JPH07202147A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH07202147A
JPH07202147A JP5349131A JP34913193A JPH07202147A JP H07202147 A JPH07202147 A JP H07202147A JP 5349131 A JP5349131 A JP 5349131A JP 34913193 A JP34913193 A JP 34913193A JP H07202147 A JPH07202147 A JP H07202147A
Authority
JP
Japan
Prior art keywords
layer
semiconductor device
thickness
film
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5349131A
Other languages
Japanese (ja)
Inventor
Katsumi Komiyama
克美 小宮山
Junichi Hoshi
淳一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5349131A priority Critical patent/JPH07202147A/en
Publication of JPH07202147A publication Critical patent/JPH07202147A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68363Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving transfer directly from an origin substrate to a target substrate without use of an intermediate handle substrate

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a flexible semiconductor device which is thinner than a prescribed value and high enough in strength by a method wherein an amorphous insulating layer is laminated on the upside and underside of a semiconductor integrated circuit where an active device provided with a single crystal Si thin film as an active layer is built in. CONSTITUTION:An N-MOS Tr 15 and re P-MOS Tr 16 are isolated from each other by a LOCOS layer 3, and moreover an Al wiring 22 is provided for forming a C-MOS inverter 19. An interlayer insulating layer 20 interposed between the Al wiring 22 and a gate wiring is formed of BPSG as thick as 4000Angstrom , and a last passivation layer 30 is formed of PSG as thick as 10000Angstrom . A wiring lead-out section 31 is provided by removing a part of the passivation layer 30, and a P-MOS Tr 17 is formed to serve as an output buffer. The thickness of this semiconductor device is represented by a formula, insulating layer 2 (8000Angstrom ) + LOCOS layer 3 (10000Angstrom ) + interlayer insulating film 20 (6000Angstrom ) + passivation layer 30 (6000Angstrom ) = 36000Angstrom .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超薄型の半導体装置に関
し、特に曲げに強い薄型でフレキシブルな半導体装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-thin semiconductor device, and more particularly to a thin and flexible semiconductor device which is resistant to bending.

【0002】[0002]

【従来の技術】半導体分野において、いわゆる単結晶S
i基板の上にエピタキシャル成長させた単結晶Si薄膜
にリン、ホウ素などの不純物を注入することにより、さ
まざまな半導体を形成していることは周知のことであ
る。
2. Description of the Related Art In the field of semiconductors, so-called single crystal S
It is well known that various semiconductors are formed by implanting impurities such as phosphorus and boron into a single crystal Si thin film epitaxially grown on an i substrate.

【0003】単結晶のSi薄膜は、アモルファスSiや
多結晶Siに比べ、素子特性に優れた半導体能動素子が
形成できるため、その製造方法が種々開発されている。
Since a monocrystalline Si thin film can form a semiconductor active element having excellent element characteristics as compared with amorphous Si or polycrystalline Si, various manufacturing methods have been developed.

【0004】[0004]

【発明が解決しようとする課題】上記した単結晶Si薄
膜を用いた半導体装置においては、出発基板が単結晶S
i基板であるため、その結晶性故に特定の方位に沿って
割れ易く、基板を薄くすると著しく強度が低下する。そ
のため最終的に得られる基板の厚みは約1mm程度と厚
いものになってしまう。
In the semiconductor device using the above-mentioned single crystal Si thin film, the starting substrate is the single crystal S.
Since it is an i substrate, it is easily cracked along a specific orientation due to its crystallinity, and the strength is remarkably reduced when the substrate is thin. Therefore, the thickness of the finally obtained substrate is as thick as about 1 mm.

【0005】さらに、上記単結晶Si薄膜を用いて得ら
れた半導体装置においては以下のような強度の低下問題
があった。
Further, the semiconductor device obtained by using the above-mentioned single crystal Si thin film has the following problem of strength reduction.

【0006】1枚のSiウエハ上で複数の半導体チッ
プが同時に作製されるが、各チップを切り離す工程(ダ
イシング)により、分割されたチップは分割界面に欠陥
を生じ、その結果理論上の強度の1/100以下の強度
に低下する。
A plurality of semiconductor chips are simultaneously manufactured on one Si wafer, but the divided chips have defects at the dividing interface due to the step of dicing each chip (dicing). As a result, the theoretical strength is increased. The strength is reduced to 1/100 or less.

【0007】チップ厚が大きいために曲げに対して割
れ易い。
Since the chip thickness is large, it is easily cracked by bending.

【0008】素子を作り込んだことで基板の表裏での
応力構造が異なり、基板の裏面に結晶欠陥が発生し易く
割れ易い。
The stress structure on the front and back surfaces of the substrate is different due to the fabrication of the element, and crystal defects are easily generated on the back surface of the substrate and are easily cracked.

【0009】厚い半導体装置は、放熱性が悪く、高密度
化ができない、実装方法が制約されるなど、現状の高精
細化において問題となっている。
A thick semiconductor device has a problem in the current high definition, such as poor heat dissipation, inability to achieve high density, and restricted mounting method.

【0010】例えば、薄型の半導体装置を利用している
例としてICカードがあるが、このICカードにおいて
も、上記半導体装置の製造上の理由から、現状は厚みが
1mm程度で固いものであるが、薄さが0.6mm以下
で且つ破損を防止する上でフレキシブルであることが望
まれている。
For example, there is an IC card as an example of using a thin semiconductor device. However, even in this IC card, the thickness is about 1 mm and it is hard at present because of the manufacturing of the semiconductor device. It is desired that the thinness is 0.6 mm or less and that it is flexible in preventing damage.

