JPH07197149A - Production of aluminum composite material containing tial3 - Google Patents

Production of aluminum composite material containing tial3

Info

Publication number
JPH07197149A
JPH07197149A JP35213693A JP35213693A JPH07197149A JP H07197149 A JPH07197149 A JP H07197149A JP 35213693 A JP35213693 A JP 35213693A JP 35213693 A JP35213693 A JP 35213693A JP H07197149 A JPH07197149 A JP H07197149A
Authority
JP
Japan
Prior art keywords
fine
compact
intermetallic compound
tial3
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35213693A
Other languages
Japanese (ja)
Inventor
Ryochi Shintani
良智 新谷
Tetsuya Suganuma
徹哉 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP35213693A priority Critical patent/JPH07197149A/en
Publication of JPH07197149A publication Critical patent/JPH07197149A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Al composite material in which a fine TiAl3 intermetallic compound is dispersed uniformly in an Al base body by immersing a compact consisting of a Ti fine leaf, an Al fine leaf and a carbon powder in an Al molten metal to cause an exothermal reaction, and swelling, crumbling and settling it. CONSTITUTION:About 25wt.% Ti fine leaf and about 25wt.% carbon powder are mixed to the Al fine leaf, and the compact is formed by compression molding, etc. This compact is immersed in a molten metal of Al (about 800-900 deg.C) to cause the exothermal reaction of Ti+Al TiAl3. When immersing is continued further, Al is impregnated in the compact, and the compact is allowed to swell and crumble and begin to settle. When the settling is over, the Al composite material in which the fine TiAl3 intermetallic compound having about 5-10mum/grain size is dispersed uniformly in the Al base body is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、TiAl3 金属間化合
物を含むアルミニウム複合材料の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing an aluminum composite material containing a TiAl 3 intermetallic compound.

【0002】[0002]

【従来の技術】金属間化合物は、金属とセラミックスの
間を埋める材料群であり、その特異な性質に注目され、
現在多くの用途が検討されている。このような金属間化
合物の製造方法としては、製造される金属間化合物の構
成元素からなる金属粉末を混合し、この混合物をHIP
等により成形し、この成形体を焼結する固相法及び製造
される金属間化合物の構成元素を含む母合金をアーク溶
解することにより製造する溶解法が知られている(特開
昭63−247321号公報参照)。
2. Description of the Related Art Intermetallic compounds are a group of materials that fills the space between metal and ceramics, and are noted for their unique properties.
Many applications are currently under study. As a method for producing such an intermetallic compound, a metal powder consisting of the constituent elements of the intermetallic compound produced is mixed, and this mixture is subjected to HIP.
There are known a solid-phase method in which the molded body is molded by, for example, sintering, and a melting method in which the mother alloy containing the constituent elements of the intermetallic compound to be manufactured is arc-melted (Japanese Patent Laid-Open No. 63- (See Japanese Patent No. 247321).

【0003】しかしながら、焼結やアーク溶解は長い時
間を必要とし、また比較的多大のエネルギーを消費する
ため、上記の方法では金属間化合物や金属間化合物を含
む種々の複合材料を能率よくかつ低廉に製造することが
困難である。
However, since sintering and arc melting require a long time and consume a relatively large amount of energy, the above method efficiently and inexpensively produces intermetallic compounds and various composite materials containing intermetallic compounds. Difficult to manufacture.

