JPH07197146A - Sintered compact for tool and its production - Google Patents

Sintered compact for tool and its production

Info

Publication number
JPH07197146A
JPH07197146A JP5355223A JP35522393A JPH07197146A JP H07197146 A JPH07197146 A JP H07197146A JP 5355223 A JP5355223 A JP 5355223A JP 35522393 A JP35522393 A JP 35522393A JP H07197146 A JPH07197146 A JP H07197146A
Authority
JP
Japan
Prior art keywords
volume
iron group
periodic table
diamond
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5355223A
Other languages
Japanese (ja)
Inventor
Makoto Kyoda
誠 鏡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP5355223A priority Critical patent/JPH07197146A/en
Publication of JPH07197146A publication Critical patent/JPH07197146A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a sintered compact for tools satisfying all of toughness, strength, workability, hardness, wear resistance, etc., which are the characteristics required for a cutting tool material, etc. CONSTITUTION:This sintered compact consists of 20 to 85vol.% carbide, nitride or boride of transition metals of any among the Periodic Table groups 4a, 5a, 6a or a mixture composed thereof or a solid soln. thereof, 2 to 30vol.% ferrous metal and 10 to 50vol.% fine granular diamond of a grain size of 1 to 40mum. The surfaces of the fine granular diamond are coated with the carbide of the transition metals of the Periodic Table groups 4a, 5a, 6a. The sintered compact for tools precipitated with carbon in or on the transition metals constituting the sintered compact is prepd. As a result, the production cost is reduced and the excellent sintered compact for tools is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、切削工具等の材料に
好適に用いられる焼結体及びその製造方法に関し、特に
優れた靭性、強度、耐摩耗性などを有する工具用焼結体
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered body suitable for use as a material for a cutting tool and a method for producing the same, and more particularly to a sintered body for a tool having excellent toughness, strength, wear resistance and the like. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】アルミニウム合金、銅合金などの非鉄金
属、セラミックス、コンクリート、ゴム、プラスチック
スなどの非金属材料の切削工具には、優れた靭性、強
度、加工性、硬度、耐摩耗性といったことが要請され
る。現在、切削工具用の材料として広く使用されている
超硬合金、サーメットは、セラミックスと金属との複合
材料であり、かなりの耐摩耗性を有し、靭性、強度、加
工性において優れているが、それでも最近の高速切削化
に対する厳しい要求特性には、必ずしも十分に満足した
ものとは言えなくなっている。
2. Description of the Related Art Cutting tools made of non-ferrous metals such as aluminum alloys and copper alloys, non-metallic materials such as ceramics, concrete, rubber and plastics have excellent toughness, strength, workability, hardness and wear resistance. Is requested. Cermet, which is widely used as a material for cutting tools at present, is a composite material of ceramics and metal, and has considerable wear resistance and excellent toughness, strength, and workability. Even so, it cannot be said that the recent severe requirements for high-speed cutting have been sufficiently satisfied.

【0003】こうした最近の高速切削化の傾向から、切
削工具用材料として2〜20μm程度の微粒ダイヤモン
ド粉末に少量のCo等のバインダーを添加して焼結した
ダイヤモンド焼結体が、超高圧下で製造されることによ
る著しい高価格にもかかわらず、その高い耐摩耗性ゆえ
に注目を集めている。
Due to the recent tendency toward high-speed cutting, a diamond sintered body obtained by adding a small amount of a binder such as Co to a fine-grained diamond powder of about 2 to 20 μm and sintering it as a material for a cutting tool under ultrahigh pressure. Despite its extremely high price due to its manufacture, it has attracted attention due to its high wear resistance.

【0004】しかしながら、ダイヤモンド焼結体切削工
具は、超硬合金などと比較して十分な靭性、強度を備え
たものとは言えず、被削材によってはチッピング摩耗、
刃先破損を起こすといった問題を生じていた。
However, the diamond sinter cutting tool cannot be said to have sufficient toughness and strength as compared with cemented carbide, and depending on the work material, chipping wear,
There was a problem that the blade edge was damaged.

【0005】さらに、ダイヤモンド焼結体の製造工程で
は、通常50kb以上の超高圧を必要とし著しく製造コ
ストを引上げるため、この点の改善が強く望まれてい
た。
Further, in the manufacturing process of the diamond sintered body, an ultrahigh pressure of 50 kb or more is usually required, and the manufacturing cost is remarkably increased, and therefore improvement in this point has been strongly desired.

【0006】[0006]

【発明が解決しようとする課題】この発明は、切削工具
用材料としての要求特性である靭性、強度、加工性、硬
度及び耐摩耗性などの全てを満足した工具用焼結体を、
ダイヤモンド焼結体と比較して低圧下で焼結し、経済的
に得ようとするものである。
SUMMARY OF THE INVENTION The present invention provides a sintered body for a tool, which satisfies all the required properties as a material for a cutting tool, such as toughness, strength, workability, hardness and wear resistance.
It is intended to be economically obtained by sintering under a low pressure as compared with a diamond sintered body.

