JPH07198816A - Squid apparatus - Google Patents

Squid apparatus

Info

Publication number
JPH07198816A
JPH07198816A JP5349001A JP34900193A JPH07198816A JP H07198816 A JPH07198816 A JP H07198816A JP 5349001 A JP5349001 A JP 5349001A JP 34900193 A JP34900193 A JP 34900193A JP H07198816 A JPH07198816 A JP H07198816A
Authority
JP
Japan
Prior art keywords
squid
gate
loop
shunt
ros
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5349001A
Other languages
Japanese (ja)
Other versions
JP2593131B2 (en
Inventor
Atsushi Kawai
淳 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHODENDO SENSOR KENKYUSHO KK
Original Assignee
CHODENDO SENSOR KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHODENDO SENSOR KENKYUSHO KK filed Critical CHODENDO SENSOR KENKYUSHO KK
Priority to JP5349001A priority Critical patent/JP2593131B2/en
Publication of JPH07198816A publication Critical patent/JPH07198816A/en
Application granted granted Critical
Publication of JP2593131B2 publication Critical patent/JP2593131B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To take out the oscillation output of a relaxation oscillator(RO) in the form of a current by coupling the RO magnetically to a non-latch-type superconducting quantum interference device(SQUID) gate. CONSTITUTION:The relaxation oscillation-type SQUID (ROS) is provided with a SQUID loop having two Josephson junctions installed in cryogenic surroundings and with a shunt circuit having a shunt resistance RS and a shunt inductor LS which are connected in parallel with the loop. A non-latch-type SQUID gate is provided with a SQUID loop having two Josephson junctions installed in cryogenic surroundings and with a load resistance RL connected to the output side of the loop. In this case, the shunt inductor LS of the ROS is coupled magnetically to the SQUID loop. At this time, the load resistance RL is set to a value at which a non-latch mode is obtained, and an RGN displays the normal conduction resistance of the non-latch-type SQUID gate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人体あるいは生物体か
ら発生する磁場の計測を行うための医療用診断装置、材
料の透磁率を測定するための物性測定装置、磁気的な信
号伝送のインターフェイスのための通信装置、ジョセフ
ソンコンピュータを構築するSQUID、発振回路等の
ジョセフソン電子回路のバッファアンプおよびクロック
発生器として利用可能なSQUID(Superconducting
Quantum Interference Device:超伝導量子干渉デバイ
ス)装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a medical diagnostic device for measuring a magnetic field generated from a human body or a living body, a physical property measuring device for measuring magnetic permeability of a material, and a magnetic signal transmission interface. (Superconducting that can be used as a buffer amplifier and a clock generator of a Josephson electronic circuit such as an oscillation circuit, a communication device for a computer, an SQUID that constructs a Josephson computer
Quantum Interference Device) device.

【0002】[0002]

