a relatively large space. is there.

【0007】[0007]

【課題を解決するための手段】本発明においては、レー
ザー光等の細い平行光を、被測定粒子群の分布域にわた
って該光束と垂直方向に走査し、得られる前方微小角散
乱光を、その集光面に配置した環状光ディテクタで検出
し、時系列的に得られた散乱光のパターンから浮遊粒子
の濃度、粒径およびその空間分布を測定するものであ
る。
In the present invention, thin parallel light such as laser light is scanned in the direction perpendicular to the light flux over the distribution region of the particle group to be measured, and the forward minute angle scattered light is obtained. This is to detect the concentration of suspended particles, particle size and its spatial distribution from the pattern of scattered light obtained in time series by detecting with an annular light detector arranged on the light collecting surface.

【0008】測定装置は、既知の速度で回転する反射鏡
と、測定対象の粒子群の寸法と同程度の大きさの口径の
入射レンズを使用し、測定空間において平行光束が粒子
群を高速で走査するようにレンズ系を配置する。光源は
単色で、実質的に点光源にできるものであればよい。
The measuring device uses a reflecting mirror that rotates at a known speed and an entrance lens having a diameter that is approximately the same as the size of the particle group to be measured. The lens system is arranged to scan. The light source may be monochromatic and may be substantially a point light source.

【0009】[0009]

【作用】測定すべき粒子群に、その粒子群を総て含む太
さの平行光束を照射し、その前方微小角散乱光を集光す
れば、光束中の粒子の位置に関係なく、同一角度で散乱
した光は総て集光面上の同一位置に集光する。従って、
集光面上に配置された環状ディテクタによって散乱光の
散乱角パターンが得られ、このパターンから粒子群の濃
度および粒径が求められることを先に提案した(上記特
公平3−55780号参照)。この平行光束を細いもの
とし、測定すべき粒子群が分布する領域にわたって走査
すれば、走査範囲の粒子の濃度および粒径の分布が、照
射位置の移動に伴い時系列的にえられることは明らかで
ある。しかし、例えばレーザープリンタのように、偏向
角の変化による走査とすれば、照射位置によって集光位
置が異なることとなり、散乱角の検出に困難を伴う。本
発明においては、照射する平行光束を、照射角度を変え
ないようにその光束に垂直方向に走査することにより、
ただ1組のディテクタにより、照射位置の如何にかかわ
らず、その照射部分の粒子の濃度および粒径の分布を測
定し、照射部分を連続的に移動させることにより、粒子
群全体の濃度および粒径の分布を測定し得るようにした
ものである。
[Function] By irradiating a particle group to be measured with a parallel light beam having a thickness including all of the particle group and condensing the light beam scattered at a front minute angle, the same angle can be obtained regardless of the position of the particle in the light beam. All the light scattered by is focused at the same position on the focusing surface. Therefore,
It was previously proposed that the scattering angle pattern of scattered light can be obtained by the annular detector arranged on the light collecting surface, and the concentration and particle diameter of the particle group can be obtained from this pattern (see Japanese Patent Publication No. 3-55780). . If this parallel light flux is made thin and scanned over the region where the particle group to be measured is distributed, it is clear that the concentration and particle size distribution of the particles in the scanning range can be obtained in time series as the irradiation position moves. Is. However, if scanning is performed by changing the deflection angle, as in a laser printer, for example, the condensing position will differ depending on the irradiation position, which makes it difficult to detect the scattering angle. In the present invention, the parallel light flux to be irradiated is scanned in the direction perpendicular to the light flux so as not to change the irradiation angle,
With only one set of detectors, regardless of the irradiation position, the concentration and particle size distributions of particles in the irradiated part are measured, and the irradiated part is continuously moved to obtain the concentration and particle size of the entire particle group. The distribution of is measured.