【0007】[0007]

【課題を解決するための手段】第1の発明は、周期律表
第4a、5a、6a族のいずれかの遷移金属の炭化物、
窒化物、硼化物もしくはこれらの混合物又はこれらの固
溶体20〜85容量%、鉄族金属2〜30容量%及び粒
径1〜40μmの微粒ダイヤモンド10〜50容量%か
らなる焼結体であって、微粒ダイヤモンド表面が周期律
表第4a、5a、6a族のいずれかの遷移金属の炭化物
で被覆され、かつ該焼結体を構成する鉄族金属中又はそ
の表面にカーボンが析出していることを特徴とする工具
用焼結体[請求項1]、第2の発明は、周期律表第4
a、5a、6a族のいずれかの遷移金属の炭化物、窒化
物、硼化物もしくはこれらの混合物又はこれらの固溶体
20〜85容量%、鉄族金属2〜30容量%、周期律表
第4a、5a、6a族いずれかの遷移金属により外割り
で0.1〜5容量%被覆された粒径1〜40μmの微粒
ダイヤモンド10〜50容量%を混合した原料混合物
を、温度950〜1150℃、圧力1〜30kbで焼結
することを特徴とする工具用焼結体の製造方法[請求項
2]、第3の発明は、周期律表第4a、5a、6a族の
いずれかの遷移金属の炭化物、窒化物、硼化物もしくは
これらの混合物又はこれらの固溶体20〜85容量%、
鉄族金属の酸化物が鉄族金属換算で2〜30容量%、周
期律表第4a、5a、6a族のいずれかの遷移金属によ
り外割りで0.1〜5容量%被覆された粒径1〜40μ
mの微粒ダイヤモンド10〜50容量%を混合した原料
混合物を、温度500〜900℃の還元雰囲気中で還元
処理した後、温度950〜1150℃、圧力1〜30k
bで焼結することを特徴とする工具用焼結体の製造方法
[請求項3]、および、第4の発明は、基本組成がWC
−Coである超硬合金の原料を成形した基板又はMoを
主成分とする(Mo,W)Cと鉄族金属とからなるサー
メットの原料を成形した基板の上に、周期律表第4a、
5a、6a族のいずれかの遷移金属の炭化物、窒化物、
硼化物もしくはこれらの混合物又はこれらの固溶体20
〜85容量%、鉄族金属2〜30容量%、周期律表第4
a、5a、6a族のいずれかの遷移金属により外割りで
0.1〜5容量%被覆された粒径1〜40μmの微粒ダ
イヤモンド10〜50容量%を混合した原料混合物で成
形した成形板を積層し、温度950〜1150℃、圧力
1〜30kbで焼結、接合した工具用焼結体[請求項
4]である。
A first invention is a carbide of a transition metal of any one of groups 4a, 5a and 6a of the periodic table,
A sintered body comprising a nitride, a boride or a mixture thereof or a solid solution thereof in an amount of 20 to 85% by volume, an iron group metal in an amount of 2 to 30% by volume, and a fine diamond particle having a particle size of 1 to 40 μm in an amount of 10 to 50% by volume. The fine diamond surface is coated with a carbide of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, and carbon is deposited in the iron group metal constituting the sintered body or on the surface thereof. A featured sintered body for a tool [claim 1], a second invention is a periodic table, a fourth aspect.
a, 5a, 6a transition metal carbides, nitrides, borides or mixtures thereof or solid solutions thereof 20 to 85% by volume, iron group metals 2 to 30% by volume, Periodic Tables 4a and 5a. , A raw material mixture obtained by mixing 10 to 50% by volume of fine diamond particles having a particle size of 1 to 40 μm, which is coated with 0.1 to 5% by volume of a transition metal of any of 6a groups, at a temperature of 950 to 1150 ° C. and a pressure of 1 To 30 kb, the method for producing a sintered body for a tool [claim 2], the third invention is a carbide of a transition metal of any one of Groups 4a, 5a and 6a of the periodic table, 20 to 85% by volume of a nitride, a boride or a mixture thereof or a solid solution thereof,
A particle size in which an oxide of an iron group metal is 2 to 30% by volume in terms of iron group metal, and 0.1 to 5% by volume of the transition metal of any one of groups 4a, 5a, and 6a of the periodic table is externally coated. 1-40μ
A raw material mixture in which 10 to 50% by volume of fine diamond particles of m are mixed is subjected to a reduction treatment in a reducing atmosphere at a temperature of 500 to 900 ° C., and then a temperature of 950 to 1150 ° C. and a pressure of 1 to 30 k.
In the method for manufacturing a sintered body for a tool [claim 3], which is characterized in that the basic composition is WC, the basic composition is WC.
On a substrate formed of a raw material of a cemented carbide that is —Co or a substrate formed of a raw material of cermet mainly composed of (Mo, W) C and an iron group metal, the periodic table 4a,
Carbides, nitrides of transition metals of either 5a or 6a,
Boride or mixture thereof or solid solution thereof 20
~ 85% by volume, iron group metal 2 to 30% by volume, Periodic Table No. 4
a molded plate molded with a raw material mixture in which 10 to 50% by volume of fine diamond particles having a particle size of 1 to 40 μm, which is coated with 0.1 to 5% by volume of a transition metal of any one of a, 5a, and 6a, is mixed. It is a sintered body for a tool [claim 4] which is laminated, sintered at a temperature of 950 to 1150 ° C and sintered at a pressure of 1 to 30 kb.

【0008】以下にこれらの発明をさらに説明する。第
1の発明の工具用焼結体は、周期律表の第4a、5a、
6a族のいずれかの遷移金属の炭化物、窒化物、硼化物
もしくはこれらの混合物又はこれらの固溶体と、鉄族金
属と、周期律表第4a、5a、6a族の遷移金属の炭化
物で被覆された微粒ダイヤモンドとで構成される。
These inventions will be further described below. The sintered body for a tool of the first invention is 4a, 5a of the periodic table,
Coated with carbides, nitrides, borides or mixtures thereof of any of the Group 6a transition metals or solid solutions thereof, iron group metals and carbides of the transition metals Group 4a, 5a, 6a of the Periodic Table. Composed of fine diamonds.

【0009】これらの中で結合相を構成する物質は、周
期律表の第4a、5a、6a族のいずれかの遷移金属の
炭化物、窒化物、硼化物もしくはこれらの混合物又はこ
れらの固溶体と、鉄族金属とである。
Among these, the substance constituting the binder phase is a carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table or a mixture thereof or a solid solution thereof. With iron group metals.