【0011】本発明はこのような問題点に鑑み、十分な
強度を有し、超薄型でフレキシブルな半導体装置の提供
を目的とするものである。
In view of the above problems, it is an object of the present invention to provide an ultrathin and flexible semiconductor device having sufficient strength.

【0012】[0012]

【課題を解決するための手段及び作用】本発明者等は、
SOI(Silicon on Insulator)
を研究している際に、超薄型のSOI構造が、単結晶S
i基板よりもフレキシブルで割れにくいことを発見し、
本発明を達成した。
Means and Actions for Solving the Problems The present inventors have
SOI (Silicon on Insulator)
While studying, the ultra-thin SOI structure was
Discovered that it is more flexible and less likely to break than the i-substrate,
The present invention has been achieved.

【0013】即ち本発明は、単結晶Si薄膜を活性層と
して用いたアクティブ素子を作り込んだ半導体集積回路
の上下にアモルファス絶縁層を積層してなる半導体装置
であって、装置の層厚が100μm以下であることを特
徴とする半導体装置である。
That is, the present invention is a semiconductor device in which an amorphous insulating layer is laminated above and below a semiconductor integrated circuit in which an active element using a single crystal Si thin film as an active layer is formed, and the layer thickness of the device is 100 μm. The semiconductor device is characterized by the following.

【0014】装置の層厚は薄ければ曲げに対して有効で
あり、曲率半径を小さくできることは後述の表1に示す
通りである。例えばSiO2 /SiNといった薄膜構造
体で且つ1μm程度の厚み、10mm程度の幅を有する
物体の引張破断強度は約100gである。後述する実施
例1に示すような3〜4μm程度の層厚の半導体装置は
300〜400gの強度を持つことになり、注意深く作
製すれば、量産可能な強度を有している。
If the layer thickness of the device is thin, it is effective for bending, and the radius of curvature can be made small, as shown in Table 1 below. For example, an object having a thin film structure of SiO 2 / SiN and a thickness of about 1 μm and a width of about 10 mm has a tensile breaking strength of about 100 g. A semiconductor device having a layer thickness of about 3 to 4 μm as shown in Example 1 to be described later has a strength of 300 to 400 g, and if manufactured carefully, has a strength capable of mass production.

【0015】しかしながらこれらを一般的な市場におい
て使用していくためには、更に強度的な向上、経験的に
は1kg程度の強度を有し、且つ後述するように半導体
デバイスへのイオン的影響を防ぐ必要があり、これらを
考慮すると有機保護層も含めて100μm厚以下と設定
することが望ましい。
However, in order to use these in the general market, the strength is further improved, empirically, the strength is about 1 kg, and as described later, there is an ionic effect on the semiconductor device. It is necessary to prevent it, and considering these, it is desirable to set the thickness to 100 μm or less including the organic protective layer.

【0016】半導体或いは無機材料(SiO2 、Si
N、SiON、BPSG、PSG)のみで100μm程
度の厚みを形成することは、それら材料の成膜速度を考
えた場合にははなはだ非経済的であると同時に膜厚を大
きくすると内部応力等の問題から逆に膜にクラック等を
生じ、強度低下の原因となる。一般的にこれら成膜によ
り形成される無機膜厚は経験的に最大2μm程度と考え
られるため、今回提案した後述の実施例においては、全
てを無機膜で構成すると上層が2層として最大4μm程
度、下層が前記したようにSiの熱酸化プロセスで経済
的限界が約2μmとすれば半導体層及びそのLOCOS
酸化層を含めて最大6μm程度の厚みと考えられる。
Semiconductor or inorganic material (SiO 2 , Si
Forming a thickness of about 100 μm only with N, SiON, BPSG, PSG) is very uneconomical when considering the film forming speed of these materials, and at the same time increasing the film thickness causes problems such as internal stress. On the contrary, a crack or the like is generated in the film, which causes a decrease in strength. In general, the inorganic film thickness formed by these film formations is empirically considered to be about 2 μm at the maximum. Therefore, in the embodiment described later, if all are made of inorganic film, the upper layer has a maximum thickness of about 4 μm. As described above, if the economic limit of the thermal oxidation process of Si is about 2 μm for the lower layer, the semiconductor layer and its LOCOS are formed.
It is considered that the maximum thickness including the oxide layer is about 6 μm.

【0017】従って、前記した強度計算で約600g程
度の強度が得られる。一方曲げ限界は曲率半径で1〜
1.5mm程度と大きくなる。
Therefore, a strength of about 600 g can be obtained by the above strength calculation. On the other hand, the bending limit is a radius of curvature of 1 to
It becomes as large as 1.5 mm.

【0018】いかなる市場においても安心して使用でき
るようにするためには、前記した経験則にのっとれば、
破断強度は1kg以上が望ましく、有機保護層を併用す
ることが望ましい。有機保護層厚はその成膜法にもよる
が、一般的にスピンコート、ディップコート等の溶剤塗
布を考えた場合には50Å〜25μm程度まで塗布自由
度が考えられる。更に厚塗りを繰り返すことで膜厚自由
度は拡大する。
According to the above-mentioned rules of thumb, in order to be able to use the product in any market with peace of mind,
The breaking strength is preferably 1 kg or more, and it is desirable to use an organic protective layer together. Although the thickness of the organic protective layer depends on the film forming method, generally, when considering solvent coating such as spin coating and dip coating, the degree of freedom of coating is considered to be about 50 Å to 25 μm. By repeating thick coating, the degree of freedom in film thickness is expanded.