【0010】このような走査を実現するには、図1に見
るように、回転する反射鏡と、この反射鏡への光束の入
射位置を焦点とするように配置された、測定対象の粒子
群の寸法と同程度の大きさの口径の射出レンズを使用
し、レンズを射出した光束が常に測定空間において平行
を保つようにし、平行光束が粒子群を高速で走査するよ
うにレンズ系を配置する。
In order to realize such scanning, as shown in FIG. 1, a rotating reflecting mirror and a group of particles to be measured, which are arranged so that the incident position of the light beam on the reflecting mirror is the focal point. Use an exit lens with a diameter about the same as the size of, and make sure that the light flux emitted from the lens is always parallel in the measurement space, and arrange the lens system so that the parallel light flux scans the particle group at high speed. .

【0011】[0011]

【実施例】平行な細い平行光束を射出するレーザーを単
色光源として使用する場合について図1により説明す
る。レーザー1からの光束2を集光レンズ3により集
め、回転反射鏡4に入射させる。反射された光束5は、
反射鏡の回転によって振られるが、入射レンズ6の焦点
がこの反射面近傍にあれば、出射光束の軸は常に入射レ
ンズ6の光軸と平行に保たれる。さらに、この入射レン
ズ6を集光レンズ3による集光点7までの距離がその焦
点距離に等しい位置に配置すると、測定空間8には平行
な光束9が形成され、回転反射鏡の回転に応じて測定空
間を平行に走査する。この光束の太さは、粒子の大きさ
より十分太く、必要な空間分解能を持つように決めれば
よい。測定粒子は、数ミクロンから数百ミクロン程度で
あるので、一般には、数ミリ程度である。回転反射鏡
は、一面のものでも多面のものでも良く、また、ポリゴ
ンミラーのように一定方向に回転するものでも、ガルバ
ノミラーのようにある角度範囲で振れるものでも、測定
時の走査光束の測定空間における位置が計算等によって
決定されればよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case where a laser emitting parallel thin parallel light beams is used as a monochromatic light source will be described with reference to FIG. The light flux 2 from the laser 1 is collected by the condenser lens 3 and is incident on the rotary reflecting mirror 4. The reflected light beam 5 is
Although it is shaken by the rotation of the reflecting mirror, if the focal point of the incident lens 6 is near this reflecting surface, the axis of the outgoing light beam is always kept parallel to the optical axis of the incident lens 6. Further, when the entrance lens 6 is arranged at a position where the distance to the condensing point 7 by the condensing lens 3 is equal to its focal length, a parallel light beam 9 is formed in the measurement space 8 and the rotation reflecting mirror rotates. And scan the measurement space in parallel. The thickness of this light flux may be determined so that it is sufficiently thicker than the size of the particles and has a necessary spatial resolution. Since the measurement particles are several microns to several hundreds microns, they are generally several millimeters. The rotary reflecting mirror may be one-sided or multi-sided, and it may be one that rotates in a fixed direction such as a polygon mirror, or one that swings in a certain angular range such as a galvanometer mirror. The position in space may be determined by calculation or the like.

【0012】回折光及び直進光は、受光レンズ14によ
って集光され、その集光面に配置された多重光電変換セ
ンサー12によって検出される。このように集光点7が
反射鏡面4の近傍にあれば、集光レンズ6及び受光レン
ズ14からなる光学系に対して反射鏡面4と集光点13
とが共役の関係となり、反射鏡面4の倒れによって入射
光が図の走査面に対して垂直方向にずれたとしても、集
光点がずれることを防止できることは良く知られてい
る。そして、光源により、照射光がインコヒーレント光
であれば、集光点7は反射鏡面4に一致する。
The diffracted light and the straight-ahead light are condensed by the light receiving lens 14 and detected by the multiple photoelectric conversion sensor 12 arranged on the light collecting surface. If the converging point 7 is in the vicinity of the reflecting mirror surface 4 in this way, the reflecting mirror surface 4 and the converging point 13 are provided with respect to the optical system including the condensing lens 6 and the light receiving lens 14.
It is well known that and have a conjugate relationship, and even if the incident light is deviated in the direction perpendicular to the scanning plane of the drawing due to the tilt of the reflecting mirror surface 4, the defocus point can be prevented. When the irradiation light is incoherent light by the light source, the condensing point 7 coincides with the reflecting mirror surface 4.