【0004】この問題を解決するため、特開平4−2148
25号公報において、Tiの微細片とAlの微細片からな
る成形体をAl溶湯中に浸漬後、この溶湯から取り出し
空気中に放置することからなるTiAl3 金属間化合物
の製造方法が提案された。この方法によりTiAl3
属間化合物が能率よくかつ低廉に製造することが可能で
あるが、得られるTiAl3 金属間化合物は30μm 以上
の大きさを有し、且つその粒度分布もばらつきが見られ
る。
In order to solve this problem, Japanese Patent Laid-Open No. 4-2148
In Japanese Patent No. 25, a method for producing a TiAl 3 intermetallic compound is proposed, which comprises immersing a molded body composed of Ti fine pieces and Al fine pieces in an Al molten metal, removing the molten aluminum from the molten metal, and leaving it in the air. . By this method, the TiAl 3 intermetallic compound can be produced efficiently and inexpensively, but the TiAl 3 intermetallic compound obtained has a size of 30 μm or more, and its particle size distribution also varies.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来のTi
Al3 金属間化合物の製造方法の有する前記の如き欠点
を解消し、より微細なTiAl3 金属間化合物を均質に
含む複合体を提供しようとするものである。
The present invention is based on the conventional Ti
To eliminate the above such disadvantage with the method for manufacturing the Al 3 intermetallic compounds, it is intended to provide a finer TiAl 3 intermetallic complexes homogeneously containing compound.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記のT
iAl3 金属間化合物の上記問題点を解決すべく鋭意研
究を重ねた結果、反応性の金属間化合物形成成分と母体
金属成分との粉末を混合成形し、この成形体を溶融した
母体金属中に浸漬させ、該成形体を膨潤させると、該成
形体が崩壊し沈澱し、この沈澱が目的とする微細な金属
間化合物が均質に分散した複合材料であることを見出
し、本発明を完成した。
The inventors of the present invention have described the above T
As a result of intensive studies to solve the above problems of the iAl 3 intermetallic compound, as a result, powders of a reactive intermetallic compound forming component and a base metal component were mixed and formed, and the formed body was melted into a base metal. The present invention has been completed by discovering that the molded body collapses and precipitates when immersed and allowed to swell, and that this precipitation is a composite material in which the desired fine intermetallic compound is uniformly dispersed.

【0007】すなわち、本発明のTiAl3 金属間化合
物を含むアルミニウム複合材料の製造方法は、Tiの微
細片、Alの微細片及びカーボン粉末より成形体を形成
し、該成形体をAl溶湯中に浸漬し発熱反応を起こさ
せ、次いで該成形体をAl溶湯中で放置し、膨潤、崩
壊、沈降させることを特徴とするものである。
That is, according to the method for producing an aluminum composite material containing a TiAl 3 intermetallic compound of the present invention, a compact is formed from fine Ti particles, fine Al particles and carbon powder, and the compact is immersed in molten Al. It is characterized in that it is soaked to cause an exothermic reaction, and then the molded body is allowed to stand in an Al molten metal to swell, disintegrate and settle.

【0008】本発明の方法において、まず、Tiの微細
片、Alの微細片及びカーボン粉末を混合し、圧縮成形
等により成形体を製造する。各微細片の形態は粉末、短
繊維、ウイスカ、薄片等の任意の形状であってよいが、
粉末であることが好ましい。各成分の量は、後の膨潤・
崩壊現象をより起こしやすくするため、AlはTiに対
し25重量%以上、Cは25重量%程度の量で混合すること
が好ましい。
In the method of the present invention, first, fine Ti pieces, fine Al pieces and carbon powder are mixed and a compact is produced by compression molding or the like. The form of each fine piece may be any shape such as powder, short fiber, whisker, and thin piece,
It is preferably a powder. The amount of each component is
In order to cause the collapse phenomenon more easily, it is preferable to mix Al in an amount of 25% by weight or more with respect to Ti and C in an amount of about 25% by weight.

【0009】次いでこの成形体をAlの溶湯中に浸漬す
る。Al溶湯の温度は 800〜900 ℃程度が好ましい。温
度が低いと崩壊現象が起きにくく、一方温度が高いと成
形体が溶融し、針状のTiAl3 が生成したり、TiC
等、他の生成物が生成することがあるからである。
Next, this molded body is immersed in a molten aluminum. The temperature of the molten Al is preferably about 800 to 900 ° C. When the temperature is low, the disintegration phenomenon is unlikely to occur, while when the temperature is high, the molded body melts to form needle-like TiAl 3 or TiC.
This is because other products may be produced.