【0019】そこで25μm程度の膜厚を上下各層に付
加すれば、無機膜上下層各6μm、半導体層2μm、有
機保護層上下層各50μmで約60μm程度の構造体が
形成できる。更に安全のため上下各有機保護層の重ね塗
りをすることで100μm以下で強固な膜半導体を形成
することができる。
Therefore, if a film thickness of about 25 μm is added to each of the upper and lower layers, an inorganic film upper and lower layers of 6 μm, a semiconductor layer 2 μm, and an organic protective layer upper and lower layers of 50 μm each, a structure of about 60 μm can be formed. Further, for safety, by overcoating the upper and lower organic protective layers, a strong film semiconductor having a thickness of 100 μm or less can be formed.

【0020】25μm×2=50μm程度の有機保護層
は現在一般に広く用いられているフレキシブル回路の厚
みと同等であり、強度、屈曲性から考えて十分な市場展
開が期待できる。
An organic protective layer of about 25 μm × 2 = 50 μm is equivalent to the thickness of a flexible circuit which is widely used at present, and can be expected to be sufficiently marketed in consideration of strength and flexibility.

【0021】本発明に係る薄膜のSOI構造を用いた半
導体装置においては強度的に以下のような利点を有して
いる。
The semiconductor device using the thin film SOI structure according to the present invention has the following strength advantages.

【0022】(1)装置の表裏がガラス状(アモルファ
ス)構造であり、結晶性に基づく欠陥がない。
(1) The front and back of the device have a glassy (amorphous) structure, and there are no defects due to crystallinity.

【0023】(2)チップが薄いために、チップの分割
にダイシングの代わりに湿式、或いは乾式のエッチング
手法が選択でき、切断界面に欠陥が生じにくい。
(2) Since the chip is thin, a wet or dry etching method can be selected instead of dicing for dividing the chip, and defects are unlikely to occur at the cutting interface.

【0024】(3)素子を作り込む単結晶Si層が層の
中央部に存在するため、曲げに対して応力の小さい部位
に位置する。
(3) Since the single crystal Si layer for forming the element exists in the central portion of the layer, it is located in a portion where stress is small against bending.

【0025】Siは材料固有の強度(理論強度)におい
ては優れているものの、半導体装置を構成した場合に
は、材料、構造、製造プロセスに起因する欠陥により理
論強度の1/100以下の強度しか示さず、SiO2
SiN、SiON、BPSG、PSGからなる膜の強度
よりも弱くなるのである。この関係を表1に示す。
Although Si is excellent in the strength (theoretical strength) peculiar to the material, when a semiconductor device is constructed, the strength is only 1/100 or less of the theoretical strength due to defects caused by the material, structure, and manufacturing process. Not shown, SiO 2 ,
It is weaker than the strength of the film made of SiN, SiON, BPSG and PSG. This relationship is shown in Table 1.

【0026】表1はSiO2 、SiN、SiON、BP
SG、PSGの各膜のヤング率E、ポアソン比ν、最大
破断応力σ、それぞれの膜厚をtとした時の破断曲率半
径、実験強度を示した。
Table 1 shows SiO 2 , SiN, SiON and BP.
The Young's modulus E, Poisson's ratio ν, maximum breaking stress σ of each of SG and PSG films, the radius of rupture curvature when each film thickness is t, and the experimental strength are shown.

【0027】ここで破断曲率半径Rは、薄膜を折り曲げ
た際に膜表面で最大主応力が発生すると仮定した。理論
値は、R=tE/[2×σ×(1−ν2)]で計算し
た。
Here, the breaking radius of curvature R is assumed to be such that the maximum principal stress occurs on the film surface when the thin film is bent. The theoretical value was calculated by R = tE / [2 × σ × (1−ν2)].

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示した通り、各膜厚と曲率半径Rと
の関係においては以下の様な特徴が示される。
As shown in Table 1, the relationship between each film thickness and the radius of curvature R has the following characteristics.

【0030】各材料とも、膜厚tが小さくなると破断
曲率半径Rが理論値、実験値とも小さくなる。
For each material, the rupture radius of curvature R becomes smaller both in theoretical and experimental values as the film thickness t becomes smaller.

【0031】各材料とも、破断曲率半径Rの実験値の
方が理論値よりも大きく、特にSiにおいてはその違い
が顕著である。
For each material, the experimental value of the radius of curvature of fracture R is larger than the theoretical value, and the difference is remarkable especially in Si.

【0032】従って本発明の半導体装置は、実質的にフ
レキシブルなアモルファス膜を利用し膜厚を薄くするこ
とにより、0.3〜1.5mm程度の曲率で曲げること
が可能であり、従来のSi半導体装置では考えられなか
った応用分野が考えられる。
Therefore, the semiconductor device of the present invention can be bent with a curvature of about 0.3 to 1.5 mm by utilizing a substantially flexible amorphous film to reduce the film thickness. There are possible application fields that were not possible with semiconductor devices.

