JPS6244646A - Method and apparatus for measuring concentration and grain size of suspended particles - Google Patents

Method and apparatus for measuring concentration and grain size of suspended particles

Info

Publication number
JPS6244646A
JPS6244646A JP60184568A JP18456885A JPS6244646A JP S6244646 A JPS6244646 A JP S6244646A JP 60184568 A JP60184568 A JP 60184568A JP 18456885 A JP18456885 A JP 18456885A JP S6244646 A JPS6244646 A JP S6244646A
Authority
JP
Japan
Prior art keywords
particles
photodetector
scattered light
light
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60184568A
Other languages
Japanese (ja)
Other versions
JPH0355780B2 (en
Inventor
Shigeru Hayashi
茂 林
Shinichi Watanabe
真一 渡辺
正司 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RETSUKUSU KK
National Aerospace Laboratory of Japan
Original Assignee
RETSUKUSU KK
National Aerospace Laboratory of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RETSUKUSU KK, National Aerospace Laboratory of Japan filed Critical RETSUKUSU KK
Priority to JP60184568A priority Critical patent/JPS6244646A/en
Publication of JPS6244646A publication Critical patent/JPS6244646A/en
Publication of JPH0355780B2 publication Critical patent/JPH0355780B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Abstract

PURPOSE:To measure the concn. and grain size of pulverous suspended particles by irradiating a laser beam on the pulverous particle group to be measured, condensing the light scattered forward at slight angles, detecting the collected light with an annular photodetector having at least three channels and analyzing the detected respective channel signals. CONSTITUTION:The laser beam 1' from a helium neon laser oscillator 1 is expanded by a beam expander or collimator lens 5 and the expanded laser beam is irradiated on the particle group 2 to be measured. The components in the direction of the scattering angle theta out of the scattered light of the laser beam colliding against the particle group 2 are collected onto the circumference of a prescribed radius at the focal plane of a photodetecting lens 3 regardless of the position or speed of the particles. The annular photodetector 6 of a concentrical circular shape having at least three channels of the photodetecting parts is positioned to the focal plane thereof to directly detect the intensity I(theta) of the light. The output from the detector 6 is inputted to an instrument 7 for measuring the quantity of light energy, by which the concn. and particle size of the suspended particles are determined.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は噴霧された浮遊粒子の濃度とその粒径とを同
時に測定する方法及びその装置に関するものである。 [従来技術] 一般に液体燃料を室内に噴射し微小な粒状物にして燃焼
させる噴霧燃焼法はディーゼル機関、ガスタービン、工
業炉などに広く利用されており、この噴霧された燃料の
粒径分布が各種燃焼器の着火性能、火炎の安定性、燃焼
効率、ヂッン酸化物(NOx )及び煤などの大気汚染
物質の排出抑制に重要な役割を果していることはよく知
られているところである。しかしながら上述の噴霧と燃
焼の関係は情勢的にしか理解されていないのが実情であ
り、燃焼器の設J1やこのための燃焼モデルの開発に充
分役立つような精度の高い粒径分布の測定を開発するこ
とにより定検的かつ普遍的な噴霧と燃焼の関係を確立す
ることが望まれている。 i    え、:、。よ、ややヶヵよ6、いえ、の粒径
や空間的分布の測定法が考えられてきた。 その第一は古くから用いられている液浸法と呼ばれるも
のである。これは粒子を適当な液中に受は止め顕微鏡で
その大きさを測定するもので、正しい試料を採取するこ
とができれば測定精度、分解能、信頼性に優れ、また労
力をいとわな
[Industrial Field of Application] The present invention relates to a method and apparatus for simultaneously measuring the concentration and particle size of sprayed suspended particles. [Prior art] Generally, the spray combustion method, in which liquid fuel is injected into a room and burned as minute particles, is widely used in diesel engines, gas turbines, industrial furnaces, etc., and the particle size distribution of the sprayed fuel is It is well known that it plays an important role in the ignition performance of various combustors, flame stability, combustion efficiency, and control of emissions of air pollutants such as NOx and soot. However, the reality is that the above-mentioned relationship between spray and combustion is only understood in terms of situation, and it is difficult to measure particle size distribution with high precision to be fully useful for combustor design J1 and the development of a combustion model for this purpose. Through this development, it is hoped that a routine and universal relationship between spray and combustion will be established. i Eh... :,. Methods for measuring the particle size and spatial distribution of particles have been considered. The first method is called the immersion method, which has been used for a long time. This method involves placing particles in a suitable liquid and measuring their size using a microscope.If the correct sample can be collected, the measurement accuracy, resolution, and reliability are excellent, and the labor is not required.