【0010】成形体はAl溶湯中において下式 Ti+Al→TiAl3 の発熱反応を起こす。さらに浸漬を続けると、浸漬開始
から1分ほどでAlが成形体内に含浸し、さらに1分程
経過すると該成形体が膨潤し始める。この状態を維持続
けると、浸漬開始から10分程でこの膨潤体が崩壊し沈降
を始める。膨潤後、攪拌したり振動を与えることにより
成形体を崩壊させることも可能ではあるが、この場合、
TiAl3 が部分的にAlに溶解してしまい、得られる
複合体中のTiAl3 体積率が低下してしまうので自己
崩壊させることが好ましい。浸漬後約30分でTiAl3
の沈降が終了する。こうして、粒径5〜10μm の微細な
TiAl3 金属間化合物がAl母体中に均一に分散した
複合体が、沈降した部分より得られる。
The molded body causes an exothermic reaction of the following formula Ti + Al → TiAl 3 in the molten Al. When the immersion is further continued, Al is impregnated into the molded body within about 1 minute from the start of the immersion, and the molded body begins to swell after about 1 minute. If this state is maintained, the swollen body collapses and begins to settle in about 10 minutes from the start of immersion. After swelling, it is possible to disintegrate the molded body by stirring or applying vibration, but in this case,
Since TiAl 3 is partially dissolved in Al and the volume ratio of TiAl 3 in the obtained composite is lowered, it is preferable to cause self-disintegration. Approximately 30 minutes after immersion TiAl 3
Settling is complete. Thus, a fine TiAl 3 intermetallic compound having a particle size of 5 to 10 μm is uniformly dispersed in the Al matrix, and a composite is obtained from the precipitated portion.

【0011】[0011]

【作用】本発明の方法において、Al溶湯体の熱を用い
てTiとAlの反応を進めることにより反応が均質とな
り、粒径5〜10μm の微細なTiAl3 金属間化合物が
得られる。また、成形体にカーボンを混入させることに
より、成形体を自己崩壊させ、TiAl3 金属間化合物
を均一にAl母体中に分散させることができる。
In the method of the present invention, the reaction between Ti and Al is promoted by using the heat of the Al molten metal to homogenize the reaction and obtain a fine TiAl 3 intermetallic compound having a particle size of 5 to 10 μm. Further, by mixing carbon into the compact, the compact can be self-disintegrated and the TiAl 3 intermetallic compound can be uniformly dispersed in the Al matrix.

【0012】[0012]

【実施例】本発明を下記実施例により更に詳細に説明す
るが、本発明はこれらに制限されるものではない。
The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the invention.

【0013】実施例1 Al粉末(昭和電工(株)製、SHORIC、粒度100 μm 以
下)200g、Ti粉末(大阪チタニウム(株)製、TSP-35
0 、350 メッシュ以下)800g及びカーボン粉末(日本黒
鉛工業(株)製、ACP-1000、平均粒度6μm)200gをV型
混合器に入れ30分間混合した。この混合粉末から12g 秤
量し、これを面圧8トンでφ30の型に入れ成形を行い、
φ30×5mmの成形体を100 個得た。
Example 1 Al powder (Showa Denko KK, SHORIC, particle size 100 μm or less) 200 g, Ti powder (Osaka Titanium KK, TSP-35)
800 g (0, 350 mesh or less) and 200 g of carbon powder (manufactured by Nippon Graphite Industry Co., Ltd., ACP-1000, average particle size 6 μm) were put in a V-type mixer and mixed for 30 minutes. Weigh 12g from this mixed powder, put it into a mold of φ30 with a surface pressure of 8 tons, and mold it.
100 pieces of φ30 × 5 mm compacts were obtained.

【0014】こうして得られた成形体2個を同時に850
℃のAl溶湯150gに浸漬した。浸漬後0.5 分で発熱反応
を起こし、1分でAlが含浸した。次いで浸漬後2分で
成形体の膨潤が見られ、10分後に成形体は自己崩壊を始
めた。そして30分後には完全に沈降した。冷却後、この
上部とTiAl3 金属間化合物が沈降した下部の切片を
光顕により観察した。この結果を図1及び図2に示す。
図1が上部の金属組織を示し、図2が下部の金属組織を
示す。TiAl3 金属間化合物が沈降した下部の部分に
は粒径5〜10μm の微細なTiAl3 が均一に分布して
いた。この上部及び下部のサンプルのビッカース硬度を
測定し、この結果を表1に示す。
The two molded articles thus obtained are simultaneously subjected to 850
It was immersed in 150 g of Al melt at 0 ° C. An exothermic reaction occurred 0.5 minutes after the immersion, and Al was impregnated in 1 minute. Then, swelling of the molded body was observed 2 minutes after the immersion, and after 10 minutes, the molded body began to self-disintegrate. And after 30 minutes, it settled completely. After cooling, the upper section and the lower section on which the TiAl 3 intermetallic compound settled were observed with a light microscope. The results are shown in FIGS. 1 and 2.
FIG. 1 shows the upper metallographic structure, and FIG. 2 shows the lower metallographic structure. In the lower part where the TiAl 3 intermetallic compound precipitated, fine TiAl 3 having a particle size of 5 to 10 μm was uniformly distributed. The Vickers hardness of the upper and lower samples was measured, and the results are shown in Table 1.