【0010】周期律表の第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体は、工具として使用する場
合に、高温硬度、強度、熱伝導性及び化学的安定性に優
れ、超硬合金、サーメット等の工具用焼結体で用いられ
ているものと本質的な相違はない。これらの中ではタン
グステンカーバイドが好適に用いられるが、外にチタン
カーバイド等も好んで用いることができる。
Carbides, nitrides, borides or mixtures thereof of transition metals of any of Groups 4a, 5a and 6a of the Periodic Table or solid solutions thereof, when used as a tool, have high hardness, strength, It has excellent thermal conductivity and chemical stability, and is essentially the same as that used in sintered compacts for tools such as cemented carbide and cermet. Of these, tungsten carbide is preferably used, but titanium carbide and the like can also be preferably used.

【0011】これらの含有率は、20〜85容量%とす
る。これが20容量%未満では結合相の硬度、剛性、耐
摩耗性が低下するため好ましくない。また、これが85
容量%を超えると、鉄族金属、微粒ダイヤモンドの含有
率が相対的に低下し焼結体の強度、靭性、耐摩耗性が低
下するため好ましくない。
The content of these is 20 to 85% by volume. If this content is less than 20% by volume, the hardness, rigidity and wear resistance of the binder phase will be reduced, which is not preferable. Also, this is 85
When the content exceeds the volume%, the contents of the iron group metal and the fine-grained diamond relatively decrease, and the strength, toughness, and wear resistance of the sintered body decrease, which is not preferable.

【0012】結合相を構成する物質として、上記の外に
鉄族金属を2〜30容量%含むようにする。この鉄族金
属は周期律表第4a、5a、6a族遷移金属の炭化物、
窒化物、硼化物との濡れ性が非常に良く、粘性流動によ
り緻密化を促進し、結合相中に分散した微粒ダイヤモン
ドの保持力が強固となる。
In addition to the above, iron group metal is contained in an amount of 2 to 30% by volume as a substance constituting the binder phase. This iron group metal is a carbide of a transition metal of groups 4a, 5a and 6a of the periodic table,
It has very good wettability with nitrides and borides, promotes densification by viscous flow, and strengthens the retention of fine-grained diamond dispersed in the binder phase.

【0013】鉄族金属の含有率が2容量%未満では結合
相の緻密化がはかられず、結合相の高靭化、高強度化を
達成することができない。また、これが30容量%を超
えると結合相の硬度、剛性、耐摩耗性が低下するため好
ましくない。
If the content of the iron group metal is less than 2% by volume, the binder phase cannot be densified and the binder phase cannot be toughened and strengthened. Further, if it exceeds 30% by volume, the hardness, rigidity and wear resistance of the binder phase decrease, which is not preferable.

【0014】上記の外は、表面に周期律表第4a、5
a、6a族の遷移金属の炭化物で被覆された微粒ダイヤ
モンドである。微粒ダイヤモンドはその固有の著しい硬
度ゆえに焼結体の耐摩耗性の向上及び焼結体中に分散す
ることによる焼結体の強靭化に役立つ。その含有率は1
0〜50容量%である。これが10容量%未満では十分
な耐摩耗性を有した焼結体が得られず、微粒ダイヤモン
ド分散による靭性の向上がはかれない。またこれが50
容量%を超えると結合相の緻密化が阻害され、緻密な焼
結体を得ることができない。ここに用いる微粒ダイヤモ
ンドは、粒径が平均で1〜40μmの範囲のものを用い
る。粒径が1μm未満の場合、微粒ダイヤモンドが脱落
しやすいため耐摩耗性が低下し、40μmを越えたもの
を用いると工具刃先の強度が低下するため、工具刃先が
欠損しやすく、この焼結体で得られた工具の工具寿命が
短くなってしまうので好ましくない。被覆された微粒ダ
イヤモンドを使用することによって、炭化物で被覆され
た微粒ダイヤモンドと結合相を形成する物質の濡れ性を
改善し、塑性変形し難いダイヤモンド同志が直接に接す
る部分を排除し、かつ結合相を形成する塑性変形し易い
物質の塑性変形によってダイヤモンド粒子間の空隙を充
填し緻密化し、機械的物性に優れた焼結体を可能にす
る。
Other than the above, the periodic table 4a, 5
It is a fine-grained diamond coated with carbides of a and 6a group transition metals. Due to its inherent hardness, fine-grained diamond serves to improve the wear resistance of the sintered body and to strengthen the sintered body by being dispersed in the sintered body. The content rate is 1
It is 0 to 50% by volume. If it is less than 10% by volume, a sintered body having sufficient wear resistance cannot be obtained, and the toughness cannot be improved by dispersing fine diamond particles. Also this is 50
When the content exceeds the volume%, densification of the binder phase is hindered and a dense sintered body cannot be obtained. The fine-grained diamond used here has an average grain size in the range of 1 to 40 μm. If the particle size is less than 1 μm, the fine diamond particles are likely to fall off, resulting in reduced wear resistance. If the particle size exceeds 40 μm, the tool edge strength is reduced, and the tool edge is easily damaged. It is not preferable because the tool life of the tool obtained in step 1 will be shortened. By using the coated fine-grained diamond, the wettability of the substance forming the binder phase with the carbide-coated fine-grained diamond is improved, and the part which is difficult to be plastically deformed is directly contacted by the diamond comrades and the binder phase is eliminated. The voids between the diamond particles are filled and densified by the plastic deformation of the substance that is easily plastically deformed to form a sintered body having excellent mechanical properties.