【ノれば高価な装置を用いることなく、か
つ高度の熟練を必要とせずに粒径を測定できるという特
徴がある。 しかしながら、サンプリングに際して液滴の合体、分裂
の彰胃を受け、また高圧、高温雰囲気中での測定が極め
て困難である等の直接的な方法に共通の固有の問題点が
ある。そこでこのような直接的な測定方法のもつ制約や
欠点を緩和できる可能性をもった光学的測定法が考えら
れた。この光学的測定方法には液滴の像の大きさを測定
する方法と、液滴の大きさに関係する物理量から粒径を
決定する方法とがあり、古典的な瞬間写真法やこれを発
展させたTVイメージ法、あるいはホログラフィは前者
に属し、後者のほとんどは粒子からの光散乱特性を利用
するものである。 単色でコヒーレントなレーザ光源が容易に利用できるよ
うになって以来この分野の研究が活発になっ1=。従来
微粒子からの光散乱特性を利用する散乱法は主として波
長に比較してそう大きくない粒子を対象としていたが最
近では噴霧中の粒子のように波長の100倍を越える大
きさのものを測定する試みが行なわれるようになった。 波長に比べて十分大きい粒子からなる粒子群の粒径分布
測定方法の一つに前方に散乱された光の強度変化から粒
径分布を決めるものがある。これは回折近似の範囲に逆
変換公式を用いて分布関数を求めるものである。しかし
ながら、この方法にはこの変換に必要どなる光の強度の
角度に対する微係数を精度よく評価することが極めて難
しいという問題点がある。他の方法としては逆変換公式
を用いるのではなく、散乱光の強度分布からある粒径分
布関数の形状パラメータを決定し、lEi霧された粒状
物の粒径分布を測定する方法がある。この方法ではパラ
メータそのものは決定することができないが、散乱光強
度の減衰からザラター平均粒径(以下SMDと称1)を
比較的簡単に決定することができる。しかしながら、散
乱光の強度を表わすMieの散乱理論の公式I(θ)を
解析する際に直接光の干渉を受【ノ易い中心部の影響が
大きくなっている。また重量粒径分布を散乱光強度分布
から得る有効的な方法も確立されていない。 [発明の目的] この発明は上記事情に鑑みなされたもので、噴霧された
粒子の粒径分布の測定を粒子からの光散乱特性を利用し
て行なう場合、散乱光の強度をMieの散乱理論の公式
I(θ)の回折パターンを解析するのではなく、散乱光
エネルギーの角度θに関する被積分関数である■(θ)
・θの回折パターンを解析することにより測定しようと
するもので、従来の噴霧粒径測定法が有していた問題点
の全てを解決し、噴霧された粒状物の濃度ど粒径分布を
容易にしかも正確に測定する方法及び装置を提供づるこ
とを目的とするものである。 [発明の構成] 前記目的を達成するためになされた本発明は、被測定微
粒子群にレーザビームを照射して得られる前方微小角散
乱光をレンズで集光し、その焦点位置上に配した少なく
とも3チャンネルの同心円形状の光電変換素子よりなる
環状光ディテクタで受光し、該光ディテクタで光電変換
された微小電流信号を増幅及びサンプルアンドホールド
させた復、上記光ディテクタが受光した散乱光のパター
ンに比例する各チャンネルからの信号をI(θ)・θな
る式〔式中1(θ)は粒子群からの散乱光強度、θは散
乱角〕に基づいて解析することを特徴どする浮遊粒子の
濃度及び粒径の測定方法であって、噴霧された粒子群の
散乱光強度を散乱角による散乱光エネルギーの被積分関
数の回折パターンを解析すれば粒子の濃度を粒径分布と
が測定できるのである。 そして又、上記方法を実施するための装置としては、レ
ーザ発据器と、レーザビームで照射された被測定微小粒
子群からの前方微小角散乱光を集+    * ’ 8
 * 9 V > X k・H’/e ’l L/ >
 −2” (7) lx a 41.?i E配した少
なくとも3チャンネルの同心円形状のシリコンフォトデ
ィテクタ等の光゛電変換素子よりなる環状光ディテクタ
と、該光ディテクタで光電変換された各チャンネルの微
小電流信号を同時に増幅する光ディテクタのヂ17ンネ
ル数と同数の増幅器と、該増幅器で増幅された電流13
号を各チャンネルごとにサンプルアンドホールドする回
路と、各チャンネルのFlr流信号をデジタル信舅に変
換するA/D変換器と、デジタル信号化された光ディテ
クタの各チ11ンネルが受光した光エネルギ母をの散乱
光強度、0は散乱各〕に基づいて解析する手順を記憶さ
せたマイクロコンピュータ−とからなる浮遊粒子の濃度
及び粒径の測定装置を特定し、たちのであって、前記A
/D変換器で変換された光エネルギーをコンピュータの
プログラムに基いて解析演算するだけであるため正確に
測定できるのである。 [実施例]− 以下この発明を測定原理及び図示の実施例に基づき詳細
に説明する。 直径がDである等方性の単一球形粒子に偏光されていな
い波長λのレーザ光を照射した時に球形粒子により散乱
される光の強度分布は、屈折率mと粒径パラメータα(
=πD/λ)により決定される。粒径パラメータαの値
が大きくなるにつれて全敗乱光母に対する前方微小角へ
の散乱光mが急激に増大し、この領域での角度に対する
散乱光強度分布の形が粒径パラメータαに応じて敏感に
変化するようになる。この特性を利用して光の波長λに
比べて大ぎな粒子からなる粒子群の粒径あるいは粒径分
布を決めようとするのが広義における前方微小角散乱法
であるが、散乱光強度のパターンから粒径分布を測定す
るのがこの発明の要点である。 第1図に示したように、レーザビーム(単色平行光束)
1′を粒子群2に照射し、その前方にレンズ3を置いて
散乱光を集めると、各粒子からの散乱光の内、散乱角θ
方向の成分は粒子の位置や速度に関係なく受光レンズの
焦点面4においてγ= f −sinθ=j・0を半径
とする円周上に集められる。焦点面4における散乱光強
度I(θ)の分布は、多重散乱の影響を無視できれば個
々の単一粒子からの散乱光強度■(θ、α)の唄ね合わ
せと考えられる。すなわち、個数粒径分布をN(α)と
すると次の関係が成り立つ、 ・・・・・・・・・・・・・・・・・・・・・ (1)
l(0,α)はMieの与えた散乱方程式の級数前とし
て計算される。■(θ)の測定から粒径分布を決定する
ことは(1)式の積分方程式を解くことにほかならない
。 また散乱光強度分布から重量粒径分布を得る解を用いる
と、■(θ)・θの値がある散乱角において必ずピーク
値を持つことになるので分布の特徴を把えるのに非常に
都合がよい。ここでI(θ)・θ式は散乱光エネルギの
′散乱角度θに関する被積分関数である。また解析にお
いて直接光の干渉を受けやすい中心部の影響を小さくで
きる利点がある。回折近似が成立する場合に(1)式は
■ (θ)・θ− ・・・・・・・・・・・・・・・ (2)となり、これ
に重吊分布団数W(α)を尋人すると、 I(θ)・θ=C= となる。(3)式よりW(α)を求めることは対称核[
2J1 (α、θ)]/αθを持つ第一種アンドホルム
型積分方程式を解くことに相当する。 この関係より粒子の濃度を得ることができる。 以下実施例の装置に基づきこの発明を更に詳しく説明す
る。第2図は本発明の方法を実施する装置の基本概念を
示すもので、ヘリウム・ネオンレーザ発振器(以下単に
He−Neレーザと称す)1からのレーザビーム1′を
ビームエクスパンダ−又はコリメータレンズ5で拡大し
、そのレーザビームを被測定粒子群2に照tF1alる
と、粒子群2に衝突したレーザビームの散乱光の内、散
乱角のθ方向の成分は粒子の位nヤ速度に関係なく受光
レンズ3の焦点面において、γ+f−sinθ=j・0
を半径とする円周上に集められる。この焦点面に少なく
とも3チャンネルの受光部を有する同心円形状のシリコ
ンフォトディテクタ等の環状光ディテクタ6を位置させ
ることにより前記したような個々の粒子の散乱光強度の
重ね合わせと考えられる光の強度分布!(θ)を直接受
光することができる。環状光ディテクタ6で受光された
散乱光の強度分布は光電変換されて微小電流信号として
光エネルギ吊測定装首7の入力となる。光エネルギ吊測
定装置7は第3図にブロックダイヤグラムで示すように
、環状光ディテクタの各チャンネル(チ1?ンネル数i
)に対応する増幅器711〜71・及びサンプルアンド
ホールド回路121〜72゜と、A/D変換器73と、
コンピューターのインターフェース74と、マイクロコ
ンピュータ−75とから構成されている。 マイクロコンピュータ−75における解析手順は以下の
通りである。まず前記第(3)式を解析するためにRo
sim−Rammlerの分布関数を採用した。その理
由はパラメータ×2及びX3が、×2二分布の広がりぐ
あい、×3二代表粒径(この粒径よりも小さい粒子の1
罎が全体の重量の1/eとなる)とわかりやすいためで
ある。 C=×2/X3 (C:定数)となり小量比例定数×1
を導入すると(4)式は となる。パラメータX2.X3を変化させ、前記l(θ
)・θ式のパターンを(5)式により求める。測定され
た1(θ)・θ式のパターンより×1.×2.×3を求
める。平均粒径 はx2.X3より次式から計鋒される。 SMD=X3/r’ (1−1/X2 )「:ガンマ関
数 ・・・・・・・・・(6)環状光ディテクタの場合
、ill目のチャンネルへの光エネルギff1Eiに基
づいて粒径分布を決定する。Eiは次式により与えられ
る。 θ・及びθ・は環状光ディテクタの外形をROUT、1
÷       1− 内径をR1o1受光レンズの焦点距離をfとすると、θ
i+= Rout ”、0i−= Rin”で散乱角で
ある。粒径パラメータα=πD/λが十分に大きく回折
近似が成り立つ場合(3)式の近似を用いると、W(α
)dαdO・・・・・・・・・・・・  (8)・・・
・・・・・・・・・   (9)となり、これを積分す