【0033】[0033]

【実施例】【Example】

[実施例1]図1に本発明第1の実施例の断面図を示
す。図1において、2は膜厚8000ÅのSiO2 から
なる絶縁層、15はN−MOSTr領域で10はN−M
OSTrのチャネル(膜厚4000Å)、4及び5はN
−MOSTrのソース及びドレイン、8はSiO2 から
なるゲート酸化膜、9は多結晶Siからなるゲート電極
である。6はP−MOSTr領域で11はチャネル(膜
厚4000Å)、6及び7はソース及びドレインであ
る。Tr15及び16はそれぞれ3のLOCOS層によ
り素子分離されており、更に、C−MOSインバータ1
9を形成するためのAl配線22が設けられている。A
l配線22とゲート配線との層間絶縁層20は厚さ40
00ÅのBPSG、最終パッシベーション層30は厚さ
10000ÅのPSGである。31は配線引き出し部で
あり、上記パッシベーション層30を一部除去して形成
している。17はP−MOSTrで出力バッファとして
形成されている。
[Embodiment 1] FIG. 1 shows a sectional view of a first embodiment of the present invention. In FIG. 1, 2 is an insulating layer made of SiO 2 having a film thickness of 8000 Å, 15 is an N-MOSTr region, and 10 is NM.
OSTr channel (film thickness 4000Å), 4 and 5 are N
The source and drain of the MOSTr, 8 is a gate oxide film made of SiO 2 , and 9 is a gate electrode made of polycrystalline Si. 6 is a P-MOSTr region, 11 is a channel (film thickness 4000Å), and 6 and 7 are sources and drains. Trs 15 and 16 are element-isolated by three LOCOS layers, respectively.
An Al wiring 22 for forming 9 is provided. A
The interlayer insulating layer 20 between the L wiring 22 and the gate wiring has a thickness of 40
The 00 Å BPSG and final passivation layer 30 are 10000 Å thick PSG. Reference numeral 31 is a wiring lead portion, which is formed by partially removing the passivation layer 30. A P-MOSTr 17 is formed as an output buffer.

【0034】このように形成された半導体装置の膜厚
は、絶縁層2(8000Å)+LOCOS層(1000
0Å)+層間絶縁層20(6000Å)+Al配線22
(6000Å)+パッシベーション層30(6000
Å)=36000Åであった。
The semiconductor device thus formed has a film thickness of the insulating layer 2 (8000 Å) + LOCOS layer (1000
0 Å) + interlayer insulation layer 20 (6000 Å) + Al wiring 22
(6000Å) + passivation layer 30 (6000
Å) = 36000Å.

【0035】本半導体装置の配線引き出し部31に電極
を当てて電気特性を調べたところ、良好な特性が確認さ
れた。
When the electrode was applied to the wiring lead-out portion 31 of the present semiconductor device and the electrical characteristics were examined, good characteristics were confirmed.

【0036】本半導体装置において、半導体層(チャネ
ル10、11)を挟んで上層の絶縁層は層間絶縁層20
及びパッシベーション層30で12000Å、下層の絶
縁層は絶縁層2の8000Åで上下の厚さの比は3/2
である。
In this semiconductor device, the upper insulating layer sandwiching the semiconductor layer (channels 10 and 11) is the interlayer insulating layer 20.
And the passivation layer 30 is 12000 Å, the lower insulating layer is 8000 Å of the insulating layer 2, and the ratio of the upper and lower thickness is 3/2.
Is.

【0037】本実施例の曲げ破断曲率は0.6mmであ
り、新たな応用に対して十分な柔軟性を有している。
The bending rupture curvature of this embodiment is 0.6 mm, and it has sufficient flexibility for new applications.

【0038】その電気特性の曲げに対する変化を図5〜
図8に示す。図5は本実施例とほぼ同一特性を示す従来
の半導体装置(チップ厚0.6mm)、図7が本実施例
の半導体装置(チップ厚3.6μm)の平行な(曲げな
し)状態でのVD /ID 特性である。これらの半導体装
置をバルジメーター(曲率を変化させる装置)によって
凸状に変化させて再び同一特性を図ったところ、従来の
半導体装置のVD /ID 特性は図6に示すように大きく
変化したが、本実施例のVD /ID 特性は図8に示すよ
うに図7とほとんど変わらなかった。尚、本測定は曲率
500mmで両者間を比較した。
FIG. 5 shows the change of the electric characteristics with respect to bending.
It shows in FIG. FIG. 5 shows a conventional semiconductor device (chip thickness 0.6 mm) showing almost the same characteristics as this embodiment, and FIG. 7 shows a semiconductor device (chip thickness 3.6 μm) of this embodiment in a parallel (non-bent) state. This is the V D / I D characteristic. When these semiconductor devices were changed to a convex shape by a bulge meter (device for changing the curvature) and the same characteristics were re-established, the V D / I D characteristics of the conventional semiconductor device changed greatly as shown in FIG. However, the V D / I D characteristics of this example were almost the same as those of FIG. 7 as shown in FIG. In this measurement, the two were compared with a curvature of 500 mm.

【0039】このように、本実施例においては機械的に
は0.6mmという曲率曲げに対する十分な強度を有す
るため小曲率まで曲げられること、またその特性変化に
関しても従来の半導体装置にはない外形変化に対する特
性安定性を有することがわかった。
As described above, in the present embodiment, since the mechanical strength is sufficient for bending with a curvature of 0.6 mm, it can be bent to a small curvature, and its characteristic change does not exist in the conventional semiconductor device. It was found to have characteristic stability against changes.