【従来の技術】従来、緩和発振器(弛緩発振器:Relaxa
tion Oscillator ;以下「RO」という)、又は緩和発
振(弛緩発振:Relaxation Oscillation)型SQUID
(以下「ROS」という)装置が知られている。ROの
構成の例としては、図3に示すように、1つのジョセフ
ソン接合とシャントインダクタLs とシャント抵抗Rs
とを有し超低温環境下に設置された回路が知られてい
る。また、ROSの構成の例としては、図4に示すよう
に、超低温環境下に設置されたSQUIDループと、こ
のSQUIDループに並列に接続されたシャント抵抗R
s 及びシャントインダクタLs を有するシャント回路を
備えたものが知られている。この場合、ROやROSの
出力は、直接取り出されていた。
2. Description of the Related Art Conventionally, a relaxation oscillator (relaxation oscillator: Relaxa
tion Oscillator; hereinafter referred to as "RO", or relaxation oscillation (relaxation oscillation) SQUID
Devices (hereinafter referred to as "ROS") are known. As an example of the configuration of RO, as shown in FIG. 3, one Josephson junction, a shunt inductor Ls, and a shunt resistor Rs are used.
It is known that the circuit has a low temperature and is installed in an ultra-low temperature environment. Further, as an example of the configuration of the ROS, as shown in FIG. 4, an SQUID loop installed in an ultra-low temperature environment and a shunt resistor R connected in parallel to this SQUID loop.
It is known to have a shunt circuit having s and a shunt inductor Ls. In this case, the output of RO and ROS was taken out directly.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の方
式のRO又はROSでは、出力は、周波数fで発振する
電圧変化Vとしてしか取り出せなかった。RO又はRO
Sの出力インピーダンスは、通常、1Ω以下であるの
で、電流として取り出すことが困難だからである。RO
又はROSの後段側に他のジョセフソン回路を接続した
い場合があるが、ジョセフソン回路は、通常、電流駆動
回路であるので、このままでは接続できない、という問
題があった。本発明は、上記の問題点を解決するために
なされたものであり、出力を電流で取り出すことが可能
なRO又はROS等のSQUID装置を提供することを
目的とする。
However, in the above-mentioned conventional RO or ROS, the output can be taken out only as the voltage change V oscillating at the frequency f. RO or RO
This is because the output impedance of S is usually 1Ω or less, and it is difficult to extract it as a current. RO
Alternatively, there is a case where it is desired to connect another Josephson circuit to the subsequent stage of the ROS, but since the Josephson circuit is usually a current drive circuit, there is a problem that it cannot be connected as it is. The present invention has been made in order to solve the above problems, and an object of the present invention is to provide an SQUID device such as RO or ROS that can take out the output with a current.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本願の第1の発明に係るSQUID装置は、1つの
ジョセフソン接合とシャントインダクタとシャント抵抗
とを有する緩和発振回路と、2つのジョセフソン接合を
有するSQUIDループと負荷抵抗とを有する非ラッチ
型SQUIDゲートと、を備えたSQUID装置であっ
て、前記シャントインダクタと前記SQUIDループと
を磁気的に結合して構成される。また、本願の第2の発
明に係るSQUID装置は、2つのジョセフソン接合を
有する第1のSQUIDループとシャントインダクタと
シャント抵抗とを有する緩和発振型SQUIDと、2つ
のジョセフソン接合を有する第2のSQUIDループと
負荷抵抗とを有する非ラッチ型SQUIDゲートと、を
備えたSQUID装置であって、前記シャントインダク
タと前記第2のSQUIDループとを磁気的に結合して
構成される。
In order to solve the above problems, a SQUID device according to the first invention of the present application is a relaxation oscillation circuit having one Josephson junction, a shunt inductor, and a shunt resistor, and two relaxation oscillation circuits. An SQUID device including an SQUID loop having a Josephson junction and a non-latching SQUID gate having a load resistance, which is configured by magnetically coupling the shunt inductor and the SQUID loop. The SQUID device according to the second invention of the present application is a relaxation oscillation type SQUID having a first SQUID loop having two Josephson junctions, a shunt inductor, and a shunt resistance, and a second SQUID having two Josephson junctions. SQUID loop and a non-latch type SQUID gate having a load resistance, and is configured by magnetically coupling the shunt inductor and the second SQUID loop.

【0005】[0005]

【作用】上記構成を有する本発明によれば、RO又はR
OSを非ラッチ型SQUIDゲートと磁気的に結合させ
ることにより、RO又はROSの発振出力を電流で取り
出すことが可能となった。
According to the present invention having the above structure, RO or R
By magnetically coupling the OS to the non-latching SQUID gate, it became possible to extract the oscillation output of RO or ROS with a current.

【0006】[0006]

【実施例】以下、本発明の実施例を図面にもとづいて説
明する。図1は、本発明の一実施例であるSQUID装
置の構成を示した等価回路図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an equivalent circuit diagram showing a configuration of an SQUID device according to an embodiment of the present invention.

【0007】図に示すように、このSQUID装置は、
超低温環境に設置された(弛緩発振:Relaxation Oscil
lation)型SQUID(ROS)と、このROSのシャ
ントインダクタと磁気的に結合された非ラッチ型SQU
IDゲートから構成されている。場合によっては、この
SQUID装置の後段に次の回路が接続される。
As shown in the figure, this SQUID device is
Installed in an ultra-low temperature environment (relaxation oscillation
type SQUID (ROS) and a non-latching SQUID magnetically coupled to the shunt inductor of this ROS
It is composed of an ID gate. Depending on the case, the following circuit is connected to the subsequent stage of this SQUID device.