ると、 J (αθ・)−J2 (α0.、)−J 2(αθ・
))/Ddα  ・・・・・・(10)11+ となり、(10)式から光エネルギaEiに基き要求さ
れる値が求められ、る。即ち環状光ディテクタ6の各チ
ャンネルの11】や中心からの角度に基づくデータと、
(10)式の演算手順とをマイクロコンピユータ75の
メモリーに記憶させておくことにより、環状光ディテク
タが受けた散乱光パターンから粒子の濃度と粒径を同時
に測定することができる。 また前記各式に用いた記号の意味は下記の通りである。 α:粒径パラメータ、C二定数、D二粒子径、Ei :
光エネルー1!尽、I(θ)、■(α、θ):単一粒子
からの散乱光強度、■(θ):粒子群からの散乱光強度
、Jo (α、θ):第1種O次、Be5sellll
数、Jl((Z、θ):第1種1次Be5se I関数
、N(D)、N(α):個数粒径分布関数、SMD :
ザラター平均粒径、W(D)、W(α)二重聞粒径分布
関数、×1 :重量比例定数のパラメータ、×2 二分
布の広がりぐあし)のパラメータ、×3二代表粒径のパ
ラメータ、f:レンズの焦点距離、θ:散乱角、θ1−
:環状光ディテクタのiチャンネルの内径に対応する散
乱角、θi+:環状光ディテクタのiチャンネルの外径
に対応する散乱角、λ:レープ光の波長、「:ガンマ関
数。 [発明の効果] 以上説明したように本発明に係る浮遊粒子の濃度及び粒
径の測定方法は、空気中に噴霧した被測定微粒子群にレ
ーザビームを照射し、該微粒子群を通じて出た散乱光を
レンズで集光し、該レンズの焦点位置上に配した少なく
とも3チャンネルの環状光ディテクタで受光し、該光デ
ィテクタが受光した散乱光パターンに比例する各チャン
ネルからの信号をI(θ)・θなる式で解析することで
、従来非常に困難とされていた浮遊微粒子の11度ど粒
径とが簡単に測定できるという優れた効果を奏する。 又、前記測定方法を実施する装置どして、レーザ発振器
及びレーザビームのエクスパンダと、微小粒子を通した
散乱光を集光する光学レンズと、その焦点位置に配した
少なくとも3チャンネルの環状光ディテクタと、増幅器
と、信号をホールドする回路と、A/D変換器とを有様
的に結合すると共に、A/D変換された光エネルギーを
散乱光強度と散乱角とによる被積分関数を解析演算する
コンピューターとで装置が構成され、簡単な構成であり
ながら正確な粒子と濃度が測定できるのである。 更に、前記測定の効果によって、噴霧燃焼方式を採用し
ている各種燃焼器の燃焼効率を高め、省エネルギーに寄
与すると共に、大気汚染物値の排出軽減に大ぎく寄与す
る等の種々の優れた効果も奏する。
[This method has the feature that particle size can be measured without using expensive equipment or requiring a high degree of skill. However, there are inherent problems common to direct methods, such as droplets coalescing and splitting during sampling, and measurement in high-pressure, high-temperature atmospheres being extremely difficult. Therefore, an optical measurement method was considered that has the potential to alleviate the limitations and drawbacks of such direct measurement methods. This optical measurement method includes a method of measuring the size of the droplet image and a method of determining the particle size from physical quantities related to the size of the droplet. The TV imaging method, or holography, belongs to the former category, while most of the latter utilize the light scattering properties of particles. Research in this field has been active since monochromatic, coherent laser light sources became readily available1=. Traditionally, scattering methods that utilize the light scattering properties of fine particles mainly target particles that are not very large compared to the wavelength, but recently they have been used to measure particles that are more than 100 times the wavelength, such as particles in atomized spray. An attempt was made. One method for measuring the particle size distribution of a particle group consisting of particles that are sufficiently large compared to the wavelength is to determine the particle size distribution from changes in the intensity of forward scattered light. This calculates the distribution function using an inverse transformation formula within the range of diffraction approximation. However, this method has the problem that it is extremely difficult to accurately evaluate the differential coefficient of the light intensity with respect to the angle required for this conversion. Another method is to determine the shape parameters of a particle size distribution function from the intensity distribution of scattered light and measure the particle size distribution of lEi atomized granules, instead of using an inverse transformation formula. Although the parameters themselves cannot be determined by this method, the Sallator mean particle diameter (hereinafter referred to as SMD1) can be determined relatively easily from the attenuation of the scattered light intensity. However, when analyzing the formula I(θ) of Mie's scattering theory, which expresses the intensity of scattered light, the influence of the central region, which is susceptible to direct light interference, becomes large. Furthermore, an effective method for obtaining the weight particle size distribution from the scattered light intensity distribution has not been established. [Object of the Invention] This invention has been made in view of the above circumstances, and when measuring the particle size distribution of sprayed particles using the light scattering characteristics from the particles, the intensity of the scattered light is calculated based on Mie's scattering theory. Rather than analyzing the diffraction pattern of the formula I(θ), which is the integrand with respect to the angle θ of the scattered light energy, ■(θ)