【0015】第2の発明は、第1の発明の工具用焼結体
の製造方法である。ここで用いる原料とその配合比と
を、周期律表第4a、5a、6a族のいずれかの遷移金
属の炭化物、窒化物、硼化物もしくはこれらの混合物又
はこれらの固溶体20〜85容量%、鉄族金属2〜30
容量%、周期律表第4a、5a、6a族のいずれかの遷
移金属により外割りで0.1〜5容量%被覆された粒径
1〜40μmの微粒ダイヤモンド10〜50容量%とし
た理由は、これまでに説明したところと同様である。
A second invention is a method for manufacturing a sintered body for a tool according to the first invention. The raw materials used here and their compounding ratios are set to the carbides, nitrides, borides or mixtures thereof of transition metals of any of Groups 4a, 5a and 6a of the Periodic Table, 20 to 85% by volume of solid solution thereof, iron. Group metal 2-30
%, 10% to 50% by volume of fine diamond having a particle size of 1 to 40 μm, which is coated with 0.1 to 5% by volume of a transition metal of any one of groups 4a, 5a, and 6a of the periodic table. The same as described above.

【0016】後述するように、被覆した遷移金属とダイ
ヤモンド表面の相転移により生じたカーボンは焼結時に
容易に反応し、微粒ダイヤモンドを包み込むように炭化
物を形成する。遷移金属で被覆する方法としてはPVD
法、CVD法等があるが、被覆量は微粒ダイヤモンドに
対して外割りで0.1〜5容量%とする。被覆量が0.
1容量%未満では、被覆による効果が認められず、5容
量%を超えると、後に述べるようにダイヤモンド表面に
炭化物が効果的に生成せず、未反応の被覆遷移金属が残
留し緻密な焼結体が得られない。
As will be described later, the coated transition metal and the carbon produced by the phase transition of the diamond surface easily react during sintering to form a carbide so as to enclose the fine-grained diamond. PVD as a method of coating with a transition metal
Method, CVD method, etc., but the coating amount is 0.1 to 5% by volume as an outer percentage of fine grain diamond. The coating amount is 0.
If it is less than 1% by volume, the effect of the coating is not recognized, and if it exceeds 5% by volume, carbides are not effectively formed on the diamond surface as described later, and unreacted coating transition metal remains and dense sintering occurs. I can't get a body.

【0017】第3の発明は、第2の発明で用いる原料中
の鉄族金属のかわりに鉄族金属の酸化物を用い、これを
鉄族金属換算で2〜30容量%混合した原料混合物を、
温度500〜900℃の還元雰囲気中で還元処理した
後、高温高圧下で焼結するというものである。これによ
って焼結体の抗折力すなわち強度を一段と上げることが
できる。鉄族金属の酸化物を鉄族金属換算で2〜30容
量%とした理由は、第1の発明で述べたところと同様で
ある。還元雰囲気としては水素雰囲気が好ましく、処理
温度は500〜900℃である。500℃未満の温度で
は鉄族金属の酸化物が還元されず、また900℃を超え
る温度では、原料ダイヤモンド表面より著しい相転移が
起こり、黒鉛が多量に生じるため好ましくない。この還
元処理によって下記の反応が進行する。 M−O + H → M + HO ここで、Mは鉄族金属である。鉄族金属の酸化物として
は、結合相への分散性を考慮して粒径1μm以下のもの
が好ましい。
A third invention uses an oxide of an iron group metal in place of the iron group metal in the raw material used in the second invention, and mixes the raw material mixture by 2 to 30% by volume in terms of iron group metal. ,
After reduction treatment in a reducing atmosphere at a temperature of 500 to 900 ° C., sintering is performed under high temperature and high pressure. As a result, the transverse rupture strength, that is, the strength of the sintered body can be further increased. The reason why the iron group metal oxide is set to 2 to 30% by volume in terms of the iron group metal is the same as that described in the first invention. A hydrogen atmosphere is preferable as the reducing atmosphere, and the processing temperature is 500 to 900 ° C. If the temperature is lower than 500 ° C, the oxide of the iron group metal is not reduced, and if the temperature is higher than 900 ° C, a remarkable phase transition occurs on the surface of the raw material diamond, and a large amount of graphite is generated, which is not preferable. The following reaction proceeds by this reduction treatment. M−O + H 2 → M + H 2 O Here, M is an iron group metal. The iron group metal oxide preferably has a particle size of 1 μm or less in consideration of dispersibility in the binder phase.

【0018】このように鉄族金属の酸化物を鉄族金属の
かわりに使用することによって、焼結体強度が向上する
理由は、通常のボールミル等の混合方法では、原料の多
少の粉砕と同時に混合がなされるが、Co等の鉄族金属
はその固有の展性、延性ゆえに、混合時に金属粒子同志
が水アメのように接着しやすいといった問題があった。
しかし、混合時に鉄族金属の酸化物を用いることによ
り、酸化物は破砕性が良いので、酸化物同志が接着する
ことなく均一に混合され、還元処理を経た鉄族金属は均
一に組織中に分散することになる。これによって、焼結
体強度が向上するものと考えられる。
The reason why the strength of the sintered body is improved by using the iron group metal oxide instead of the iron group metal is that the mixing method such as an ordinary ball mill causes the raw materials to be slightly pulverized at the same time. Although mixed, the iron group metal such as Co has a problem that the metal particles easily adhere to each other during mixing due to their inherent malleability and ductility like water candy.
However, since the oxide of the iron group metal is used at the time of mixing because the oxide has good friability, the oxides are mixed uniformly without adhering, and the iron group metal that has undergone the reduction treatment is uniformly distributed in the structure. Will be dispersed. It is considered that this improves the strength of the sintered body.

【0019】第3の発明に基づいて行った結果では、鉄
族金属を原料としたものに比べ、鉄族金属の酸化物を原
料としたものの方が20%以上抗折力に優れていた。
According to the results obtained based on the third invention, 20% or more of the transverse rupture strength of the iron group metal oxide raw material was superior to that of the iron group metal oxide raw material.