【0040】本実施例に係る、SOIウエハにP−T
r、N−Trを作成する方法、素子分離方法、層間絶縁
層の形成方法、Al配線形成方法は公知の半導体形成プ
ロセスを用いることができる。
The P-T is applied to the SOI wafer according to the present embodiment.
Known semiconductor forming processes can be used for the method of forming r, N-Tr, the element isolation method, the interlayer insulating layer forming method, and the Al wiring forming method.

【0041】図2に本実施例の半導体装置の製造工程例
を示す。
FIG. 2 shows an example of the manufacturing process of the semiconductor device of this embodiment.

【0042】図2において(a)は出発基板である。本
発明において該出発基板はSi基板1、絶縁層(SiO
2 )2、及び単結晶Siのエピタキシャル層41より構
成されたものを用いる。このような構成を有する基板
は、SIMOX法、基板貼り合わせ法、及び本出願人が
先に提案した多孔質Si上に単結晶Siをエピタキシャ
ル成長させる方法により得られる。特に、上記本出願人
が提案した方法では、Siの品質、絶縁層の種類及びそ
の厚みを自由に選択できる点において優れている。
In FIG. 2, (a) is a starting substrate. In the present invention, the starting substrate is a Si substrate 1, an insulating layer (SiO 2
2 ) 2 and a single crystal Si epitaxial layer 41 are used. The substrate having such a structure can be obtained by the SIMOX method, the substrate bonding method, and the method of epitaxially growing single crystal Si on porous Si previously proposed by the present applicant. In particular, the method proposed by the present applicant is excellent in that the quality of Si, the type of insulating layer, and the thickness thereof can be freely selected.

【0043】(a)の基板に、通常の半導体プロセスを
用いて、Tr25、26、27、19(半導体層42)
及びパッシベーション層30、配線引き出し部31(絶
縁層43)を作り込んだ(b)。
Tr25, 26, 27, 19 (semiconductor layer 42) is formed on the substrate (a) by a normal semiconductor process.
Also, the passivation layer 30 and the wiring lead-out portion 31 (insulating layer 43) were formed (b).

【0044】次に(c)に示す様に、Si基板1を除去
してウエハを薄型化する。特開塀5−273591号公
報に開示されているように、Siのエッチング法として
は、乾式・湿式といったさまざまな方法がある。本実施
例では、SiO2 /Si間のエッチングレートの違いを
利用し、比較的低温でエッチング速度の速いTMAHを
用いてエッチングを行なった。
Next, as shown in (c), the Si substrate 1 is removed to thin the wafer. As disclosed in Japanese Patent Application Laid-Open No. 5-273591, there are various methods such as dry and wet methods for etching Si. In this example, the etching rate was changed between SiO 2 / Si, and etching was performed using TMAH at a relatively low temperature and a high etching rate.

【0045】具体的には、(b)で示したウエハ表面に
アピエゾンワックス44を塗布乾燥させ、これをTMA
H80℃溶液中に投入して14時間後にエッチングを完
了した(d)。この後エッチングレジスト44をアセト
ン溶液などで剥離し、薄型ウエハ(e)を得た。
Specifically, the wafer surface shown in (b) is coated with Apiezon wax 44 and dried.
The etching was completed 14 hours after being placed in the H80 ° C. solution (d). After that, the etching resist 44 was peeled off with an acetone solution or the like to obtain a thin wafer (e).

【0046】上記方法においては、ウエハ全面をエッチ
ングしたが、1チップ毎に分割してから裏面のSi基板
1をエッチングしても良い。
In the above method, the entire surface of the wafer is etched, but the Si substrate 1 on the back surface may be etched after dividing it into chips.

【0047】このようにして得られたSiウエハ、Si
チップの電気特性を図ったところ、Si基板1のある場
合と変わりのない良好な特性が得られた。
Si wafer, Si thus obtained
When the electrical characteristics of the chip were measured, good characteristics that were the same as those with the Si substrate 1 were obtained.

【0048】[実施例2]図3に本発明第2の実施例を
示す。本実施例は前記本出願人が提案した方法で形成し
た単結晶Si膜を用いたもので、実施例1との違いは、
出発基板(a)において絶縁層がSiO2 層51(厚さ
4000Å)及びSiN層52(厚さ4000Å)の2
層構造となっていることである。このように2層構造と
することで単結晶Si層の界面準位を低減させることが
できる。
[Embodiment 2] FIG. 3 shows a second embodiment of the present invention. This example uses a single crystal Si film formed by the method proposed by the applicant of the present invention.
In the starting substrate (a), the insulating layer is a SiO 2 layer 51 (thickness 4000 Å) and a SiN layer 52 (thickness 4000 Å) 2.
It has a layered structure. With the two-layer structure as described above, the interface state of the single crystal Si layer can be reduced.

【0049】半導体層42、絶縁層43の形成は実施例
1と同じであるが(b)、Si基板1のエッチング除去
工程においては、SiN層52がKOHの様な強アルカ
リ溶液にも、またHF+HNO3 のような強酸にもエッ
チングストップ層として働く。そのため、エッチング速
度の速いKOHを用いて短時間でエッチングを終了する
ことができる。但し、KOHをエッチング溶液として用
いる場合には、表面側にもアピエゾンワックスではなく
エッチングストップ層が必要になる。本実施例ではパッ
シベーション層であるPSG膜上に裏面に形成したもの
と同じSiN膜53を2層となるように2000Åの厚
みで形成した(c)。
The formation of the semiconductor layer 42 and the insulating layer 43 is the same as that of the first embodiment (b), but in the etching removal process of the Si substrate 1, the SiN layer 52 is exposed to a strong alkaline solution such as KOH. It also acts as an etching stop layer against a strong acid such as HF + HNO 3 . Therefore, the etching can be completed in a short time using KOH having a high etching rate. However, when KOH is used as an etching solution, an etching stop layer is required on the surface side instead of the apiezon wax. In this embodiment, the same SiN film 53 as that formed on the back surface is formed on the PSG film, which is the passivation layer, with a thickness of 2000 Å so as to form two layers (c).