【0008】ROSは、図1の左側に示すように、超低
温環境下に設置された2個のジョセフソン接合を有する
SQUIDループと、このSQUIDループに並列に接
続されたシャント抵抗Rs 及びシャントインダクタLs
を有するシャント回路を備えて構成される。非ラッチ型
SQUIDゲートは、図1の右側に示すように、超低温
環境下に設置された2個のジョセフソン接合を有するS
QUIDループと、このSQUIDループの出力側に接
続された負荷抵抗RL を備えて構成される。この場合、
左側のROSのシャントインダクタと、右側のSQUI
Dループは、磁気的に結合されている。ここで、負荷抵
抗RL は、非ラッチモードになるように、その値が設定
される。ここに、RGNは、図1右側の非ラッチ型SQU
IDゲートの常伝導抵抗を示す。
As shown on the left side of FIG. 1, the ROS is an SQUID loop having two Josephson junctions installed in an ultralow temperature environment, and a shunt resistor Rs and a shunt inductor Ls connected in parallel to the SQUID loop.
And a shunt circuit having As shown on the right side of FIG. 1, the non-latching SQUID gate is an S latch having two Josephson junctions installed in an ultralow temperature environment.
It is configured by including a QUID loop and a load resistance RL connected to the output side of the SQUID loop. in this case,
Left ROS shunt inductor and right SQUI
The D loop is magnetically coupled. Here, the value of the load resistance RL is set so as to be in the non-latch mode. Here, RGN is the non-latching SQU on the right side of FIG.
The normal conduction resistance of the ID gate is shown.

【0009】図2は、図1に示すSQUID装置の入出
力特性図である。図2(A)は、図1左側に示すROS
の出力信号IL (シャント側に流れる発振電流)を示
し、図2(B)は、図1右側に示す非ラッチ型SQUI
Dゲートの出力信号Iout を示している。
FIG. 2 is an input / output characteristic diagram of the SQUID device shown in FIG. FIG. 2A shows the ROS shown on the left side of FIG.
2B shows an output signal IL (oscillation current flowing to the shunt side) of the non-latch type SQUI shown in the right side of FIG.
The output signal Iout of the D gate is shown.

【0010】図1右側の非ラッチ型SQUIDゲートの
動作点IGB(SQUIDゲートのバイアス電流)は、ゲ
ートに入る磁束がゼロのときの最大臨界電流Ic0と、磁
束がΦ0 が入ったときの臨界電流Icfとの間に設定す
る。
The operating point IGB (bias current of the SQUID gate) of the non-latch type SQUID gate on the right side of FIG. 1 is the maximum critical current Ic0 when the magnetic flux entering the gate is zero and the critical current when the magnetic flux Φ0 enters Set between Icf.

【0011】図1左側のROSの発振電流IL 、すなわ
ち図1右側のSQUIDゲートへの入力信号がある値I
G を越えると、その間はゲートのSQUIDループ内に
磁束Φ0 が入るため、ゲートの臨界電流が動作点の電流
よりも低くなり、ゲートは電圧状態にスイッチする(図
2(B)のTG 間)。
The oscillation current IL of the ROS on the left side of FIG. 1, that is, a value I having an input signal to the SQUID gate on the right side of FIG.
When it exceeds G, the magnetic flux Φ 0 enters the SQUID loop of the gate during that time, so the critical current of the gate becomes lower than the current at the operating point, and the gate switches to the voltage state (between TG in FIG. 2 (B)) .

【0012】図1左側のROSの発振電流IL 、すなわ
ち図1右側のSQUIDゲートへの入力信号がある値I
G を下回ると、ゲートのSQUIDループ内から磁束Φ
0 が抜け、臨界電流は元へ戻りゲートは再び超伝導状態
に戻る(図2)。
Oscillation current IL of ROS on the left side of FIG. 1, that is, a value I having an input signal to the SQUID gate on the right side of FIG.
Below G, magnetic flux Φ from inside the SQUID loop of the gate.
When 0 is eliminated, the critical current returns and the gate returns to the superconducting state (Fig. 2).

【0013】なお、この電流IL は、IRB−I0 (IR
B:ROSのバイアス電流,I0 :ROSの最大臨界電
流)に相当するオフセット電流の上に乗っているため
(図2(A))、ゲートをスイッチさせる電流レベルI
G (SQUIDループに磁束Φ0を入れることのできる
電流レベル)が、IRB−I0 とIRB−Imin の間になる
ように、SQUIDゲートのループインダクタンスを設
計する必要がある。また、その際、出力の周期が入力の
周期に等しくなるようにするためには、ゲートに磁束が
Φ0 /2以上入らないように設計しなければならない。
The current IL is IRB-I0 (IR
B: bias current of ROS, I0: maximum critical current of ROS), which is on the offset current (FIG. 2A).
It is necessary to design the loop inductance of the SQUID gate so that G (the current level capable of putting the magnetic flux Φ0 in the SQUID loop) is between IRB-I0 and IRB-Imin. At this time, in order to make the output cycle equal to the input cycle, the gate must be designed so that the magnetic flux does not enter Φ 0/2 or more.

