JPH06306525A - Sintered compact for tool and its production - Google Patents

Sintered compact for tool and its production

Info

Publication number
JPH06306525A
JPH06306525A JP31805193A JP31805193A JPH06306525A JP H06306525 A JPH06306525 A JP H06306525A JP 31805193 A JP31805193 A JP 31805193A JP 31805193 A JP31805193 A JP 31805193A JP H06306525 A JPH06306525 A JP H06306525A
Authority
JP
Japan
Prior art keywords
sintered body
volume
fine
diamond
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31805193A
Other languages
Japanese (ja)
Inventor
Makoto Kyoda
誠 鏡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Cement Co Ltd
Original Assignee
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Cement Co Ltd filed Critical Onoda Cement Co Ltd
Priority to JP31805193A priority Critical patent/JPH06306525A/en
Publication of JPH06306525A publication Critical patent/JPH06306525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a sintered compact for a tool having excellent toughness, strength, wear resistance or the like by mixing the carbides or the like of transition metals, iron-group metals and fine-grained diamond in specified ratios and executing sintering at a specified temp. under a specified pressure. CONSTITUTION:By volume, 20 to 85% carbides, nitrides or sulfides of any transition metal of the 4a, 5a and 6a group in a periodic table or their mixture or solid solution (such as WC), 2 to 30% iron-group metals (such as Co) and 10 to 50% fine-grained diamond having 10 to 40mum grain size are mixed by a ball mill or the like. As it is or after being subjected to die extrusion, this mixture is subjected to solid phase sintering at 950 to 1150 deg.C under 1 to 30kb by a hot hydrostatic pressing device to produce a sintered compact in which fine carbon is precipitated in the iron group metals or on the surface thereof. In this way, the sintered compact for a tool excellent in workability, hardness or the like can be produced at a remarkably reduced producing cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、切削工具等の材料に
好適に用いられる焼結体の製造方法に関し、特に優れた
靭性、強度、耐摩耗性などを有する工具用焼結体および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered body suitable for use as a material for cutting tools, etc., and particularly to a sintered body for tools having excellent toughness, strength, wear resistance and the like. Regarding the method.

【0002】[0002]

【従来の技術】アルミニウム合金、銅合金などの非鉄金
属、セラミックス、コンクリート、ゴム、プラスチック
などの非金属材料の切削工具には、優れた靭性、強度、
加工性、硬度、耐摩耗性といったことが要請される。現
在、切削工具用の材料として広く使用されている超硬合
金、サーメットは、セラミックスと金属との複合材料で
あり、かなりの耐摩耗性を有し、靭性、強度、加工性に
おいて優れているが、それでも最近の高速切削化に対す
る厳しい要求特性には、必ずしも十分に満足したものと
は言えなくなっている。
2. Description of the Related Art Cutting tools made of non-ferrous metals such as aluminum alloys and copper alloys, non-metallic materials such as ceramics, concrete, rubber and plastics have excellent toughness, strength,
Workability, hardness and wear resistance are required. Cermet, which is widely used as a material for cutting tools at present, is a composite material of ceramics and metal, and has considerable wear resistance and excellent toughness, strength, and workability. Even so, it cannot be said that the recent severe requirements for high-speed cutting have been sufficiently satisfied.

【0003】こうした最近の高速切削化の傾向から、切
削工具用材料として2〜20μmの微粒ダイヤモンド粉
末に少量のCo等のバインダ−を添加して焼結したダイ
ヤモンド焼結体が、超高圧下で製造されることによる著
しい高価格にもかかわらず、その高い耐摩耗性ゆえに注
目を集めている。
Due to the recent tendency toward high-speed cutting, a diamond sintered body obtained by adding a small amount of a binder such as Co to a fine diamond powder of 2 to 20 μm and sintering it as a material for a cutting tool under an ultrahigh pressure. Despite its extremely high price due to its manufacture, it has attracted attention due to its high wear resistance.

【0004】しかしながら、ダイヤモンド焼結体切削工
具は、超硬合金などと比較して十分な靭性、強度を備え
たものとは言えず、被削材によってはチッピング摩耗、
刃先破損を起こすといった問題を生じていた。さらに、
ダイヤモンド焼結体の製造工程では、通常50kb以上
の超高圧を必要とし著しく製造コストを引上げるため、
この点の改善が強く望まれていた。
However, the diamond sinter cutting tool cannot be said to have sufficient toughness and strength as compared with cemented carbide, and depending on the work material, chipping wear,
There was a problem that the blade edge was damaged. further,
In the manufacturing process of a diamond sintered body, an ultrahigh pressure of 50 kb or more is usually required, which significantly raises the manufacturing cost.
There has been a strong demand for improvement in this respect.

