JPH07201691A - Electrostatic junction method - Google Patents

Electrostatic junction method

Info

Publication number
JPH07201691A
JPH07201691A JP102394A JP102394A JPH07201691A JP H07201691 A JPH07201691 A JP H07201691A JP 102394 A JP102394 A JP 102394A JP 102394 A JP102394 A JP 102394A JP H07201691 A JPH07201691 A JP H07201691A
Authority
JP
Japan
Prior art keywords
plate
thermal expansion
glass
electrostatic
plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP102394A
Other languages
Japanese (ja)
Inventor
Aki Ikeda
亜樹 池田
Koji Yoshida
孝次 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP102394A priority Critical patent/JPH07201691A/en
Publication of JPH07201691A publication Critical patent/JPH07201691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Sensors (AREA)

Abstract

PURPOSE:To resolve problems that a curve, a crack, a separation, or the like occurs when plates composed of a material different in thermal expansivity are electrostatic-connected to each other. CONSTITUTION:When both plates are superimposed on each other and a DC voltage is applied in a vacuum to electrostatic-connect, a surface of a plate having small thermal expansivity is heated. Thus, as a difference in a temperature occurs between both plates to decrease a difference in a thermal expansion amount, a curve, a crack, a separation, or the like does not occur when cooling. As a result, as for a plate coupling with a silicon plate, a plate of low-priced material like a soda lime glass can be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体圧力セン
サの変位検出エレメントと台座の結合のように半導体板
とガラス板との結合等に用いられる静電接合方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic joining method used for joining a semiconductor plate and a glass plate, such as joining a displacement detecting element of a semiconductor pressure sensor and a pedestal.

【0002】[0002]

【従来の技術】半導体圧力センサ等に使われる変位検出
エレメントは、シリコンのピエゾ抵抗効果を利用したも
のであり、導圧パイプとの間をつなぐ台座として、一般
にSiと熱膨張係数がほぼ一致するほうけい酸ガラスが
使われている。図2は、半導体圧力センサの構造例を示
す。一般的には、プラズマエッチングなどによって形成
されたダイヤフラム部11に、変位を電気信号に変換す
るための拡散型ストレインゲージを有し、絶縁層、配線
保護層等を含む表面被覆層2で覆われたシリコン感圧チ
ップ10を、ダイヤフラムに対応する部分に貫通孔31
をもつほうけい酸ガラス板3と結合されたガラス台座3
と導圧パイプ4とをはんだ接合によって一体化したもの
である。このような構造は、図3に示すようにICプロ
セスを経たシリコン板1を、貫通孔41を明けたガラス
板4と静電接合したのち、切断して作製される。
2. Description of the Related Art A displacement detecting element used in a semiconductor pressure sensor or the like utilizes the piezoresistive effect of silicon, and as a pedestal for connecting a pressure guiding pipe, the coefficient of thermal expansion generally matches that of Si. Borosilicate glass is used. FIG. 2 shows a structural example of the semiconductor pressure sensor. Generally, a diaphragm portion 11 formed by plasma etching or the like has a diffusion strain gauge for converting displacement into an electric signal and is covered with a surface coating layer 2 including an insulating layer, a wiring protection layer, and the like. The silicon pressure sensitive chip 10 is provided with a through hole 31 at a portion corresponding to the diaphragm.
Glass pedestal 3 combined with borosilicate glass plate 3 having
The pressure guiding pipe 4 and the pressure guiding pipe 4 are integrated by soldering. Such a structure is manufactured by electrostatically bonding the silicon plate 1 that has undergone the IC process to the glass plate 4 having the through holes 41 as shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】静電接合は、酸化しや
すいアルミニウムのような導体あるいはシリコンのよう
な半導体と、可動イオンを含むアルカリ含有ガラスある
いはβアルミナのような絶縁体との直接接合の一方法で
あり、おもにガラスの加熱と電圧印加によっておきる、
ガラス内のアルカリイオンの移動により発生する静電引
力を利用した接合方法である。静電引力発生の際の電子
の授受によって、金属−ガラス界面は共有結合で介在物
なく接合され、その接合力はたいへん強固なものであ
る。接合はガラス内のイオンが動く高温時に行われるた
め、被接合物の熱膨張係数が互いに異なると、冷却時に
熱応力が発生し、常温での反り、割れ、剥がれの発生等
の不具合の原因となる。そのため被接合材の熱膨張係数
の一致は不可欠な条件であり、材料選定の上で大きな制
約となる。例えば、上述のように高価なほうけい酸ガラ
スを用いなければならない。
Electrostatic bonding is a direct bonding of a conductor such as aluminum or a semiconductor such as silicon, which is easily oxidized, to an alkali-containing glass containing mobile ions or an insulator such as β-alumina. It is one method, and it is mainly done by heating glass and applying voltage,
This is a bonding method using electrostatic attraction generated by the movement of alkali ions in the glass. By the transfer of electrons when the electrostatic attractive force is generated, the metal-glass interface is covalently bonded without an intervening substance, and the bonding force is very strong. Since the bonding is performed at a high temperature where the ions in the glass move, if the thermal expansion coefficients of the objects to be bonded differ from each other, thermal stress will occur during cooling, causing problems such as warping at normal temperature, cracking, and peeling. Become. Therefore, matching the coefficients of thermal expansion of the materials to be joined is an indispensable condition, which is a major limitation in selecting materials. For example, as mentioned above, expensive borosilicate glass must be used.