【0015】[0015]

【表1】 下部において硬度が著しく向上していることが明らかで
ある。
[Table 1] It is clear that the hardness is significantly improved in the lower part.

【0016】実施例2 Al粉末、Ti粉末及びC粉末の配合割合を変化させ、
実施例1と同様にし成形体を製造し、次いでAl溶湯中
に浸漬し、膨潤・崩壊現象を観察した。この結果を表2
に示す。
Example 2 By changing the blending ratio of Al powder, Ti powder and C powder,
A molded body was manufactured in the same manner as in Example 1, and then immersed in an Al melt to observe the swelling / collapse phenomenon. The results are shown in Table 2.
Shown in.

【0017】[0017]

【表2】 [Table 2]

【0018】Al量が少ないほど膨潤・崩壊現象が生じ
にくく、またC量はTiに対し25重量%ほどで最も膨潤
・崩壊現象が生じやすかった。
The smaller the amount of Al, the less likely the swelling / collapse phenomenon occurred, and the amount of C was about 25% by weight relative to Ti, and the swelling / collapse phenomenon was most likely to occur.

【0019】実施例3 実施例1において製造した成形体を700 〜1000℃の各種
温度の溶湯中に浸漬した。この結果を表3に示す。
Example 3 The molded body produced in Example 1 was immersed in a molten metal at various temperatures of 700 to 1000 ° C. The results are shown in Table 3.

【0020】[0020]

【表3】 [Table 3]

【0021】700 ℃においては膨潤現象を示したが、崩
壊までには到らなかった。1000℃においては成形体が溶
融してしまい、またTiCが形成した。一方800 ℃及び
900℃においては膨潤・崩壊現象を示した。
Although a swelling phenomenon was shown at 700 ° C., it did not reach the point of collapse. At 1000 ° C, the compact melted and TiC was formed. Meanwhile, 800 ℃ and
At 900 ℃, it showed swelling and collapse phenomenon.

【0022】[0022]

【発明の効果】本発明によれば、Ti、Al及びCの成
形体をAl溶湯内で反応させ、膨潤・崩壊させAl溶湯
中に沈降させることにより、5〜10μm の微細なTiA
3 金属間化合物がAl母体に均一に分散した複合体が
得られる。また、本発明の方法を用いて、固定された溶
解炉の下に複数個並列に並べられた鋳造型をベルトコン
ベア方式で移動させ、溶解炉内で母体金属を溶解し、膨
潤・崩壊現象を起こす成形体を随時添加することによ
り、TiAl3 を含むAl複合体を連続して製造するこ
とができる。
EFFECTS OF THE INVENTION According to the present invention, compacts of Ti, Al and C are reacted in an Al melt, swollen / disintegrated, and allowed to settle in the Al melt to obtain fine TiA particles of 5 to 10 μm.
A complex in which the l 3 intermetallic compound is uniformly dispersed in the Al matrix is obtained. Further, by using the method of the present invention, a plurality of casting molds arranged in parallel under a fixed melting furnace are moved by a belt conveyor method, the base metal is melted in the melting furnace, and swelling / collapse phenomenon occurs. An Al composite body containing TiAl 3 can be continuously produced by adding a molded body to be raised at any time.