【0005】[0005]

【発明が解決しようとする課題】この発明は、切削工具
用材料としての要求特性である靭性、強度、加工性、硬
度および耐摩耗性などの全てを満足した工具用焼結体
を、ダイヤモンド焼結体と比較して低圧下で焼結し、経
済的に得ようとするものである。
DISCLOSURE OF THE INVENTION The present invention provides a diamond sintered body for a tool sintered body which satisfies all of the required properties as a material for a cutting tool, such as toughness, strength, workability, hardness and wear resistance. It is intended to be economically obtained by sintering under a low pressure as compared with the bonded body.

【0006】[0006]

【課題を解決するための手段】この発明は、周期律表の
第4a、5a、6a族のいずれかの遷移金属の炭化物、
窒化物、硼化物もしくはこれらの混合物またはこれらの
固溶体20〜85容量%と、鉄族金属2〜30容量%
と、粒径1〜40μmの微粒ダイヤモンド10〜50容
量%とからなる焼結体であって、該焼結体を構成する鉄
族金属中またはその表面にカーボンが析出していること
を特徴とする工具用焼結体(請求項1)、周期律表の第
4a、5a、6a族のいずれかの遷移金属の炭化物、窒
化物、硼化物もしくはこれらの混合物またはこれらの固
溶体20〜85容量%と、鉄族金属2〜30容量%と、
粒径1〜40μmの微粒ダイヤモンド10〜50容量%
とを混合した原料混合物を温度950〜1150℃、圧
力1〜30kbで焼結することを特徴とする工具用焼結
体の製造方法(請求項2)、鉄族金属に代えて鉄族金属
の酸化物を、鉄族金属換算で2〜30容量%混合し、こ
の原料混合物を温度500〜900℃の還元雰囲気中で
還元処理したのち、温度950〜1150℃、圧力1〜
30kbで焼結することを特徴とする請求項2記載の工
具用焼結体の製造方法(請求項3)および基本組成がW
C−Coである超硬合金の原料を成形した基板またはM
oを主成分とする(Mo,W)Cと鉄族金属とからなる
サーメットの原料を成形した基板の上に、周期律表の第
4a、5a、6a族のいずれかの遷移金属の炭化物、窒
化物、硼化物もしくはこれらの混合物またはこれらの固
溶体20〜85容量%と、鉄族金属2〜30容量%と、
粒径1〜40μmの微粒ダイヤモンド10〜50容量%
とを混合した原料の混合物で成形した成形板を積層し、
これを高温高圧下で焼結、接合したことを特徴とする請
求項1記載の工具用焼結体(請求項4)である。以下
に、これらの発明をさらに説明する。
The present invention is directed to a carbide of a transition metal of any one of Groups 4a, 5a and 6a of the periodic table,
Nitride, boride or mixture thereof or solid solution thereof 20 to 85% by volume, and iron group metal 2 to 30% by volume
And 10 to 50% by volume of fine-grained diamond having a particle size of 1 to 40 μm, wherein carbon is deposited in or on the surface of the iron group metal constituting the sintered body. A sintered body for a tool (claim 1), a carbide, a nitride, a boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, or a mixture thereof or a solid solution thereof in an amount of 20 to 85% by volume. And 2 to 30% by volume of iron group metal,
10-50% by volume of fine diamond with a particle size of 1-40 μm
A raw material mixture obtained by mixing and is sintered at a temperature of 950 to 1150 ° C. and a pressure of 1 to 30 kb (claim 2), wherein an iron group metal is used instead of the iron group metal. The oxide is mixed in an amount of 2 to 30% by volume in terms of an iron group metal, and the raw material mixture is subjected to reduction treatment in a reducing atmosphere at a temperature of 500 to 900 ° C., and then a temperature of 950 to 1150 ° C. and a pressure of 1 to 1.
The method for producing a sintered body for a tool according to claim 2 (claim 3) and the basic composition is W, wherein the sintering is performed at 30 kb.
Substrate or M molded from a raw material of C-Co cemented carbide
On a substrate on which a cermet raw material composed of (Mo, W) C containing o as a main component and an iron group metal is molded, a carbide of a transition metal of any one of Groups 4a, 5a, and 6a of the periodic table, 20 to 85% by volume of a nitride, a boride or a mixture thereof or a solid solution thereof, and 2 to 30% by volume of an iron group metal;
10-50% by volume of fine diamond with a particle size of 1-40 μm
Laminating a molding plate molded with a mixture of raw materials mixed with and
The sintered body for a tool according to claim 1 (claim 4), characterized by being sintered and joined under high temperature and high pressure. Hereinafter, these inventions will be further described.