【0013】測定空間における走査光束の位置は、走査
端に配設された光検出器10が光を検出した瞬間からの
時間と反射鏡の回転速度とから計算によって求めること
ができる。この光検出器は走査光束の到着を検出した瞬
間に信号を送り、信号処理器11の時計を始動させ、そ
れを起点としてあらかじめ定めた一定の時間間隔、ある
いは任意の時刻列で散乱強度の分布を光電変換素子を多
数配列した多重光電変換センサー12で検出する。これ
らの散乱強度のデータを解析することによって、それぞ
れの位置での粒子群の粒径分布と濃度が測定される。光
検出器10は、走査光束が被測定空間に入った瞬間に多
重光電変換の中心の光電変換素子13に出力が生じるこ
とを利用し、この中心の光電変換素子13で代用するこ
ともできる。回転反射鏡の一種であるモータ駆動ポリゴ
ンミラーには毎分1万回転を越えるものもあるので、そ
れを用いるときわめて高速の走査ができ、同時性のある
データの取得も可能になる。
The position of the scanning light beam in the measurement space can be obtained by calculation from the time from the moment when the photodetector 10 arranged at the scanning end detects light and the rotation speed of the reflecting mirror. This photodetector sends a signal at the moment when the arrival of the scanning luminous flux is detected, and the clock of the signal processor 11 is started, and the distribution of the scattering intensity at a predetermined time interval or an arbitrary time sequence starting from that signal is started. Is detected by the multiple photoelectric conversion sensor 12 in which a large number of photoelectric conversion elements are arranged. By analyzing the data of these scattering intensities, the particle size distribution and concentration of the particle group at each position are measured. The photodetector 10 takes advantage of the fact that an output is generated in the photoelectric conversion element 13 at the center of the multiple photoelectric conversion at the moment when the scanning light flux enters the measured space, and the photoelectric conversion element 13 at the center can be used instead. Some motor-driven polygon mirrors, which are a kind of rotary reflecting mirrors, exceed 10,000 revolutions per minute, so that extremely high-speed scanning can be performed and simultaneous data acquisition can be performed.

【0014】軸対称の近似が成り立つような噴霧では、
平行走査により測定された散乱強度のデータ、あるいは
それを解析して得られた濃度と粒度分布のデータは、半
径方向の濃度および粒度分布の変化に変換される。ま
た、噴霧ノズルを回転させて複数の角度で平行走査測定
を行って得たデータからは、コンピュータ断層撮影の手
法により、走査測定断面における濃度と粒度分布の二次
元分布が決定される。
In the case of the atomization for which the axisymmetric approximation holds,
Scattering intensity data measured by parallel scanning, or concentration and particle size distribution data obtained by analyzing the data are converted into changes in radial concentration and particle size distribution. Further, from the data obtained by rotating the spray nozzle and performing parallel scanning measurement at a plurality of angles, the two-dimensional distribution of concentration and particle size distribution in the scanning measurement cross section is determined by the method of computer tomography.