・This method attempts to measure by analyzing the diffraction pattern of θ, which solves all the problems of conventional spray particle size measurement methods and makes it easy to measure the concentration and particle size distribution of sprayed particulates. Moreover, it is an object of the present invention to provide a method and apparatus for accurate measurement. [Structure of the Invention] The present invention, which has been made to achieve the above-mentioned object, focuses the forward small-angle scattered light obtained by irradiating a laser beam onto a group of particles to be measured using a lens, and places it on the focal point position. Light is received by an annular photodetector consisting of at least three channels of concentric photoelectric conversion elements, and the microcurrent signal photoelectrically converted by the photodetector is amplified, sampled and held, and the scattered light pattern received by the photodetector is patterned. Floating particles characterized in that the signal from each channel proportional to In this method, the concentration and particle size distribution of particles can be measured by analyzing the diffraction pattern of the integrand of the scattered light energy depending on the scattering angle of the scattered light intensity of the sprayed particle group. It is. Furthermore, the apparatus for carrying out the above method includes a laser emitter and a device that collects forward small angle scattered light from a group of measured microparticles irradiated with a laser beam.
* 9 V > X k・H'/e 'l L/ >
-2" (7) lx a 41.?i An annular photodetector consisting of photoelectric conversion elements such as at least three concentric silicon photodetectors arranged in an annular photodetector, and a microphotograph of each channel photoelectrically converted by the photodetector. The number of amplifiers that are the same as the number of channels of the optical detector that simultaneously amplifies the current signal, and the current signal that is amplified by the amplifier is 13.
A circuit that samples and holds the signal for each channel, an A/D converter that converts the FLR signal of each channel into a digital signal, and an optical detector that converts the optical energy received by each channel into a digital signal. A device for measuring the concentration and particle size of suspended particles is specified, comprising a microcomputer in which a procedure for analysis is stored based on the scattered light intensity of the mother and 0 is the scattered light intensity, and 0 is the scattering light intensity.
Accurate measurement is possible because the optical energy converted by the /D converter is simply analyzed and calculated based on a computer program. [Example] - The present invention will be explained in detail below based on the measurement principle and the illustrated example. When a single isotropic spherical particle with a diameter D is irradiated with an unpolarized laser beam of wavelength λ, the intensity distribution of the light scattered by the spherical particle is determined by the refractive index m and the particle size parameter α (
= πD/λ). As the value of the particle size parameter α increases, the amount of light scattered toward a small angle forward of the totally scattered light source increases rapidly, and the shape of the scattered light intensity distribution with respect to the angle in this region is sensitive to the particle size parameter α. It begins to change. The forward small-angle scattering method in a broad sense uses this property to determine the particle size or particle size distribution of a particle group consisting of particles larger than the wavelength λ of light. The key point of this invention is to measure the particle size distribution from As shown in Figure 1, the laser beam (monochromatic parallel beam)
1' is irradiated onto the particle group 2, and a lens 3 is placed in front of it to collect the scattered light, among the scattered light from each particle, the scattering angle θ