【0004】本発明の目的は、以上の点にかんがみ、熱
膨張係数が異なる材料であっても接合可能であり、かつ
簡便で、デバイスのコスト低減などに対して有効な静電
接合方法を提供することにある。
In view of the above points, an object of the present invention is to provide an electrostatic bonding method which can bond materials having different thermal expansion coefficients, is simple, and is effective in reducing the cost of the device. To do.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は熱膨張係数の異なる材料からなる板相互
を真空中で重ね合わせ、両板間に直流電圧を印加して静
電接合を行う際に、熱膨張係数の小さい材料からなる板
の表面側から加熱するものとする。熱膨張係数の大きい
材料がガラスであり、熱膨張係数の小さい材料がシリコ
ンであることが有効であり、そのガラスがソーダ石灰ガ
ラスであり、加熱時のガラス板の表面温度が約400℃
であることが良い。
In order to achieve the above-mentioned object, the present invention is designed so that plates made of materials having different thermal expansion coefficients are superposed on each other in a vacuum, and a DC voltage is applied between the plates to cause electrostatic discharge. When performing the joining, heating is performed from the front surface side of the plate made of a material having a small thermal expansion coefficient. It is effective that the material having a large coefficient of thermal expansion is glass and the material having a small coefficient of thermal expansion is silicon. The glass is soda lime glass, and the surface temperature of the glass plate during heating is about 400 ° C.
Good to be.

【0006】[0006]

【作用】静電接合を行う際に、シリコンのような熱膨張
係数の小さい材料からなる板の表面を加熱すれば、ソー
ダ石灰ガラスのような熱膨張係数の大きい材料からなる
板の間に温度差が生じ、熱膨張係数の小さい材料からな
る板の膨脹が大きくなることにより、両板の熱膨張量の
差が少なくなる。これにより、冷却後の反り、割れ、剥
がれの発生等の不具合が起きない。
When the surface of a plate made of a material having a small coefficient of thermal expansion such as silicon is heated during electrostatic bonding, a temperature difference is generated between the plates made of a material having a large coefficient of thermal expansion such as soda lime glass. As a result, the expansion of the plate made of a material having a small coefficient of thermal expansion increases, so that the difference in the amount of thermal expansion between the two plates decreases. As a result, problems such as warpage, cracking, and peeling after cooling do not occur.