【0020】第4の発明は、基本組成がWC−Coであ
る超硬合金の原料成形基板又はMoを主成分とする(M
o,W)Cと鉄族金属とからなるサーメット原料成形基
板上に、第2の発明で用いる原料混合物の成形板を積層
配置し、これらを同時に温度950〜1150℃、圧力
1〜30kbで焼結、接合したものである。基板となる
超硬合金及びサーメットは、いずれも靭性、剛性、熱伝
導性及び耐蝕性に優れ、切削工具として使用するのに適
している。この工具用焼結体は、焼結温度が950〜1
150℃と低温度にて得られるため、通常の超硬合金、
サーメットあるいは市販ダイヤモンド焼結体の焼結プロ
セスにおいて認められる液相は、超硬合金あるいはサー
メット基板中には出現しないが、高圧力下での焼結であ
るため、十分に固相焼結し、ダイヤモンドを含む硬質層
との接合強度も十分である。そして、このようにダイヤ
モンドを含む硬質層と基板層とを同時焼結すると、基板
層が硬質層に比較して高強度であるため、一体物として
の抗折力すなわち強度を一段と上げることができる。ま
た、ダイヤモンドを含む硬質層に比較して基板層は著し
く加工が容易であるため、工具作製のためのコストが低
減できるなどの利点を有する。ダイヤモンドを含む硬質
層及び基板層の厚さは、経済性、工具仕様及び強度を考
慮して決定すれば良いが、それぞれ0.5mm以上あれ
ば十分である。
In a fourth aspect of the present invention, a raw material molded substrate of cemented carbide having a basic composition of WC-Co or Mo is a main component (M).
o, W) A molded plate of the raw material mixture used in the second invention is laminated and arranged on a cermet raw material molded substrate composed of C and an iron group metal, and these are simultaneously baked at a temperature of 950 to 1150 ° C. and a pressure of 1 to 30 kb. It is one that is tied and joined. Cemented carbide and cermet, which are substrates, are excellent in toughness, rigidity, thermal conductivity and corrosion resistance, and are suitable for use as cutting tools. This tool sintered body has a sintering temperature of 950 to 1
Since it can be obtained at a low temperature of 150 ° C, it can be used for ordinary cemented carbide,
The liquid phase observed in the sintering process of cermet or commercially available diamond sintered body does not appear in the cemented carbide or cermet substrate, but since it is sintering under high pressure, solid phase sintering is sufficient, The bonding strength with the hard layer containing diamond is also sufficient. When the hard layer containing diamond and the substrate layer are co-sintered in this way, the strength of the substrate layer is higher than that of the hard layer, so that the transverse rupture strength, that is, the strength of the integrated body can be further increased. . Further, since the substrate layer is significantly easier to process than the hard layer containing diamond, it has an advantage that the cost for producing the tool can be reduced. The thicknesses of the hard layer containing diamond and the substrate layer may be determined in consideration of economical efficiency, tool specifications and strength, but it is sufficient if each is 0.5 mm or more.

【0021】これらの原料混合物は、ボールミル等の混
合機によって混合され、これを粉末のままあるいは型押
し成形の後、HIP装置、ピストンシリンダー装置等の
高温高圧発生装置で950〜1150℃、1〜30kb
の熱力学的に黒鉛の安定な領域で固相焼結する。これに
よって原料中に分散した微粒ダイヤモンドは、鉄族金属
のもつ触媒作用によって表面より微量相転移して、この
相転移により生じたカーボンとダイヤモンド表面に被覆
した周期律表第4a、5a、6a族遷移金属とが容易に
反応し、微粒ダイヤモンドを包むように炭化物を生成す
ると共に、鉄族金属中又はその表面に微量のカーボンが
析出し結合相が強靭化する。そして、この焼結条件は市
販のダイヤモンド焼結体の焼結条件に比較して、温度、
圧力共に著しく低いものである。圧力及び温度に関する
熱力学的な黒鉛安定領域とダイヤモンド安定領域は図1
に示す通りである。
These raw material mixtures are mixed by a mixer such as a ball mill, and are mixed as a powder or after being pressed and molded, and then at a high temperature and high pressure generator such as a HIP device and a piston cylinder device at 950 to 1150 ° C. 30 kb
Solid-state sintering in the thermodynamically stable region of graphite. As a result, the fine-grained diamond dispersed in the raw material undergoes a minute amount of phase transition from the surface due to the catalytic action of the iron group metal, and carbon produced by this phase transition and the diamond coated on the surface of the periodic table It reacts easily with a transition metal to form a carbide so as to wrap the fine-grained diamond, and a small amount of carbon precipitates in or on the surface of the iron group metal to strengthen the binder phase. And this sintering condition, compared with the sintering conditions of commercially available diamond sintered body, temperature,
Both pressures are extremely low. The thermodynamic graphite and diamond stability regions for pressure and temperature are shown in Fig. 1.
As shown in.

【0022】温度が950℃未満では焼結体は緻密化せ
ず、また1150℃を超える場合は、著しいダイヤモン
ドの相転移が起こり黒鉛が多量に生じ、ダイヤモンド固
有の耐摩耗性が損なわれるため好ましくない。
When the temperature is lower than 950 ° C., the sintered body is not densified, and when the temperature is higher than 1150 ° C., remarkable diamond phase transition occurs, a large amount of graphite is generated, and abrasion resistance peculiar to diamond is impaired. Absent.

【0023】圧力が1kb未満では、950〜1150
℃の温度領域において結合相が緻密化しないため、高密
度の焼結体が得られず、また30kbを超えると、ダイ
ヤモンド安定領域における焼結であるので、ダイヤモン
ド表面に相転移によるカーボンが生成しないため、微粒
ダイヤモンド表面に炭化物が生成し難く、また結合相の
強靭化がなされないため好ましくない。
When the pressure is less than 1 kb, 950 to 1150
Since the binder phase is not densified in the temperature range of ℃, a high-density sintered body cannot be obtained, and when it exceeds 30 kb, carbon is not generated by the phase transition on the diamond surface because it is sintering in the diamond stable range. Therefore, it is not preferable because carbide is not easily generated on the surface of the fine-grained diamond and the toughness of the binder phase is not achieved.