The directional components are collected on the circumference having a radius of γ=f−sinθ=j·0 at the focal plane 4 of the light-receiving lens, regardless of the position and velocity of the particles. The distribution of the scattered light intensity I(θ) at the focal plane 4 can be considered to be a combination of the scattered light intensities I(θ, α) from individual single particles if the influence of multiple scattering can be ignored. In other words, if the number particle size distribution is N(α), the following relationship holds true: (1)
l(0, α) is calculated as a pre-series of the scattering equation given by Mie. ■Determining the particle size distribution from the measurement of (θ) is nothing but solving the integral equation of equation (1). Furthermore, if we use the solution to obtain the weight particle size distribution from the scattered light intensity distribution, ■(θ)・θ will always have a peak value at a certain scattering angle, which is very convenient for understanding the characteristics of the distribution. Good. Here, the expression I(θ)·θ is an integrand with respect to the scattering angle θ of the scattered light energy. There is also the advantage that the influence of the central area, which is susceptible to direct light interference, can be reduced in analysis. When the diffraction approximation holds, equation (1) becomes ■ (θ)・θ− ・・・・・・・・・・・・・・・ (2), and this is given by the weighted distribution group number W(α). When , I(θ)・θ=C= becomes. Determining W(α) from equation (3) is the symmetric kernel [
This corresponds to solving an Andholm integral equation of the first kind with 2J1 (α, θ)]/αθ. From this relationship, the concentration of particles can be obtained. The present invention will be explained in more detail below based on the apparatus of the embodiment. FIG. 2 shows the basic concept of an apparatus for implementing the method of the present invention, in which a laser beam 1' from a helium-neon laser oscillator (hereinafter simply referred to as a He-Ne laser) 1 is passed through a beam expander or collimator lens. 5, and when the laser beam is irradiated onto the particle group 2 to be measured, the component of the scattering angle in the θ direction of the scattered light of the laser beam that collided with the particle group 2 is related to the position and velocity of the particles. In the focal plane of the light receiving lens 3, γ+f−sinθ=j・0
are collected on the circumference of a circle with radius. By positioning an annular optical detector 6 such as a concentric silicon photodetector having at least three channels of light receiving sections on this focal plane, a light intensity distribution can be obtained that can be considered as a superposition of the scattered light intensities of individual particles as described above! (θ) can be directly received. The intensity distribution of the scattered light received by the annular photodetector 6 is photoelectrically converted and becomes an input to the optical energy suspension measuring device 7 as a minute current signal. As shown in the block diagram in FIG.
) corresponding amplifiers 711 to 71 and sample and hold circuits 121 to 72°, and an A/D converter 73;
It consists of a computer interface 74 and a microcomputer 75. The analysis procedure on the microcomputer-75 is as follows. First, in order to analyze the above equation (3), Ro
The sim-Rammler distribution function was adopted. The reason for this is that the parameters x2 and
This is because it is easy to understand that the weight is 1/e of the total weight. C=×2/X3 (C: constant), small proportionality constant×1
When introducing , equation (4) becomes. Parameter X2. By changing X3, the above l(θ
)・θ equation pattern is determined by equation (5). From the measured pattern of 1(θ)・θ equation, ×1. ×2. Find ×3. The average particle size is x2. From X3, it is calculated from the following formula. SMD=X3/r' (1-1/X2): Gamma function (6) In the case of an annular optical detector, the particle size distribution is based on the optical energy ff1Ei to the ill-th channel. Determine. Ei is given by the following equation: θ・and θ・ are the outer shape of the annular optical detector ROUT, 1
÷ 1- If the inner diameter is R1o1 and the focal length of the light receiving lens is f, then θ