【図面の簡単な説明】[Brief description of drawings]

【図1】成形体をAl溶湯中に30分含浸させ、TiAl
3 を沈降させた後のAl母体の上部の金属組織を示す図
面に代わる写真である。
Fig. 1 Molded body was impregnated with molten aluminum for 30 minutes and TiAl
3 is a photograph instead of a drawing, which shows the metal structure of the upper part of the Al matrix after 3 is precipitated.

【図2】成形体をAl溶湯中に30分含浸させ、TiAl
3 を沈降させた後のAl母体の下部の金属組織を示す図
面に代わる写真である。
[Fig. 2] A molded body is impregnated with molten Al for 30 minutes, and TiAl
3 is a photograph replacing a drawing showing a metal structure of a lower portion of an Al matrix after 3 is precipitated.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Tiの微細片、Alの微細片及びカーボ
ン粉末より成形体を形成し、該成形体をAl溶湯中に浸
漬し発熱反応を起こさせ、次いで該成形体をAl溶湯中
で放置し、膨潤、崩壊、沈降させることを特徴とする、
TiAl3 を含むアルミニウム複合材料の製造方法。
1. A molded body is formed from Ti fine particles, Al fine particles and carbon powder, the molded body is immersed in an Al molten metal to cause an exothermic reaction, and then the molded body is left in the Al molten metal. Characterized by swelling, disintegrating and settling,
A method for manufacturing an aluminum composite material containing TiAl 3 .
JP35213693A 1993-12-29 1993-12-29 Production of aluminum composite material containing tial3 Pending JPH07197149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35213693A JPH07197149A (en) 1993-12-29 1993-12-29 Production of aluminum composite material containing tial3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35213693A JPH07197149A (en) 1993-12-29 1993-12-29 Production of aluminum composite material containing tial3

Publications (1)

Publication Number Publication Date
JPH07197149A true JPH07197149A (en) 1995-08-01

Family

ID=18422024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35213693A Pending JPH07197149A (en) 1993-12-29 1993-12-29 Production of aluminum composite material containing tial3

Country Status (1)

Country Link
JP (1) JPH07197149A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068569A (en) * 2001-02-21 2002-08-28 동부전자 주식회사 Method for manufacturing multi-layered metal line of semiconductor device
CN114875278A (en) * 2022-05-24 2022-08-09 山东迈奥晶新材料有限公司 Ti-Al series gradient composite material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068569A (en) * 2001-02-21 2002-08-28 동부전자 주식회사 Method for manufacturing multi-layered metal line of semiconductor device
CN114875278A (en) * 2022-05-24 2022-08-09 山东迈奥晶新材料有限公司 Ti-Al series gradient composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH04506835A (en) Method for manufacturing metal foam reinforced with particles
JPH07197149A (en) Production of aluminum composite material containing tial3
US5336291A (en) Method of production of a metallic composite material incorporating metal carbide particles dispersed therein
JPH11170027A (en) Ingot for metal-ceramic composite and production thereof
JP3777878B2 (en) Method for producing metal matrix composite material
JPH0633164A (en) Production of nitride dispersed al alloy member
JP3417217B2 (en) Method for producing titanium carbide particle-dispersed metal matrix composite material
RU2177047C1 (en) Method of preparing aluminum-based alloy
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPH03193801A (en) Sintering additive powder for intermetallic compound and sintering method thereof
JPH04293703A (en) Composite material and its production
JPH10195560A (en) Production of high heat resistant aluminum alloy and production of green compact
JPH05214477A (en) Composite material and its manufacture
JPH09296236A (en) Production of particle-dispersed material
JPH04176838A (en) Manufacture of al alloy powder and sintered al alloy
JPS6186064A (en) Production of composite metallic body compounded with inorganic fibers
JPS6077945A (en) Manufacture of metallic material containing dispersed particle
JPH04128338A (en) Metal/ceramic composite material and its production
CN117210727A (en) Aluminum alloy powder containing in-situ authigenic submicron TiC (N) particles and application thereof
JPH10280063A (en) Method for adding zirconium to magnesium alloy
KR20070036984A (en) Ni added silver and silver alloys and their manufacturing method thereof
KR20070018026A (en) Feedstock composition and method of using same for powder metallurgy forming of reactive metals
JPH01108326A (en) Production of particle-dispersed alloy
JPS62142702A (en) Production of metallic shape stock containing different material