【0015】図2に他の実施例の光学配置を示す。半導
体レーザー21からの光を集光レンズ系22で集めて、
集光点においたピンホール23を通した後、回転多面鏡
24に照射し、反射する光束25を入射レンズ26によ
り平行にする。この入射レンズからピンホールまでの距
離をその焦点距離に一致させるように配置すれば、測定
空間28に平行な走査光束27が形成される。多面鏡の
回転により、この走査光束は測定空間を横切って平行に
走査する。多面鏡の回転軸を、入射光とレンズ光学系の
軸のなす角度の二等分線上に置くことによってより平行
度の高い走査光束を形成できる。また、レンズ26をf
θレンズとし、多面鏡24の回転数を一定にすれば、走
査光束の走査速度を一定にできる。
FIG. 2 shows an optical arrangement of another embodiment. The light from the semiconductor laser 21 is collected by the condenser lens system 22,
After passing through the pinhole 23 located at the condensing point, the light beam 25 which is irradiated and reflected by the rotary polygon mirror 24 is made parallel by the incident lens 26. If the distance from the incident lens to the pinhole is arranged so as to match its focal length, a scanning light beam 27 parallel to the measurement space 28 is formed. The rotation of the polygon mirror causes this scanning beam to scan parallel across the measurement space. By placing the rotation axis of the polygonal mirror on the bisector of the angle formed by the incident light and the axis of the lens optical system, a scanning light flux with higher parallelism can be formed. In addition, the lens 26
If the θ lens is used and the number of rotations of the polygon mirror 24 is constant, the scanning speed of the scanning light beam can be constant.

【0016】この走査光束の中の個々の粒子29からの
散乱光30は、受光レンズ31により散乱角に応じて集
光され、そのレンズの焦点面においた光電変換素子32
を多数配列した多重光電変換センサー33に入射する。
各光電変換素子の出力信号を走査に同期させて読みと
り、記憶させる。多重光電変換の中心の光検出素子34
によって平行なビームが測定空間の端にかかった瞬間を
検知し、データ処理器35の時計を始動させ、その時点
から所定の時間間隔でデータを取得する。データ処理器
には、多重光電変換センサーの各素子の出力から粒度分
布と濃度を決定するための装置、すなわち複数の走査位
置での粒度分布と濃度のデータ、あるいはその基になる
散乱強度のデータを解析し、粒子群全体の濃度と粒度分
布、あるいは粒子群の中のそれらの分布を算出する過程
を実行する演算部、散乱強度データと結果を格納する記
憶部、それらを出力する表示部が備えられている。
The scattered light 30 from the individual particles 29 in the scanning light flux is condensed by the light receiving lens 31 in accordance with the scattering angle, and the photoelectric conversion element 32 placed on the focal plane of the lens.
Are incident on the multiple photoelectric conversion sensor 33 in which a large number of pixels are arranged.
The output signal of each photoelectric conversion element is read and stored in synchronization with scanning. Photodetector element 34 at the center of multiple photoelectric conversion
Detects the moment when the parallel beams hit the edge of the measurement space, starts the clock of the data processor 35, and acquires data at a predetermined time interval from that point. The data processor is a device for determining the particle size distribution and the concentration from the output of each element of the multiple photoelectric conversion sensor, that is, the data of the particle size distribution and the concentration at a plurality of scanning positions, or the data of the scattering intensity which is the basis thereof. The calculation unit that executes the process of analyzing the concentration and particle size distribution of the entire particle group, or the distribution thereof in the particle group, the storage unit that stores the scattering intensity data and the result, and the display unit that outputs them. It is equipped.

【0017】図2の入射光学系において、ピンホール2
3と回転多面鏡24の間に折り返し反射鏡を図3(a)
のように設ければ、光軸調整が容易になる。また図3
(b)のように平行光を入射レンズ側から入れ、回転多
面鏡を入射レンズの焦点に配置する方式でも平行な走査
光束を形成できる。
In the incident optical system of FIG. 2, the pinhole 2
3 and the rotary polygon mirror 24, a folding mirror is shown in FIG.
If it is provided as described above, the optical axis adjustment becomes easy. See also FIG.
A parallel scanning light flux can also be formed by a method in which parallel light is input from the incident lens side and a rotary polygon mirror is arranged at the focal point of the incident lens as in (b).