【0014】上記のように、本実施例のSQUID装置
の入力信号と出力信号の関係は図2に示すようになり、
出力電流は矩形波となる。また、出力波のデューティ
(TG/T)は、入力波のデューティ(TR /T)に比
べ、幾分短くなる。このように、入力信号の周期Tは変
らないが、IG の設定により、出力波のデューティが変
化する。
As described above, the relationship between the input signal and the output signal of the SQUID device of this embodiment is as shown in FIG.
The output current has a rectangular wave. Further, the duty (TG / T) of the output wave is somewhat shorter than the duty (TR / T) of the input wave. Thus, although the cycle T of the input signal does not change, the duty of the output wave changes depending on the setting of IG.

【0015】また、出力電流Iout は、ゲートのバイア
ス電流程度となり、出力電圧Voutは、ギャップ電圧
(2.8mV)程度となる。また、入力信号はアナログ
であるが、出力信号はデジタル信号となる。出力電流I
out は、後段の回路の駆動電流となる。非ラッチ型SQ
UIDゲートは、いわゆるバッファアンプとして作用す
る。
The output current Iout is about the gate bias current, and the output voltage Vout is about the gap voltage (2.8 mV). The input signal is analog, but the output signal is digital. Output current I
out becomes the drive current of the circuit in the subsequent stage. Non-latch type SQ
The UID gate acts as a so-called buffer amplifier.

【0016】上記において、非ラッチ型SQUIDゲー
トを用いたのは、ラッチ型SQUIDゲートでは、いっ
たんゲートがスイッチすると、バイアス電流をゼロにし
なければならず、RO又はROSの発振電流に対応して
ゲートが動作しRO又はROSの発振周期を忠実に再現
するためにはラッチ型SQUIDゲートは不向きだから
である。
In the above description, the non-latch type SQUID gate is used. In the latch type SQUID gate, once the gate is switched, the bias current must be set to zero, and the gate current corresponding to the oscillation current of RO or ROS is required. This is because the latch type SQUID gate is not suitable for accurately reproducing the oscillation cycle of RO or ROS.

【0017】なお、本発明は、上記実施例に限定される
ものではない。上記実施例は、例示であり、本発明の特
許請求の範囲に記載された技術的思想と実質的に同一な
構成を有し、同様な作用効果を奏するものは、いかなる
ものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-mentioned embodiment is an exemplification, has substantially the same configuration as the technical idea described in the scope of the claims of the present invention, and has any similar effect to the present invention. It is included in the technical scope of the invention.

【0018】例えば、上記実施例においては、非ラッチ
型SQUIDゲートの入力段側にRSを設ける例につい
て説明したが、これには限定されず、ROを設けてもよ
い。
For example, in the above embodiment, the example in which RS is provided on the input stage side of the non-latch type SQUID gate has been described, but the present invention is not limited to this, and RO may be provided.

【0019】[0019]

【発明の効果】以上説明したように、上記構成を有する
本発明によれば、RO又はROSを非ラッチ型SQUI
Dゲートと磁気的に結合させることにより、RO又はR
OSの発振出力を電流で取り出すことが可能となった。
As described above, according to the present invention having the above-mentioned structure, RO or ROS is a non-latching SQUI.
By magnetically coupling with the D gate, RO or R
It became possible to take out the oscillation output of the OS with a current.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるSQUID装置の構成
を示す等価回路図である。
FIG. 1 is an equivalent circuit diagram showing a configuration of an SQUID device according to an embodiment of the present invention.

【図2】図1に示すSQUID装置の動作を示す図であ
る。
FIG. 2 is a diagram showing an operation of the SQUID device shown in FIG.

【図3】従来の緩和発振器の構成を示す等価回路図であ
る。
FIG. 3 is an equivalent circuit diagram showing a configuration of a conventional relaxation oscillator.

【図4】従来の緩和発振型SQUIDの構成を示す等価
回路図である。
FIG. 4 is an equivalent circuit diagram showing a configuration of a conventional relaxation oscillation type SQUID.