【0050】また、本実施例では絶縁層としてプラズマ
SiN層を用いたが、SiONなどでも効果は同様であ
る。また更に、本実施例においても実施例1同様、ウエ
ハでエッチングしても、チップでエッチングしてもいず
れでも良い。
Further, although the plasma SiN layer is used as the insulating layer in the present embodiment, the same effect can be obtained by using SiON or the like. Furthermore, in the present embodiment, as in the first embodiment, either wafer etching or chip etching may be used.

【0051】本実施例において上下絶縁層の膜厚比は上
層が14000Å、下層8000Åで7/4である。但
し下層のSiO2 層は基板状態で14000Å〜200
00Å程度までなら実用上全く問題なく形成できる。
In this embodiment, the thickness ratio of the upper and lower insulating layers is 14,000Å in the upper layer and 8000Å in the lower layer, which is 7/4. However, the lower SiO 2 layer is 14000Å to 200 in the substrate state.
If it is up to about 00Å, it can be formed practically without any problem.

【0052】[実施例3]図4に本発明第3の実施例の
製造工程を示す。本実施例では出発基板にSIMOX基
板を用いている(a)。SIMOX基板ではその製造プ
ロセス上の制約から絶縁層2のSiO2 は単層膜であ
る。また、該SiO2 層の厚みも比較的薄いものが実用
的である。
[Embodiment 3] FIG. 4 shows a manufacturing process of a third embodiment of the present invention. In this embodiment, a SIMOX substrate is used as a starting substrate (a). In the SIMOX substrate, the SiO 2 of the insulating layer 2 is a single layer film due to restrictions on the manufacturing process. It is also practical that the SiO 2 layer has a relatively small thickness.

【0053】実施例1同様に、単結晶Si層61に通常
の半導体プロセスにより素子を作り込んだ後、PSGか
らなるパッシベーション層を設けた(b)。
Similar to the first embodiment, a device was formed in the single crystal Si layer 61 by a normal semiconductor process, and then a passivation layer made of PSG was provided (b).

【0054】次にエッチングマスクとしてフッ素樹脂6
2を5μmコーティングした後に、実施例1と同様にT
MAHによって、裏面のSi基板1をエッチング除去し
た。上記フッ素樹脂としては、真空蒸着、溶射、液状樹
脂の塗布乾燥等の形成方法が考えられるが、本実施例で
は旭硝子株式会社製サイトップを塗布乾燥してフッ素樹
脂層62を形成した。このようにパッシベーション層の
上に有機樹脂からなるエッチングマスクを形成した場合
には、ピンホールができないため、裏面のSiエッチン
グの歩留を上げることができる。また、本実施例で用い
たフッ素樹脂は耐湿性が高く、機械的強度もあるため、
エッチング後も剥さずに第2パッシベーション膜として
使用できる。このような膜としてはフッ素樹脂の他にシ
リコーン樹脂やゴムが使用できる。
Next, a fluororesin 6 is used as an etching mask.
After coating 2 with 5 μm, the same procedure as in Example 1 was performed.
The Si substrate 1 on the back surface was removed by etching with MAH. The fluororesin may be formed by vacuum vapor deposition, thermal spraying, coating and drying of liquid resin, or the like. In this example, CYTOP manufactured by Asahi Glass Co., Ltd. was coated and dried to form the fluororesin layer 62. When an etching mask made of an organic resin is formed on the passivation layer as described above, pinholes cannot be formed, so that the yield of Si etching on the back surface can be increased. Further, since the fluororesin used in this example has high moisture resistance and mechanical strength,
It can be used as the second passivation film without being removed even after etching. As such a film, silicone resin or rubber can be used in addition to fluororesin.

【0055】また、本実施例に用いたSIMOXウエハ
は前記したように、製造プロセス上の制約からSiO2
絶縁層の厚みが3000Å程度しかないため、単結晶S
i層に作り込まれたMOS−Trの動作が不安定になっ
たり、閾値電圧が変化したりすることがある。これは絶
縁層の厚みが薄いために、該絶縁層に付着した汚染物や
イオンがMOS−Trの動作に影響するためである。こ
れを防ぐために本実施例では、Si基板1をエッチング
除去して露出した絶縁層2表面にフッ素樹脂62’を塗
布形成して汚染物やイオンがMOS−Trの動作に影響
しないようにしている。
[0055] Further, as SIMOX wafers used in this example was the, SiO 2 from restriction of the manufacturing process
Since the thickness of the insulating layer is only 3000 Å, the single crystal S
The operation of the MOS-Tr built in the i layer may become unstable or the threshold voltage may change. This is because the thickness of the insulating layer is thin and contaminants and ions attached to the insulating layer affect the operation of the MOS-Tr. In order to prevent this, in the present embodiment, the fluorine resin 62 ′ is applied and formed on the surface of the insulating layer 2 exposed by removing the Si substrate 1 so that contaminants and ions do not affect the operation of the MOS-Tr. .