【0024】本発明焼結体においてはX線回折等の手法
では、黒鉛のピークはほとんど認められなかったが、透
過型電子顕微鏡(TEM)及びオージェ電子分光法等に
よる観察により、結合相を形成する分散ダイヤモンドに
近接した鉄族金属中又はその表面に、ナノメートルオー
ダーの非常に微細なカーボンの析出しているのが認めら
れた。このようなカーボンは市販されているWC−Co
超硬合金、サーメット及びダイヤモンド焼結体の鉄族金
属中又はその表面には一切認められない。本発明焼結体
で結合相が強靭化される理由については、必ずしも明ら
かにはなっていないが、以下のように推測される。すな
わち、微細カーボンの析出によって、それがピン止め的
作用をして、鉄族金属中又はその表面に存在する転移の
移動を抑制し、マクロ的に微小亀裂の進行を止め、焼結
体全体として強靭化されたものと考えられる。またTE
M観察によると、市販WC−Co超硬合金、サーメット
及びダイヤモンド焼結体中の鉄族金属結晶粒の大きさが
サブミクロンから大きいものでは数百ミクロンであるの
に対し、本発明焼結体の場合、液相の生じない低温度で
焼結されること、微細カーボンの析出により、鉄族金属
結晶粒の大きさがサブグレイン化されるため非常に小さ
くサブミクロン以下であることが認められた。これによ
り鉄族金属中又はその表面の応力集中が分散され、これ
も強靭化に寄与しているものと考えられる。さらに、焼
結条件が市販のダイヤモンド焼結体の焼結温度(140
0℃以上)、焼結圧力(50kb以上)に比較して温
度、圧力共に著しく低いために、本発明焼結体内部に、
焼結過程において生成する歪量が小さいことも考えられ
る。これも強靭化に寄与しているものと考えられる。
In the sintered body of the present invention, a peak of graphite was hardly recognized by a method such as X-ray diffraction, but a binder phase was formed by observation with a transmission electron microscope (TEM) and Auger electron spectroscopy. It was confirmed that very fine carbon of nanometer order was deposited in the iron group metal or its surface near the dispersed diamond. Such carbon is commercially available as WC-Co.
It is not found in the cemented carbide, cermet and diamond sintered bodies in the iron group metal or on the surface thereof. The reason why the binder phase is toughened in the sintered body of the present invention has not necessarily been clarified, but it is presumed as follows. That is, by the precipitation of fine carbon, it acts as a pin to suppress the movement of the transition existing in or on the surface of the iron group metal, macroscopically stopping the progress of microcracks, and as a whole sintered body. It is considered to be toughened. Also TE
According to M observation, the size of the iron group metal crystal grains in the commercially available WC-Co cemented carbide, cermet and diamond sintered body is several hundreds of microns in the submicron to large size, whereas the sintered body of the present invention. In the case of, it is recognized that the size of the iron group metal crystal grains is made to be subgrain due to the sintering at a low temperature in which a liquid phase does not occur, and the precipitation of fine carbon makes it extremely small and below submicron. It was It is thought that this disperses the stress concentration in the iron group metal or on the surface thereof, which also contributes to the toughness. Furthermore, the sintering conditions are the sintering temperature of commercially available diamond sintered bodies (140
0 ° C. or higher) and the sintering pressure (50 kb or higher) are significantly lower in both temperature and pressure.
It is also possible that the amount of strain generated in the sintering process is small. This is also considered to have contributed to strengthening.

【0025】[0025]

【作用】以上のように、遷移金属の炭化物、窒化物、硼
化物もしくはこれらの混合物又はこれらの固溶体及び鉄
族金属とからなる結合相形成材料と、遷移金属で被覆さ
れた微粒ダイヤモンドとを所定の割合で均一に配合した
原料混合物を、熱力学的に黒鉛の安定な温度、圧力で焼
結すると、微粒ダイヤモンドの一部が相転移し、その結
果生成したカーボンが遷移金属と反応し微粒ダイヤモン
ド表面に炭化物を生成すると共にこれが鉄族金属中又は
その表面に析出し、結合相が高靭化、高強度化された工
具用焼結体が得られる。
As described above, a binder phase forming material composed of a transition metal carbide, a nitride, a boride or a mixture thereof or a solid solution thereof and an iron group metal, and a fine grain diamond coated with a transition metal are predetermined. When a raw material mixture uniformly blended in the proportion of is heated thermodynamically at a stable temperature and pressure of graphite, a part of the fine-grained diamond undergoes a phase transition, and the resulting carbon reacts with the transition metal to produce the fine-grained diamond. A carbide is formed on the surface, and this is precipitated in the iron group metal or on the surface thereof, so that a sintered body for a tool having a high toughness and high strength binder phase can be obtained.

【0026】[0026]