【符号の説明】[Explanation of symbols]

Ls シャントインダクタンス Rs シャント抵抗 Ls shunt inductance Rs shunt resistance

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 1つのジョセフソン接合とシャントイン
ダクタとシャント抵抗とを有する緩和発振回路と、 2つのジョセフソン接合を有するSQUIDループと負
荷抵抗とを有する非ラッチ型SQUIDゲートと、を備
えたSQUID装置であって、 前記シャントインダクタと前記SQUIDループとを磁
気的に結合したことを特徴とするSQUID装置。
1. A SQUID comprising: a relaxation oscillator circuit having one Josephson junction, a shunt inductor, and a shunt resistor; and a non-latching SQUID gate having an SQUID loop having two Josephson junctions and a load resistor. An SQUID device, wherein the shunt inductor and the SQUID loop are magnetically coupled.
【請求項2】 2つのジョセフソン接合を有する第1の
SQUIDループとシャントインダクタとシャント抵抗
とを有する緩和発振型SQUIDと、 2つのジョセフソン接合を有する第2のSQUIDルー
プと負荷抵抗とを有する非ラッチ型SQUIDゲート
と、を備えたSQUID装置であって、 前記シャントインダクタと前記第2のSQUIDループ
とを磁気的に結合したことを特徴とするSQUID装
置。
2. A relaxation oscillation type SQUID having a first SQUID loop having two Josephson junctions, a shunt inductor and a shunt resistance, and a second SQUID loop having two Josephson junctions and a load resistance. An SQUID device comprising a non-latching SQUID gate, wherein the shunt inductor and the second SQUID loop are magnetically coupled.
JP5349001A 1993-12-28 1993-12-28 SQUID device Expired - Lifetime JP2593131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5349001A JP2593131B2 (en) 1993-12-28 1993-12-28 SQUID device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5349001A JP2593131B2 (en) 1993-12-28 1993-12-28 SQUID device

Publications (2)

Publication Number Publication Date
JPH07198816A true JPH07198816A (en) 1995-08-01
JP2593131B2 JP2593131B2 (en) 1997-03-26

Family

ID=18400825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5349001A Expired - Lifetime JP2593131B2 (en) 1993-12-28 1993-12-28 SQUID device

Country Status (1)

Country Link
JP (1) JP2593131B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028183A3 (en) * 2008-09-03 2010-07-01 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
US11797874B2 (en) 2018-02-28 2023-10-24 1372934 B.C. Ltd. Error reduction and, or, correction in analog computing including quantum processor-based computing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164003A (en) * 1992-11-24 1994-06-10 Hitachi Ltd Digital squid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06164003A (en) * 1992-11-24 1994-06-10 Hitachi Ltd Digital squid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010028183A3 (en) * 2008-09-03 2010-07-01 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
US8536566B2 (en) 2008-09-03 2013-09-17 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
US9152923B2 (en) 2008-09-03 2015-10-06 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
US9607270B2 (en) 2008-09-03 2017-03-28 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
US10290798B2 (en) 2008-09-03 2019-05-14 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
US11031537B2 (en) 2008-09-03 2021-06-08 D-Wave Systems Inc. Systems, methods and apparatus for active compensation of quantum processor elements
US11797874B2 (en) 2018-02-28 2023-10-24 1372934 B.C. Ltd. Error reduction and, or, correction in analog computing including quantum processor-based computing

Also Published As

Publication number Publication date
JP2593131B2 (en) 1997-03-26

Similar Documents

Publication Publication Date Title
US4623804A (en) Fluxoid type superconducting logic element
KR19990028555A (en) DEVICE AND METHOD FOR DIGITAL INFORMATION
JPS63277048A (en) Magnetic flux transmitting circuit
JPH07198816A (en) Squid apparatus
EP0069534A2 (en) Superconducting logic circuit
JPH0237730B2 (en)
EP0074604B1 (en) Circuit utilizing josephson effect
US5146119A (en) Switching circuit and its signal transmission method
JPS622732B2 (en)
JP3076835B2 (en) Superconducting sampling measurement circuit
JP2561219B2 (en) SQUID
JPH08252234A (en) Coil device for mri
US20240122079A1 (en) Diagnostic circuit
JP3206202B2 (en) SQUID magnetic flux measuring device
US5336941A (en) Superconducting circuit and method for driving the same
JPH0653762A (en) Low noise amplifier
JPS6175574A (en) Superconductive switching circuit
JPS6182533A (en) Inverter
JP2000236236A (en) Ultrashort pulse generator
JPH012416A (en) superconducting logic gate circuit
JPH0374051B2 (en)
Myoren et al. Proposal of a digital double relaxation oscillation SQUID
He et al. High-Tc dc SQUID readout electronics with low noise and high bandwidth
JPH04211518A (en) Superconduction circuit
JPH0445008B2 (en)