【0056】薄膜半導体装置の上下を同一材料で且つそ
の厚みの差が大きくならない様に構成することにより、
膜のカール、半導体素子の特性安定化を図ることができ
る。半導体のp−n接合が応力によってさまざまな特性
変化を起こすことは、各種半導体センサーにその特性が
逆に応用されていることからも自明である。従ってIC
特性をロジカルに、或いは増幅、比較等に用いる用途で
は、曲がりなどによる応力を均一化することが重要であ
る。
The upper and lower sides of the thin film semiconductor device are made of the same material and the difference in thickness between them does not become large.
The film can be curled and the characteristics of the semiconductor element can be stabilized. The fact that the p-n junction of a semiconductor undergoes various characteristic changes due to stress is obvious from the fact that the characteristics are applied to various semiconductor sensors in reverse. Therefore IC
In the case where the characteristics are used logically, or for applications such as amplification and comparison, it is important to make the stress due to bending uniform.

【0057】本発明の半導体装置はその厚みが薄く、積
極的に曲げて使用するため、上下の絶縁層の厚みの差を
一定の範囲内に限定することによて、p−n接合部に生
ずる応力を小さくすることが重要なポイントになってい
る。
Since the semiconductor device of the present invention is thin and is positively bent and used, by limiting the difference in thickness between the upper and lower insulating layers within a certain range, a pn junction is formed. It is an important point to reduce the generated stress.

【0058】また、上記実施例3に示した様に、更に外
側を有機材料からなる薄膜を積層することにより、機械
的強度の維持、外部環境変化の影響からの保護を図るこ
とができる。この場合も上記有機薄膜の厚さをなるべく
そろえることが重要である。
Further, as shown in the third embodiment, by further laminating a thin film made of an organic material on the outer side, it is possible to maintain the mechanical strength and protect from the influence of the external environment change. Also in this case, it is important to make the thickness of the organic thin film as uniform as possible.

【0059】[0059]

【発明の効果】本発明の半導体装置は、その厚みが従来
の薄型半導体装置に比べて極めて薄く且つフレキシブル
である。そのため、従来にない薄型のICカードなど、
装置の薄型化が実現する他、高い放熱性、配線自由度を
生かし、従来不可能であった高精細な装置或いは新しい
分野への応用が実現する。
The semiconductor device of the present invention is extremely thin and flexible as compared with the conventional thin semiconductor device. Therefore, thin IC cards, etc.
In addition to realizing a thinner device, it can be applied to a high-definition device or a new field that was previously impossible by taking advantage of high heat dissipation and wiring flexibility.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1の実施例の半導体装置の断面図であ
る。
FIG. 1 is a sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明第1の実施例の半導体装置の製造工程を
示す図である。
FIG. 2 is a diagram showing a manufacturing process of the semiconductor device according to the first embodiment of the present invention.

【図3】本発明第2の実施例の半導体装置の製造工程を
示す図である。
FIG. 3 is a diagram showing a manufacturing process of a semiconductor device according to a second embodiment of the present invention.

【図4】本発明第3の実施例の半導体装置の製造工程を
示す図である。
FIG. 4 is a diagram showing a manufacturing process of a semiconductor device according to a third embodiment of the present invention.

【図5】従来の半導体装置の電気特性を示す図である。FIG. 5 is a diagram showing electrical characteristics of a conventional semiconductor device.

【図6】本発明第1の実施例の半導体装置の電気特性を
示す図である。
FIG. 6 is a diagram showing electrical characteristics of the semiconductor device of the first embodiment of the present invention.

【図7】従来の半導体装置の曲げ状態での電気特性を示
す図である。
FIG. 7 is a diagram showing electrical characteristics of a conventional semiconductor device in a bent state.

【図8】本発明第1の実施例の半導体装置の曲げ状態で
の電気特性を示す図である。
FIG. 8 is a diagram showing electrical characteristics of the semiconductor device of Example 1 of the present invention in a bent state.

【符号の説明】[Explanation of symbols]

1 Si基板 2 絶縁層 3 LOCOS層 4 N−MOSTrのソース 5 N−MOSTrのドレイン 6 P−MOSTrのソース 7 P−MOSTrのドレイン 8 ゲート酸化膜 9 ゲート電極 10 N−MOSTrのチャネル 11 P−MOSTrのチャネル 15 N−MOSTr 16 P−MOSTr 17 P−MOSTr 19 C−MOSインバータ 20 層間絶縁層 22 Al配線 30 パッシベーション層 31 配線引き出し部 41 単結晶Siエピタキシャル層 42 半導体層 43 絶縁層 44 アピエゾンワックス層 51 SiO2 層 52 SiN層 61 単結晶Si層 62、62’ フッ素樹脂層1 Si substrate 2 insulating layer 3 LOCOS layer 4 source of N-MOSTr 5 drain of N-MOSTr 6 source of P-MOSTr 7 drain of P-MOSTr 8 gate oxide film 9 gate electrode 10 channel of N-MOSTr 11 P-MOSTr Channel 15 N-MOSTr 16 P-MOSTr 17 P-MOSTr 19 C-MOS inverter 20 Interlayer insulating layer 22 Al wiring 30 Passivation layer 31 Wiring lead portion 41 Single crystal Si epitaxial layer 42 Semiconductor layer 43 Insulating layer 44 Apiezon wax layer 51 SiO 2 layer 52 SiN layer 61 Single crystal Si layer 62, 62 ′ Fluororesin layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/786 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 29/786