【0018】図4には、複数の断面において平行走査を
行うための入射側光学系の実施例を示す。複数の光源あ
るいは単一光源から分割して得た、光束とその走査方向
を含む面に対して互いに直角方向に分離された複数の平
行光束41を、それぞれ集光レンズ42により共通のピ
ンホール43に集光し、通過光44を鏡45で折り返
し、回転多面鏡46に入射させる。この回転多面鏡は、
一面ごとに、入射する複数の光束のうちの一本だけを選
択して入射レンズ47に向けて反射し、他の光束は脇に
そらせて反射するように面が形成されている。3本の走
査光束の場合を例にとれば、図4のように側面を鏡面と
する同一の直方体を60度ずつずらせて3個重ねた形状
である。正六角形の辺に相当する鏡面が入射レンズに向
かい合ったときに、その鏡面に入射している光束だけが
入射レンズにむけて反射され、回転に伴って3本の入射
光束が順次選択されて、それぞれの高さで水平方向の走
査が行われる。この実施例では1つの多重光電変換セン
サにより、3本の光束による走査結果が時系列的に順次
得られるが、集光レンズおよび多重光電変換センサを各
光束ごとに設ければ、回転多面鏡は通常のポリゴン1個
で良い。この場合、受光レンズおよび多重光電変換セン
サは、各走査面に沿った細長い形状となっても良い。
FIG. 4 shows an embodiment of an incident side optical system for performing parallel scanning on a plurality of cross sections. A plurality of parallel light beams 41 obtained by dividing from a plurality of light sources or a single light source and separated in a direction orthogonal to a surface including the light beam and its scanning direction are respectively formed by a condensing lens 42 in a common pinhole 43. The transmitted light 44 is reflected by the mirror 45 and is incident on the rotary polygon mirror 46. This rotating polygon mirror
A surface is formed so that only one of a plurality of incident light beams is selected for each surface and reflected toward the incident lens 47, and the other light beams are deflected to the side and reflected. Taking the case of three scanning light fluxes as an example, as shown in FIG. 4, the same rectangular parallelepiped whose side surface is a mirror surface is shifted by 60 degrees and is overlapped three times. When the mirror surface corresponding to the side of the regular hexagon faces the entrance lens, only the light flux incident on the mirror surface is reflected toward the entrance lens, and three incident light fluxes are sequentially selected with rotation, Horizontal scanning is performed at each height. In this embodiment, one multi-photoelectric conversion sensor sequentially obtains scanning results by three light beams in time series. However, if a condensing lens and a multi-photoelectric conversion sensor are provided for each light beam, the rotary polygon mirror can be One normal polygon is enough. In this case, the light receiving lens and the multiple photoelectric conversion sensor may have an elongated shape along each scanning surface.

【0019】[0019]

【発明の効果】本発明は上記のように、細い平行光束
を、該光束に対して垂直方向に走査することにより、粒
子群全体の粒度分布、濃度のみならず、その空間分布ま
でも容易に測定することが可能となった。しかも、その
ための装置も、容易に入手できるものですみ、極めて実
用性の高いものとなっている。
As described above, the present invention makes it possible to easily scan not only the particle size distribution and concentration of the entire particle group but also its spatial distribution by scanning a thin parallel light beam in the direction perpendicular to the light beam. It became possible to measure. In addition, the device for that purpose can be easily obtained and is extremely practical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の浮遊粒子群の濃度と粒度の空間分布の
測定装置の1実施例の光学配置図である。
FIG. 1 is an optical layout diagram of an embodiment of a device for measuring the spatial distribution of concentration and particle size of a suspended particle group according to the present invention.

【図2】本発明の浮遊粒子群の濃度と粒度の空間分布の
測定装置の他の実施例の光学配置図である。
FIG. 2 is an optical layout diagram of another embodiment of the device for measuring the spatial distribution of concentration and particle size of a suspended particle group of the present invention.

【図3】図2の実施例の、ポリゴンへの入射光学系の変
形例を示す光学配置図である。
FIG. 3 is an optical layout diagram showing a modified example of an incident optical system for a polygon in the embodiment of FIG.