【実施例】粒径1μm以下の結合相形成原料を用い、周
期律表第4a、5a、6a族の遷移金属で被覆された微
粒ダイヤモンドを配合し、ポットミルで十分に混合して
得た原料混合物を成形し、直径30mm、厚さ2mmの
予備成形体を得た。この成形体と、あらかじめ作製した
直径30mm、厚さ2mmのWC−15wt%Coから
なる超硬合金予備成形体とを積層し、800℃の水素雰
囲気中で還元処理を施した後、ピストンシリンダー型高
温高圧発生装置に挿入した。発熱体としては黒鉛ヒータ
ーを使用し、固体圧力媒体としては、ろう石及び六方晶
窒化硼素を使用した。原料配合比、焼結条件は表1〜表
3に示す通りであり、加熱保持時間は10分とした。な
お、鉄族金属酸化物(平均粒径0.2μm)を使用した
ときは、還元した場合の配合比に換算した。また、表1
及び表2に本発明例焼結体の試験結果を、表3に比較例
焼結体の試験結果を併せ示してある。
EXAMPLE A raw material mixture obtained by using a binder phase forming raw material having a particle size of 1 μm or less, mixing fine diamond particles coated with a transition metal of Groups 4a, 5a and 6a of the periodic table and thoroughly mixing them in a pot mill. Was molded to obtain a preform having a diameter of 30 mm and a thickness of 2 mm. This compact and a preliminarily produced cemented carbide preform of WC-15 wt% Co having a diameter of 30 mm and a thickness of 2 mm are laminated and subjected to reduction treatment in a hydrogen atmosphere at 800 ° C., and then a piston cylinder type It was inserted into a high temperature and high pressure generator. A graphite heater was used as the heating element, and pyroxene and hexagonal boron nitride were used as the solid pressure medium. The raw material mixing ratios and sintering conditions are as shown in Tables 1 to 3, and the heating and holding time was 10 minutes. When the iron group metal oxide (average particle size 0.2 μm) was used, it was converted to the compounding ratio when it was reduced. Also, Table 1
Table 2 also shows the test results of the inventive sintered body, and Table 3 also shows the test results of the comparative sintered body.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】得られた本発明の同時焼結体は、ダイヤモ
ンドを含有する硬質層と超硬合金部分が強固に一体化し
たものであった。また微粒ダイヤモンドを被覆した遷移
金属は、すべて炭化物に変化していた。この同時焼結体
を、放電加工によって切断して、切削工具及び抗折力試
験片を作製した。工具形状はISOミリ呼びTNGN1
60304であり、抗折力試験片形状は、JIS R
1601に従ったが、焼結体寸法の制約上、試験片寸法
は2mm×1.5mm×20mm(±0.05mm)と
し、スパンは15mmとした。比較のため、市販K10
種超硬合金(表3中の比較例No.13)及び市販ダイ
ヤモンド焼結体(表3中の比較例No.14)を準備し
て、同様な形状に加工した。被削材には、セメントモル
タルを使用した。また切削条件としては、切削速度75
m/分、切込み;0.5mm、送り;0.13mm/回
転とし、平均逃げ面摩耗幅が0.3mmとなったところ
で寿命とした。抗折力試験は、JIS R 1601に
従い、3点曲げ強度(kg/mm)を測定して調べ
た。
The obtained co-sintered body of the present invention was one in which the hard layer containing diamond and the cemented carbide portion were firmly integrated. Moreover, all the transition metals coated with the fine-grained diamond were changed to carbides. This co-sintered body was cut by electric discharge machining to prepare a cutting tool and a bending strength test piece. Tool shape is ISO millimeter nominal TNGN1
No. 60304, and the bending strength test piece shape is JIS R
According to 1601, the size of the test piece was set to 2 mm × 1.5 mm × 20 mm (± 0.05 mm) and the span was set to 15 mm due to the limitation of the size of the sintered body. For comparison, commercially available K10
A seed cemented carbide (Comparative Example No. 13 in Table 3) and a commercially available diamond sintered body (Comparative Example No. 14 in Table 3) were prepared and processed into the same shape. Cement mortar was used as the work material. The cutting conditions are cutting speed 75
m / min, depth of cut: 0.5 mm, feed: 0.13 mm / revolution, and life was determined when the average flank wear width was 0.3 mm. The transverse rupture strength test was conducted by measuring the three-point bending strength (kg / mm 2 ) according to JIS R 1601.

【0031】本発明より組成、焼結条件のはずれた比較
焼結材料及び市販の焼結材料の場合、工具刃先が欠損す
るものもあり、工具寿命が短いのに対し、本発明焼結体
は優れた強度、靭性及び耐摩耗性を有しているので、工
具逃げ面の摩耗状態は定常摩耗であり、工具寿命も大幅
に優れていた。
In the case of the comparative sintered material whose composition and sintering conditions are out of alignment according to the present invention and the commercially available sintered material, the tool edge may be broken in some cases, and the tool life is short. Since it has excellent strength, toughness, and wear resistance, the wear state of the tool flank was steady wear, and the tool life was also significantly excellent.

【0032】[0032]