i+=Rout'', 0i-=Rin'' and are the scattering angles. When the particle size parameter α=πD/λ is sufficiently large and the diffraction approximation holds true, using the approximation of equation (3), W(α
)dαdO・・・・・・・・・・・・ (8)・・・
...... (9), and integrating this gives J (αθ・)−J2 (α0.,)−J 2(αθ・
))/Ddα (10)11+ The required value based on the optical energy aEi can be obtained from equation (10). That is, data based on the angle from the center and the 11] of each channel of the annular optical detector 6,
By storing the calculation procedure of equation (10) in the memory of the microcomputer 75, it is possible to simultaneously measure the particle concentration and particle size from the scattered light pattern received by the annular light detector. Furthermore, the meanings of the symbols used in each of the above formulas are as follows. α: particle size parameter, C2 constant, D2 particle size, Ei:
Light energy 1! I (θ), ■ (α, θ): intensity of scattered light from a single particle, ■ (θ): intensity of scattered light from a group of particles, Jo (α, θ): first type O order, Be5sellll
number, Jl((Z, θ): first type linear Be5se I function, N(D), N(α): number particle size distribution function, SMD:
Zallator average particle diameter, W (D), W (α) double particle size distribution function, ×1: Parameter of weight proportionality constant, ×2 Parameter of two distribution spreads, ×3 Parameter of two representative particle diameters Parameter, f: focal length of lens, θ: scattering angle, θ1-
: Scattering angle corresponding to the inner diameter of the i-channel of the annular light detector, θi+: Scattering angle corresponding to the outer diameter of the i-channel of the annular light detector, λ: Wavelength of the rape light, ": Gamma function. [Effects of the invention] As explained above, the method for measuring the concentration and particle size of suspended particles according to the present invention involves irradiating a group of particles to be measured sprayed into the air with a laser beam, and focusing the scattered light emitted through the group of particles with a lens. , the light is received by an annular light detector of at least three channels arranged on the focal position of the lens, and the signal from each channel proportional to the scattered light pattern received by the light detector is analyzed using the formula I(θ)·θ. This has the excellent effect of making it possible to easily measure the diameter of suspended particles, which has been considered extremely difficult in the past.In addition, the apparatus for carrying out the measurement method includes a laser oscillator and a laser beam. an expander, an optical lens that condenses the scattered light that has passed through the microparticles, an annular optical detector with at least three channels arranged at its focal position, an amplifier, a circuit for holding signals, and an A/D converter. The device is configured with a computer that analyzes and calculates the integrand function based on the scattered light intensity and the scattering angle of the A/D converted light energy, and has a simple structure yet accurate Furthermore, the effectiveness of the above measurements increases the combustion efficiency of various combustors that use the spray combustion method, contributing to energy conservation and greatly reducing air pollutant emissions. It also has various excellent effects such as contributing to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の詳細な説明するための説明図、第2
図はこの発明の方法を実施するための装置の略示的構成
図、第3図は同装置における光エネルギ測定装置のブロ
ック図である。 1・・・発振器       2・・・粒子群3・・・
受光レンズ     4・・・焦点面5・・・]リメー
ターレンズ 6・・・環状光ディテクタ フ・・・光エネルギ測定装置 711〜71.・・・増幅器、 721〜72.・・・ザンブルアンドホールド回路73
・・・A/D変換器 74・・・インターフェース
FIG. 1 is an explanatory diagram for explaining the invention in detail, and FIG.
The figure is a schematic configuration diagram of an apparatus for carrying out the method of the present invention, and FIG. 3 is a block diagram of a light energy measuring device in the same apparatus. 1... Oscillator 2... Particle group 3...
Light receiving lens 4...Focal plane 5...] Remeter lens 6...Annular light detector...Light energy measuring device 711-71. ...Amplifier, 721-72. ... Zumble and hold circuit 73
...A/D converter 74...Interface