【図4】本発明の浮遊粒子群の濃度と粒度の空間分布の
測定装置で複数平面において平行走査を行う実施例の光
学配置図である。
FIG. 4 is an optical layout diagram of an embodiment in which parallel scanning is performed on a plurality of planes by the device for measuring the spatial distribution of concentration and particle size of a suspended particle group of the present invention.

【図5】噴霧中の粒子の濃度や粒度分布を示す概念図で
ある。
FIG. 5 is a conceptual diagram showing the concentration and particle size distribution of particles in a spray.

【符号の説明】[Explanation of symbols]

1 レーザー 2 レーザー光束 3,4
2 集光レンズ 4 回転反射鏡 5,25 反射光束 6,2
6,47 入射レンズ 7 集光点 8,28 測定空間 9,2
7 平行走査光束 10 光検出器 11 信号処理器 12,33 多重光電変換センサー 13,34
中心の光電変換素子 14,31 受光レンズ 21 半導
体レーザー 22 集光レンズ系 23,43
ピンホール 24,46 回転多面鏡 29 個々
の粒子 30 散乱光 32 光電変換素子 35
データ処理器 41 複数の平行光束 45
平面鏡
1 laser 2 laser beam 3, 4
2 Condensing lens 4 Rotating reflecting mirror 5,25 Reflected light beam 6,2
6,47 Incident lens 7 Focus point 8,28 Measurement space 9,2
7 Parallel-scanning light flux 10 Photodetector 11 Signal processor 12,33 Multiple photoelectric conversion sensor 13,34
Central photoelectric conversion element 14,31 Light receiving lens 21 Semiconductor laser 22 Condensing lens system 23,43
Pinhole 24,46 Rotating polygon mirror 29 Individual particle 30 Scattered light 32 Photoelectric conversion element 35
Data processor 41 Multiple parallel light beams 45
Plane mirror