【発明の効果】この発明によれば、切削工具材料として
要求される、靭性、強度、加工性、硬度及び耐摩耗性な
どの全てを満足した工具用焼結体を、熱力学的に黒鉛の
安定な領域である低圧領域で焼結することができるの
で、従来のダイヤモンド焼結体に比較して製造コストを
大幅に低下させ、優れた工具用焼結体ができるようにな
った。
According to the present invention, a sintered body for a tool satisfying all of the toughness, strength, workability, hardness and wear resistance required as a cutting tool material is thermodynamically made of graphite. Since it is possible to sinter in a low-pressure region, which is a stable region, the manufacturing cost is significantly reduced compared to the conventional diamond sintered body, and an excellent sintered body for tools can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 圧力及び温度に関する熱力学的な黒鉛安定領
域とダイヤモンド安定領域を示す線図。
FIG. 1 is a diagram showing a thermodynamic graphite stable region and a diamond stable region related to pressure and temperature.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 周期律表第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体20〜85容量%、鉄族金
属2〜30容量%及び粒径1〜40μmの微粒ダイヤモ
ンド10〜50容量%からなる焼結体であって、微粒ダ
イヤモンド表面が周期律表第4a、5a、6a族のいず
れかの遷移金属の炭化物で被覆され、かつ該焼結体を構
成する鉄族金属中又はその表面にカーボンが析出してい
ることを特徴とする工具用焼結体。
1. A carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, a mixture thereof or a solid solution thereof in an amount of 20 to 85% by volume and an iron group metal in an amount of 2 to 30% by volume. %, And 10 to 50% by volume of fine diamond having a particle size of 1 to 40 μm, the fine diamond surface is coated with a carbide of a transition metal of any one of Groups 4a, 5a and 6a of the periodic table, Further, a sintered body for a tool, characterized in that carbon is deposited in or on the surface of an iron group metal constituting the sintered body.
【請求項2】 周期律表第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体20〜85容量%、鉄族金
属2〜30容量%及び周期律表第4a、5a、6a族の
いずれかの遷移金属により外割りで0.1〜5容量%被
覆された粒径1〜40μmの微粒ダイヤモンド10〜5
0容量%を混合した原料混合物を、温度950〜115
0℃、圧力1〜30kbで焼結することを特徴とする工
具用焼結体の製造方法。
2. A carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, or a mixture thereof or a solid solution thereof in an amount of 20 to 85% by volume and an iron group metal in an amount of 2 to 30% by volume. % And finely divided diamond 10-5 having a particle size of 1-40 .mu.m, which is coated with a transition metal of any one of groups 4a, 5a, and 6a of the periodic table in an amount of 0.1-5% by volume.
The raw material mixture in which 0% by volume was mixed was heated to a temperature of 950 to 115.
A method for producing a sintered body for a tool, which comprises sintering at 0 ° C. and a pressure of 1 to 30 kb.
【請求項3】 周期律表第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体20〜85容量%、鉄族金
属の酸化物が鉄族金属換算で2〜30容量%、周期律表
第4a、5a、6a族のいずれかの遷移金属により外割
りで0.1〜5容量%被覆された粒径1〜40μmの微
粒ダイヤモンド10〜50容量%を混合した原料混合物
を、温度500〜900℃の還元雰囲気中で還元処理し
た後、温度950〜1150℃、圧力1〜30kbで焼
結することを特徴とする工具用焼結体の製造方法。
3. A carbide, a nitride, a boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, or a mixture thereof or a solid solution thereof in an amount of 20 to 85% by volume and an oxide of an iron group metal. 2-30% by volume in terms of iron group metal, 0.1-5% by volume of the transition metal of any of Groups 4a, 5a, and 6a of the Periodic Table, finely divided diamond 10 having a particle size of 1-40 μm 10 A sintered material for a tool, which is obtained by reducing a raw material mixture containing 50% by volume to 50% by volume in a reducing atmosphere at a temperature of 500 to 900 ° C., and then sintering at a temperature of 950 to 1150 ° C. and a pressure of 1 to 30 kb. Manufacturing method.
【請求項4】 基本組成がWC−Coである超硬合金の
原料を成形した基板又はMoを主成分とする(Mo,
W)Cと鉄族金属とからなるサーメットの原料を成形し
た基板の上に、周期律表第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体20〜85容量%、鉄族金
属2〜30容量%、周期律表第4a、5a、6a族のい
ずれかの遷移金属により外割りで0.1〜5容量%被覆
された粒径1〜40μmの微粒ダイヤモンド10〜50
容量%を混合した原料混合物で成形した成形板を積層
し、温度950〜1150℃、圧力1〜30kbで焼
結、接合した工具用焼結体。
4. A substrate formed by molding a raw material of a cemented carbide having a basic composition of WC-Co or having Mo as a main component (Mo,
W) On a substrate obtained by molding a cermet raw material composed of C and an iron group metal, a carbide, a nitride, a boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table or a mixture thereof, or 20 to 85% by volume of these solid solutions, 2 to 30% by volume of the iron group metal, and 0.1 to 5% by volume of the transition metal of any one of Groups 4a, 5a, and 6a of the Periodic Table, which are externally coated. 1 to 40 μm fine diamond 10 to 50
A sintered body for a tool, which is obtained by stacking formed plates formed of a raw material mixture mixed with each other in a volume percentage, and sintered and bonded at a temperature of 950 to 1150 ° C and a pressure of 1 to 30 kb.
JP5355223A 1993-12-29 1993-12-29 Sintered compact for tool and its production Pending JPH07197146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5355223A JPH07197146A (en) 1993-12-29 1993-12-29 Sintered compact for tool and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5355223A JPH07197146A (en) 1993-12-29 1993-12-29 Sintered compact for tool and its production

Publications (1)

Publication Number Publication Date
JPH07197146A true JPH07197146A (en) 1995-08-01

Family

ID=18442674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5355223A Pending JPH07197146A (en) 1993-12-29 1993-12-29 Sintered compact for tool and its production

Country Status (1)

Country Link
JP (1) JPH07197146A (en)

Similar Documents

Publication Publication Date Title
JP5226522B2 (en) Cubic boron nitride compact
AU2005298313A1 (en) Cubic boron nitride compact
JP4065666B2 (en) High crater resistance High strength sintered body
JPH10182234A (en) Cubic boron nitride-base sintered material and its production
JP2523452B2 (en) High strength cubic boron nitride sintered body
JPH0564691B2 (en)
JP2000328170A (en) Cubic boron nitride-containing hard member and its production
JPH10182233A (en) Titanium aluminum nitride-base sintered material and its production
JPH0849037A (en) Sintered compact for tool and its production
JPH08310867A (en) Production of boride ceramic
JPH07197146A (en) Sintered compact for tool and its production
JP5008789B2 (en) Super hard sintered body
JPH07188805A (en) Sintered compact for tool and its production
JPH07188804A (en) Sintered compact for tool and its production
JPH0215515B2 (en)
JPH07185907A (en) Sintered body for tool and its manufacture
JPH07195206A (en) Sintered body for tool and manufacture thereof
JPH07188827A (en) Sintered body for tool and its manufacture
JP2796011B2 (en) Whisker reinforced cemented carbide
JPH11181540A (en) Hyperfine-grained cemented carbide
JPH01122971A (en) Cubic boron nitride sintered product
JPH0849036A (en) Sintered body for dressing tool and its production
JPH06306525A (en) Sintered compact for tool and its production
JPS6137221B2 (en)
JPH07195207A (en) Sintered body for tool and manufacture thereof