Claims (3)

【特許請求の範囲】[Claims] (1)被測定微粒子群にレーザビームを照射して得られ
る前方微小角散乱光をレンズで集光し、その焦点位置上
に配した少なくとも3チャンネルの同心円形状の光電変
換素子よりなる環状光ディテクタで受光し、該光ディテ
クタで光電変換された微小電流信号を増幅及びサンプル
アンドホールドさせた後、上記光ディテクタが受光した
散乱光のパターンに比例する各チャンネルからの信号を
■(θ)・θなる式〔式中■(θ)は粒子群からの散乱
光強度、θは散乱角〕に基づいて解析することを特徴と
する浮遊粒子の濃度及び粒径の測定方法。
(1) An annular optical detector consisting of at least three channels of concentric photoelectric conversion elements arranged above the focal point of a lens that focuses the forward small-angle scattered light obtained by irradiating a laser beam onto a group of particles to be measured. After amplifying, sampling and holding the minute current signal received by the photodetector and photoelectrically converted by the photodetector, the signal from each channel proportional to the pattern of scattered light received by the photodetector is A method for measuring the concentration and particle size of suspended particles, characterized in that the analysis is performed based on the following formula: [In the formula (2) (θ) is the intensity of scattered light from a group of particles, and θ is the scattering angle].
(2)レーザ発振器と、レーザビームで照射された被測
定微小粒子群からの前方微小角散乱光を集光する光学レ
ンズと、該光学レンズの焦点位置に配した少なくとも3
チャンネルの同心円形状のシリコンフォトディテクタ等
の光電変換素子よりなる環状光ディテクタと、該光ディ
テクタで光電変換された各チャンネルの微小電流信号を
同時に増幅する光ディテクタのチャンネル数と同数の増
幅器と、該増幅器で増幅された電流信号を各チャンネル
ごとにサンプルアンドホールドする回路と、各チャネル
の電流信号をデジタル信号に変換するA/D変換器と、
デジタル信号化された光ディテクタの各チャンネルが受
光した光エネルギ量を■(θ)・θなる式(式中■(θ
)は粒子群からの散乱光強度、θは散乱角〕に基づいて
解析する手順を記憶させたマイクロコンピューターとか
らなる浮遊粒子の濃度及び粒径の測定装置。
(2) a laser oscillator, an optical lens that condenses forward small angle scattered light from a group of measured microparticles irradiated with a laser beam, and at least three lenses arranged at the focal position of the optical lens;
An annular photodetector consisting of a photoelectric conversion element such as a silicon photodetector having concentric channels, an amplifier of the same number as the number of channels of the photodetector that simultaneously amplifies minute current signals of each channel photoelectrically converted by the photodetector, and the amplifier. A circuit that samples and holds the current signal amplified by each channel for each channel, and an A/D converter that converts the current signal of each channel into a digital signal.
The amount of light energy received by each channel of the optical detector converted into a digital signal is calculated by the formula ■(θ)・θ (in the formula ■(θ
) is the intensity of scattered light from a group of particles, and θ is the scattering angle.) A device for measuring the concentration and particle size of suspended particles, which consists of a microcomputer that stores an analysis procedure based on the scattering angle.
(3)前記レーザ発振器のレーザビームをコリメートす
るコリメータレンズを設けたことを特徴とする前記第2
項記載の浮遊粒子の濃度及び粒径の測定装置。
(3) The second device further includes a collimator lens for collimating the laser beam of the laser oscillator.
Device for measuring the concentration and particle size of suspended particles as described in 2.
JP60184568A 1985-08-22 1985-08-22 Method and apparatus for measuring concentration and grain size of suspended particles Granted JPS6244646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60184568A JPS6244646A (en) 1985-08-22 1985-08-22 Method and apparatus for measuring concentration and grain size of suspended particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60184568A JPS6244646A (en) 1985-08-22 1985-08-22 Method and apparatus for measuring concentration and grain size of suspended particles