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単結晶Si薄膜を活性層として用いたア
クティブ素子を作り込んだ半導体集積回路の上下にアモ
ルファス絶縁層を積層してなる半導体装置であって、装
置の層厚が100μm以下であることを特徴とする半導
体装置。
1. A semiconductor device in which an amorphous insulating layer is laminated on and under a semiconductor integrated circuit in which an active element using a single crystal Si thin film as an active layer is formed, and the layer thickness of the device is 100 μm or less. A semiconductor device characterized by the above.
【請求項2】 上下層の絶縁層の上下に更に有機薄膜を
積層したことを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, further comprising an organic thin film stacked above and below the upper and lower insulating layers.
JP5349131A 1993-12-28 1993-12-28 Semiconductor device Withdrawn JPH07202147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5349131A JPH07202147A (en) 1993-12-28 1993-12-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5349131A JPH07202147A (en) 1993-12-28 1993-12-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH07202147A true JPH07202147A (en) 1995-08-04

Family

ID=18401712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5349131A Withdrawn JPH07202147A (en) 1993-12-28 1993-12-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH07202147A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002921A1 (en) * 1996-07-11 1998-01-22 Kopin Corporation Transferred flexible integrated circuit
JPH1041519A (en) * 1996-03-26 1998-02-13 Lg Electron Inc Liquid crystal display device and its manufacture
JP2001237403A (en) * 2000-02-21 2001-08-31 Rohm Co Ltd Method of manufacturing semiconductor device and ultrathin type semiconductor device
EP1256983A2 (en) * 2001-05-08 2002-11-13 Philips Corporate Intellectual Property GmbH Flexible integrated monolithic circuit
JP2005252236A (en) * 2004-01-23 2005-09-15 Semiconductor Energy Lab Co Ltd Film-like commodity and manufacturing method therefor
JP2006041135A (en) * 2004-07-26 2006-02-09 Sumitomo Bakelite Co Ltd Electronic device and manufacturing method thereof
JP2007318025A (en) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd Organic semiconductor element and manufacturing method thereof element
JP2007318024A (en) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd Organic semiconductor element and manufacturing method thereof
US8305213B2 (en) 2004-01-23 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Film-like article and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041519A (en) * 1996-03-26 1998-02-13 Lg Electron Inc Liquid crystal display device and its manufacture
WO1998002921A1 (en) * 1996-07-11 1998-01-22 Kopin Corporation Transferred flexible integrated circuit
US6027958A (en) * 1996-07-11 2000-02-22 Kopin Corporation Transferred flexible integrated circuit
JP2000514937A (en) * 1996-07-11 2000-11-07 コピン・コーポレーシヨン Flexible integrated circuit transferred
JP2001237403A (en) * 2000-02-21 2001-08-31 Rohm Co Ltd Method of manufacturing semiconductor device and ultrathin type semiconductor device
EP1256983A2 (en) * 2001-05-08 2002-11-13 Philips Corporate Intellectual Property GmbH Flexible integrated monolithic circuit
JP2005252236A (en) * 2004-01-23 2005-09-15 Semiconductor Energy Lab Co Ltd Film-like commodity and manufacturing method therefor
JP4731919B2 (en) * 2004-01-23 2011-07-27 株式会社半導体エネルギー研究所 Film-like article
US8305213B2 (en) 2004-01-23 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Film-like article and method for manufacturing the same
JP2006041135A (en) * 2004-07-26 2006-02-09 Sumitomo Bakelite Co Ltd Electronic device and manufacturing method thereof
JP2007318025A (en) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd Organic semiconductor element and manufacturing method thereof element
JP2007318024A (en) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd Organic semiconductor element and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4878957A (en) Dielectrically isolated semiconductor substrate
JP3033412B2 (en) Method for manufacturing semiconductor device
US3922705A (en) Dielectrically isolated integral silicon diaphram or other semiconductor product
KR100245096B1 (en) Method of forming an element field oxide film in a semiconductor device
JPH07202147A (en) Semiconductor device
JPH08153677A (en) Manufacture of soi type semiconductor integrated circuit
JPH0429353A (en) Semiconductor device
US5936159A (en) Semiconductor sensor having multi-layer movable beam structure film
JP2763107B2 (en) Dielectric-isolated semiconductor substrate and method of manufacturing the same
US7989894B2 (en) Fusion bonding process and structure for fabricating silicon-on-insulation (SOI) semiconductor devices
EP0140749B1 (en) Method for producing a complementary semiconductor device with a dielectric isolation structure
JP3500813B2 (en) Semiconductor wafer cutting method
JPH05275666A (en) Manufacture of soi structural body
JPH02219252A (en) Manufacture of semiconductor device
JPS62229855A (en) Manufacture of semiconductor device
JPS5828731B2 (en) All silicon materials available.
JPH04199632A (en) Soi wafer and manufacture thereof
JPS63197365A (en) Manufacture of semiconductor device
JPS62124753A (en) Manufacture of dielectric isolation substrate
JPH06151891A (en) Manufacture of semiconductor pressure sensor
JPS5939044A (en) Manufacture of substrate for insulating isolation integrated circuit
JPS6119112B2 (en)
JPS6455853A (en) Semiconductor device and manufacture thereof
JPH07249634A (en) Gettering and semiconductor integrated circuit device
JPH0636980A (en) Manufacture of thin film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306