【0007】[0007]

【実施例】図1は本発明の一実施例のシリコン板1とガ
ラス板3の静電接合作業を示す。ガラス板3の材料は、
ソーダ石灰ガラスであり、両方の板の寸法および熱膨張
係数は表1の通りである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the electrostatic bonding work of a silicon plate 1 and a glass plate 3 according to one embodiment of the present invention. The material of the glass plate 3 is
It is soda-lime glass, and the dimensions and coefficient of thermal expansion of both plates are as shown in Table 1.

【0008】[0008]

【表1】 静電接合は図1に示すように、シリコン板1とガラス板
3を重ね合わせたものを、真空チャンバ5内の熱板6上
に設置したリードとなるカーボン板7上に載せ、シリコ
ン板1に陽極8を、ガラス板3に陰極9を接触させたの
ち、チャンバ5内を真空にひき、直流電圧を印加するこ
とによって行った。静電接合の条件は表2の通りであ
る。
[Table 1] As shown in FIG. 1, the electrostatic bonding is performed by stacking a silicon plate 1 and a glass plate 3 on a carbon plate 7 serving as a lead placed on a hot plate 6 in a vacuum chamber 5, and After bringing the anode 8 into contact with the glass plate 3 and the cathode 9 into contact with the glass plate 3, the inside of the chamber 5 was evacuated to a vacuum, and a DC voltage was applied. The conditions for electrostatic bonding are as shown in Table 2.

【0009】[0009]

【表2】 以上の条件において、シリコン板1とソーダ石灰ガラス
板3とを重ね合わせ、真空中でシリコン板1側から加熱
すると、加熱側の温度が400℃の場合、両板の間に2
00℃以上の温度差が生じ、熱膨張による伸びの差が縮
まって静電接合が可能となり、冷却後も割れ、剥がれ等
の不具合は見られなかった。同様にして、適当な片面加
熱温度、加熱方向を設定することにより、ソーダ石灰ガ
ラス板とそれより熱膨張係数の大きいアルミニウム板の
接合も可能であった。
[Table 2] Under the above conditions, when the silicon plate 1 and the soda-lime glass plate 3 are superposed and heated from the silicon plate 1 side in a vacuum, when the temperature on the heating side is 400 ° C.
A temperature difference of 00 ° C. or more occurred, the difference in elongation due to thermal expansion was reduced, and electrostatic bonding became possible, and no defects such as cracking or peeling were observed even after cooling. Similarly, by setting an appropriate one-sided heating temperature and heating direction, it was possible to join a soda-lime glass plate and an aluminum plate having a larger coefficient of thermal expansion.

【0010】[0010]

【発明の効果】以上に述べたごとく本発明によれば、熱
膨張係数の異なる材料からなる二つの板を静電接合する
際、接合雰囲気を熱伝導のない真空にし、重ね合わせた
試料の片面から加熱することによって、接合時の材料間
の温度差が大きくなり、熱膨張量の差が減少するため、
冷却時の反り、割れ、剥がれ等の不良なく接合すること
が可能となった。これにより、半導体圧力センサのシリ
コンチップと結合されるガラス台座に高価な材料を使用
する必要がなくなり、コスト低減が達成された。
As described above, according to the present invention, when two plates made of materials having different thermal expansion coefficients are electrostatically bonded to each other, the bonding atmosphere is set to a vacuum without heat conduction, and one surface of the sample is stacked. By heating from above, the temperature difference between the materials at the time of joining increases and the difference in the amount of thermal expansion decreases,
It became possible to join without defects such as warpage, cracking, and peeling during cooling. As a result, it is not necessary to use an expensive material for the glass pedestal connected to the silicon chip of the semiconductor pressure sensor, and the cost reduction is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の静電接合作業を示す断面図FIG. 1 is a cross-sectional view showing an electrostatic bonding work according to an embodiment of the present invention.

【図2】製作の際に本発明の実施される半導体圧力セン
サの変位検出エレメントの断面図
FIG. 2 is a sectional view of a displacement detection element of a semiconductor pressure sensor embodying the present invention during manufacture.

【図3】図2の変位検出エレメントの製作のための静電
接合材料の断面図
3 is a cross-sectional view of an electrostatic bonding material for manufacturing the displacement detection element of FIG.