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 細い単色平行光を、被測定粒子群の分布
域にわたって該平行光束と垂直方向に走査し、得られる
前方微小角散乱光を、その集光面に配置した環状光ディ
テクタで検出し、時系列的に得られた散乱光のパターン
から浮遊粒子の濃度、粒径およびその空間分布を測定す
ることを特徴とする浮遊粒子群の濃度と粒度の空間分布
の測定方法
1. A narrow monochromatic parallel light beam is scanned in a direction perpendicular to the parallel light flux over the distribution area of a particle group to be measured, and the obtained front minute angle scattered light is detected by an annular photodetector arranged on its converging surface. Then, the method for measuring the spatial distribution of concentration and particle size of a suspended particle group, characterized by measuring the concentration, particle size and its spatial distribution of suspended particles from the scattered light pattern obtained in time series.
【請求項2】 単色の光源と、その光を一点に集める集
光レンズと、その集光点からの光束を反射させる回転数
既知の回転反射鏡と、その反射光を受け、測定空間に平
行な光束を形成する入射レンズと、測定空間にある被測
定粒子群から散乱される光を集める受光レンズと、この
レンズの焦点面におかれ、その面における散乱光強度の
半径方向の変化、すなわち散乱光強度パターンを検出す
るための、光電変換素子を多数配列した多重光電変換セ
ンサーと、測定空間の走査光束の位置の情報を与えるた
めの光検出器と、多重光電変換センサーの各素子が受け
る散乱光エネルギーに対応した出力を記録し、それから
平行光束内の粒子の濃度と粒度分布を解析する装置とか
らなることを特徴とする浮遊粒子群の濃度と粒度の空間
分布を測定する装置
2. A monochromatic light source, a condensing lens that collects the light at one point, a rotary reflecting mirror that reflects the light beam from the condensing point, and a rotating mirror whose rotation speed is known. An incident lens that forms a simple light flux, a light-receiving lens that collects light scattered from the measured particle group in the measurement space, and a focal plane of this lens, in which the scattered light intensity on the surface changes in the radial direction, that is, Each element of the multiple photoelectric conversion sensor receives a multiple photoelectric conversion sensor in which a large number of photoelectric conversion elements are arranged for detecting the scattered light intensity pattern, a photodetector for giving information on the position of the scanning light flux in the measurement space, and each photoelectric conversion sensor element. An apparatus for recording the output corresponding to the scattered light energy and for analyzing the concentration and particle size distribution of particles in a parallel light flux from the apparatus, for measuring the concentration and particle size spatial distribution of a suspended particle group.
【請求項3】 複数の断面における粒子の濃度と粒径の
分布を測定するために、一面ごとに、入射する複数の光
束のうちの一本だけを選択して入射レンズに向けて反射
し、他の光束は脇にそらせて反射するように面が形成さ
れている多面回転鏡を用いたことを特徴とする請求項2
記載の浮遊粒子群の濃度と粒度の空間分布を測定する装
3. In order to measure the concentration and particle size distribution of particles in a plurality of cross sections, only one of a plurality of incident light beams is selected for each surface and reflected toward an incident lens, 3. A multi-faceted rotating mirror whose surface is formed so that other light beams are deflected to the side and reflected.
Device for measuring the spatial distribution of the concentration and particle size of the listed suspended particles
【請求項4】 光源からの光を一点に集め、そこにおか
れた微小な孔を通過させることによって、測定空間によ
り平行度の高い光束を形成できるようにした請求項2記
載の浮遊粒子群の濃度と粒度の空間分布を測定する装置
4. The suspended particle group according to claim 2, wherein the light from the light source is collected at one point and is passed through a minute hole placed therein so that a light flux having a high parallelism can be formed in the measurement space. For measuring the concentration and particle size spatial distribution
【請求項5】 走査光束の位置の情報を得るために、走
査光束が測定空間に入った瞬間を検出するための光検出
器を多重光電変換センサーの中心に設けたことを特徴と
する請求項2記載の浮遊粒子群の濃度と粒度の空間分布
を測定する装置
5. A photodetector for detecting the moment when the scanning light beam enters the measurement space is provided at the center of the multiple photoelectric conversion sensor in order to obtain information on the position of the scanning light beam. A device for measuring the spatial distribution of the concentration and particle size of the suspended particle group described in 2.
【請求項6】 走査光束の位置の情報を得るために、回
転反射鏡からの反射光を検出する光検出器を入射レンズ
の開口部の外側に配置したことを特徴とする請求項2記
載の浮遊粒子群の濃度と粒度の空間分布を測定する装置
6. The light detector according to claim 2, wherein a photodetector for detecting the reflected light from the rotary reflecting mirror is arranged outside the opening of the entrance lens in order to obtain information on the position of the scanning light beam. Device for measuring the spatial distribution of concentration and particle size of airborne particles
JP6019808A 1994-01-21 1994-01-21 Method and apparatus for measuring the concentration and particle size spatial distribution of suspended particles Expired - Lifetime JP2664042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019808A JP2664042B2 (en) 1994-01-21 1994-01-21 Method and apparatus for measuring the concentration and particle size spatial distribution of suspended particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019808A JP2664042B2 (en) 1994-01-21 1994-01-21 Method and apparatus for measuring the concentration and particle size spatial distribution of suspended particles

Publications (2)

Publication Number Publication Date
JPH07209169A true JPH07209169A (en) 1995-08-11
JP2664042B2 JP2664042B2 (en) 1997-10-15

Family

ID=12009641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019808A Expired - Lifetime JP2664042B2 (en) 1994-01-21 1994-01-21 Method and apparatus for measuring the concentration and particle size spatial distribution of suspended particles

Country Status (1)