Publications (2)

Publication Number Publication Date
JPS6244646A true JPS6244646A (en) 1987-02-26
JPH0355780B2 JPH0355780B2 (en) 1991-08-26

Family

ID=16155482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60184568A Granted JPS6244646A (en) 1985-08-22 1985-08-22 Method and apparatus for measuring concentration and grain size of suspended particles

Country Status (1)

Country Link
JP (1) JPS6244646A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223543A (en) * 1987-03-13 1988-09-19 Canon Inc Particle analysis instrument
JPH01284738A (en) * 1988-05-10 1989-11-16 Natl Aerospace Lab Method and device for measuring particulate size and its distribution
JPH03115950A (en) * 1989-09-29 1991-05-16 Shimadzu Corp Measuring device for distribution of particle size
US5229839A (en) * 1989-10-06 1993-07-20 National Aerospace Laboratory Of Science & Technology Agency Method and apparatus for measuring the size of a single fine particle and the size distribution of fine particles
JPH07209169A (en) * 1994-01-21 1995-08-11 Natl Aerospace Lab Method and device for measuring spatial distribution of concentration and grain size of floating particle group
JP2000046719A (en) * 1998-07-29 2000-02-18 Shimadzu Corp Measuring method for number of particles and particle measuring apparatus
JP2006078464A (en) * 2004-08-11 2006-03-23 Fujitsu Ltd Apparatus and method for measuring small-angle scattering and sample analysis method
JP2008511843A (en) * 2004-09-01 2008-04-17 ハネウェル・インターナショナル・インコーポレーテッド Frequency multiplexed detection of multiwavelength light for flow cytometry.
CN107121364A (en) * 2017-06-20 2017-09-01 兰州大学 The multifunction measuring set that a kind of particle system influences on laser signal

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223543A (en) * 1987-03-13 1988-09-19 Canon Inc Particle analysis instrument
JPH01284738A (en) * 1988-05-10 1989-11-16 Natl Aerospace Lab Method and device for measuring particulate size and its distribution
JPH03115950A (en) * 1989-09-29 1991-05-16 Shimadzu Corp Measuring device for distribution of particle size
US5229839A (en) * 1989-10-06 1993-07-20 National Aerospace Laboratory Of Science & Technology Agency Method and apparatus for measuring the size of a single fine particle and the size distribution of fine particles
JPH07209169A (en) * 1994-01-21 1995-08-11 Natl Aerospace Lab Method and device for measuring spatial distribution of concentration and grain size of floating particle group
JP2000046719A (en) * 1998-07-29 2000-02-18 Shimadzu Corp Measuring method for number of particles and particle measuring apparatus
JP2006078464A (en) * 2004-08-11 2006-03-23 Fujitsu Ltd Apparatus and method for measuring small-angle scattering and sample analysis method
JP2008511843A (en) * 2004-09-01 2008-04-17 ハネウェル・インターナショナル・インコーポレーテッド Frequency multiplexed detection of multiwavelength light for flow cytometry.
JP2011059127A (en) * 2004-09-01 2011-03-24 Honeywell Internatl Inc Frequency-multiplexed detection of multiple wavelength light for flow cytometry
CN107121364A (en) * 2017-06-20 2017-09-01 兰州大学 The multifunction measuring set that a kind of particle system influences on laser signal

Also Published As

Publication number Publication date
JPH0355780B2 (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US4251733A (en) Technique for simultaneous particle size and velocity measurement
US6181419B1 (en) Method and apparatus for applying laser induced incandescence for the determination of particulate measurements
AU2013327811B2 (en) One-dimensional global rainbow measurement device and measurement method
US5101113A (en) Ensemble scattering particle sizing system with axial spatial resolution
Sorensen et al. Optical measurement techniques: fundamentals and applications
CN109883930A (en) A kind of aerosol particle refractive index measurement method based on polarized light scatter
CN202631566U (en) Double-beam laser Doppler tachymeter
JPS6244646A (en) Method and apparatus for measuring concentration and grain size of suspended particles
CN104198055A (en) Wave surface detecting device
US6184989B1 (en) Laser sheet tomography apparatus for flow field statistics
Hirleman Particle sizing by optical, nonimaging techniques
Bachalo et al. An instrument for spray droplet size and velocity measurements
Self et al. Laser anemometry for combustion research
JPH08159949A (en) Particle detection device
CN100370223C (en) Double hole type measural apparatus for scattering angle of laser beam
US5517298A (en) Diode array velocimeter
Nagy et al. Numerical and experimental study of the performance of the dual wavelength optical particle spectrometer (DWOPS)
Herpfer et al. Planar measurements of droplet velocities and sizes within a simplex atomizer
JPH0462455A (en) Particle size distribution measuring instrument
JPH0355779B2 (en)
CN114659947A (en) Measuring device and measuring method for mass concentration of dust with multiple particle sizes
Zhao et al. Design and optimization of a fine particle detector based on forward and lateral light scattering measurement
JP2001330551A (en) Particle measuring instrument
Naining et al. A study of the accuracy of optical Fraunhofer diffraction size analyzer
Zhang et al. Forward and Lateral Dual-Angle Optical Particle Counter Data Fusion to Detect Particle Mass Concentration

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term