【符号の説明】[Explanation of symbols]

1 シリコン板 3 ガラス板 5 真空チャンバ 6 熱板 7 カーボン板 8 陽極 9 陰極 1 Silicon Plate 3 Glass Plate 5 Vacuum Chamber 6 Heat Plate 7 Carbon Plate 8 Anode 9 Cathode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱膨張係数の異なる材料からなる板相互を
真空中で重ね合わせ、両板間に直流電圧を印加して静電
接合を行う際に、熱膨張係数の小さい材料からなる板の
表面側から加熱することを特徴とする静電接合方法。
1. When plates made of materials having different coefficients of thermal expansion are superposed on each other in a vacuum, and a DC voltage is applied between the plates to perform electrostatic bonding, plates made of materials having a small coefficient of thermal expansion are used. An electrostatic bonding method characterized by heating from the surface side.
【請求項2】熱膨張係数の大きい材料がガラスであり、
熱膨張係数の小さい材料がシリコンである請求項1記載
の静電接合方法。
2. A material having a large coefficient of thermal expansion is glass,
The electrostatic bonding method according to claim 1, wherein the material having a small thermal expansion coefficient is silicon.
【請求項3】ガラスがソーダ石灰ガラスであり、加熱時
のガラス板の表面温度が約400℃である請求項2記載
の静電接合方法。
3. The electrostatic bonding method according to claim 2, wherein the glass is soda lime glass, and the surface temperature of the glass plate during heating is about 400 ° C.
JP102394A 1994-01-11 1994-01-11 Electrostatic junction method Pending JPH07201691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP102394A JPH07201691A (en) 1994-01-11 1994-01-11 Electrostatic junction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP102394A JPH07201691A (en) 1994-01-11 1994-01-11 Electrostatic junction method

Publications (1)

Publication Number Publication Date
JPH07201691A true JPH07201691A (en) 1995-08-04

Family

ID=11489977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP102394A Pending JPH07201691A (en) 1994-01-11 1994-01-11 Electrostatic junction method

Country Status (1)

Country Link
JP (1) JPH07201691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089828A (en) * 2010-09-22 2012-05-10 Toshiba Corp Semiconductor device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012089828A (en) * 2010-09-22 2012-05-10 Toshiba Corp Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
WO1995024070A1 (en) Electrostatic chuck
GB2168160A (en) Silicon capacitive pressure sensor
US4554573A (en) Glass-sealed ceramic package type semiconductor device
US20020115263A1 (en) Method and related apparatus of processing a substrate
JPH098124A (en) Insulation separation substrate and its manufacture
US20190284100A1 (en) Method for producing semiconductor production device component, and semiconductor production device component
JPH07201691A (en) Electrostatic junction method
JP6699765B2 (en) Wafer holder
Wei et al. Role of bonding temperature and voltage in silicon-to-glass anodic bonding
JPH04300136A (en) Electrostatic chuck and its manufacture
JPH06188166A (en) Electrostatic bonding method
JP2589994B2 (en) Wafer bonding method
KR101977394B1 (en) Method of manufacturing ceramic electrostatic chuck using liquid sintering method
JPH01309343A (en) Mounting of semiconductor device
WO2017154408A1 (en) POWER SEMICONDUCTOR MODULE, SiC SEMICONDUCTOR ELEMENT TO BE MOUNTED ON SAME, AND METHOD OF MANUFACTURING SiC SEMICONDUCTOR ELEMENT
JP2001010847A (en) Method for forming anode junction
JPS6148794B2 (en)
JP3303940B2 (en) Electrostatic bonding method
JPH02141442A (en) Method for anodically bonding silicon wafer and glass substrate
JP2602003B2 (en) Silicon crystal joining method
JPH0779110B2 (en) Anodic bonding method of silicon wafer and glass substrate
JP2000019040A (en) Method for manufacturing pressure sensor
JP4345907B2 (en) Manufacturing method of semiconductor sensor
US11133213B2 (en) Deflectable platen and associated method
JP2624832B2 (en) Anodic bonding equipment