Country Link
JP (1) JP2664042B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275998A (en) * 2005-03-02 2006-10-12 Kyoto Univ Apparatus for measuring light scattering
JP2007024783A (en) * 2005-07-20 2007-02-01 Shimadzu Corp Instrument for measuring particle size distribution
CN104819743A (en) * 2015-04-30 2015-08-05 杭州电子科技大学 Laser-sensing-based multi-parameter detection method
CN104897610A (en) * 2015-05-26 2015-09-09 中国科学院长春光学精密机械与物理研究所 Rotary prism type multi-component trace gas concentration measuring device
JP2018115985A (en) * 2017-01-19 2018-07-26 リコーインダストリアルソリューションズ株式会社 Gas distribution detection optical device, and gas distribution detection device
KR20200113369A (en) * 2019-03-25 2020-10-07 광주과학기술원 Apparatus of particle counting for fine dust measuring based on optical fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE512098C2 (en) * 1998-05-19 2000-01-24 Agrovision Ab Concentration determination of one component in a mixture of at least two components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184568A (en) * 1984-03-02 1985-09-20 Toray Ind Inc Dye composition for cloth
JPS6244646A (en) * 1985-08-22 1987-02-26 Natl Aerospace Lab Method and apparatus for measuring concentration and grain size of suspended particles

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184568A (en) * 1984-03-02 1985-09-20 Toray Ind Inc Dye composition for cloth
JPS6244646A (en) * 1985-08-22 1987-02-26 Natl Aerospace Lab Method and apparatus for measuring concentration and grain size of suspended particles

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275998A (en) * 2005-03-02 2006-10-12 Kyoto Univ Apparatus for measuring light scattering
JP2007024783A (en) * 2005-07-20 2007-02-01 Shimadzu Corp Instrument for measuring particle size distribution
CN104819743A (en) * 2015-04-30 2015-08-05 杭州电子科技大学 Laser-sensing-based multi-parameter detection method
CN104819743B (en) * 2015-04-30 2017-05-10 杭州电子科技大学 Laser-sensing-based multi-parameter detection method
CN104897610A (en) * 2015-05-26 2015-09-09 中国科学院长春光学精密机械与物理研究所 Rotary prism type multi-component trace gas concentration measuring device
JP2018115985A (en) * 2017-01-19 2018-07-26 リコーインダストリアルソリューションズ株式会社 Gas distribution detection optical device, and gas distribution detection device
KR20200113369A (en) * 2019-03-25 2020-10-07 광주과학기술원 Apparatus of particle counting for fine dust measuring based on optical fiber

Also Published As

Publication number Publication date
JP2664042B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US4641967A (en) Particle position correlator and correlation method for a surface scanner
US4167329A (en) Focussed doppler radar
US6838650B1 (en) Confocal imaging
US6449042B1 (en) Method and apparatus for particle assessment using multiple scanning beam reflectance
EP2972250B1 (en) Container inspection
US4861164A (en) Apparatus for separating specular from diffuse radiation
JP2529691B2 (en) Optical distance measuring device and device for determining the position of a component on a support member
JPS59155728A (en) Infrared spectrometer
US6549292B1 (en) Method and apparatus for inspecting hollow transparent articles
US4815856A (en) Method and apparatus for measuring the absolute thickness of dust defocus layers
JPH01253607A (en) Optical detection method and apparatus for surface roughness of material surface
JP2664042B2 (en) Method and apparatus for measuring the concentration and particle size spatial distribution of suspended particles
US4893024A (en) Apparatus for measuring the thickness of a thin film with angle detection means
GB2100424A (en) Methods and apparatus for scanning an object
US3992103A (en) Devices for evaluating drop systems
JPH0364816B2 (en)
US11175212B2 (en) Mid-infrared scanning system for analyzing particulates
KR102070295B1 (en) A portable detecting apparatus and a module for detecting component in agricultural products and livestock prodects
JP2000509825A (en) Optical scanning device
GB2247749A (en) Sensor utilising surface plasmon resonance
US7212294B2 (en) Method for determination of the level of two or more measurement points, and an arrangement for this purpose
US4256958A (en) Apparatus for monitoring the optical quality of a beam of radiation
JPH06102028A (en) Noncontact optical range finder and range finding method
JPH095045A (en) Photo/detector
JPH03111707A (en) Detecting method of shape of object

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term