【0007】請求項1の工具用焼結体は、周期律表の第
4a、5a、6a族のいずれかの遷移金属の炭化物、窒
化物、硼化物もしくはこれらの混合物またはこれらの固
溶体、鉄族金属および微粒ダイヤモンドの焼結体で構成
される。
A sintered body for a tool according to claim 1 is a carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, a mixture thereof, a solid solution thereof, an iron group. It is composed of a sintered body of metal and fine-grained diamond.

【0008】これらの中で結合相を構成する物質は、周
期律表第4a,5a、6a族のいずれかの遷移金属の炭
化物、窒化物、硼化物もしくは混合物またはこれらの固
溶体および鉄族金属である。
Among these, the substance constituting the binder phase is a carbide, nitride, boride or mixture of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, or a solid solution thereof and an iron group metal. is there.

【0009】周期律表の第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物またはこれらの固溶体は、工具として使用した
場合に、高温硬度、強度、熱伝導性および化学的安定性
に優れ、超硬合金、サーメット等の工具用焼結体で用い
られているものと本質的な相違はない。これらの中では
タングテンカーバイドが好適に用いられるが、外にチタ
ンカーバイド等も好んで用いることができる。
Carbides, nitrides, borides or mixtures thereof of transition metals of any of Groups 4a, 5a and 6a of the Periodic Table or solid solutions thereof, when used as a tool, have high temperature hardness, strength, It has excellent thermal conductivity and chemical stability, and is essentially the same as that used in tool sintered bodies such as cemented carbide and cermet. Among these, tongue ten carbide is preferably used, but titanium carbide and the like can be preferably used as well.

【0010】これらの含有率は、20〜85容量%とす
る。これが20容量%未満では結合相の硬度、剛性、耐
摩耗性が低下するため好ましくない。また、これが85
容量%を超えると、鉄族金属、微粒ダイヤモンドなどの
含有率が相対的に減少し焼結体の靭性、耐摩耗性が低下
して好ましくない。
The content of these is 20 to 85% by volume. If this content is less than 20% by volume, the hardness, rigidity and wear resistance of the binder phase will be reduced, which is not preferable. Also, this is 85
When the content exceeds the volume%, the content of iron group metal, fine diamond, etc. is relatively decreased, and the toughness and wear resistance of the sintered body are reduced, which is not preferable.

【0011】結合相を構成する物質として、上記の外に
鉄族金属を2〜30容量%を含むようにする。この鉄族
金属により粘性流動機構によって緻密化が促進される。
また、鉄族金属はダイヤモンドとの濡れ性が非常に良い
ので分散した微粒ダイヤモンドの結合相への保持力が強
固となる。
In addition to the above, the iron group metal is contained in an amount of 2 to 30% by volume as a substance constituting the binder phase. The iron group metal promotes densification by viscous flow mechanism.
Further, the iron group metal has a very good wettability with diamond, so that the retention of the dispersed fine-grained diamond on the bonding phase becomes strong.

【0012】この鉄族金属の含有率が2容量%未満では
結合相の緻密化がはかられず、結合相の高靭化、高強度
化が達成されない。また、これが30容量%を超えると
結合相の硬度、剛性、耐摩耗性が低下するため好ましく
ない。
If the content of the iron group metal is less than 2% by volume, the binder phase cannot be densified, and the binder phase cannot be toughened or strengthened. Further, if it exceeds 30% by volume, the hardness, rigidity and wear resistance of the binder phase decrease, which is not preferable.

【0013】上記の外は微粒ダイヤモンドである。微粒
ダイヤモンドはその固有の著しい硬度故に焼結体の耐摩
耗性の向上および焼結体中に分散することによる焼結体
の強靭化に役立ち、その含有率は10〜50容量%であ
る。これが10容量%未満では十分な耐摩耗性を有した
焼結体が得られず、微粒ダイヤモンド分散による靭性の
向上が図れない。またこれが50容量%を超えると結合
相の緻密化が阻害され、緻密な焼結体を得ることが出来
ない。ここに用いる微粒ダイヤモンドは、粒径が平均で
1〜40μmの範囲のものとする。粒径が1μm未満で
は耐摩耗性が低下し、40μmを超えると工具刃先の強
度が低下し、工具刃先が欠損しこの焼結体で得られた工
具の工具寿命が短くなって好ましくない。
Outside the above is fine diamond. Due to its inherently high hardness, fine-grained diamond serves to improve the wear resistance of the sintered body and toughen the sintered body by dispersing it in the sintered body, and its content is 10 to 50% by volume. If it is less than 10% by volume, a sintered body having sufficient wear resistance cannot be obtained, and the toughness cannot be improved by dispersing fine diamond particles. If it exceeds 50% by volume, the densification of the binder phase is hindered and a dense sintered body cannot be obtained. The fine-grained diamond used here has an average grain size of 1 to 40 μm. If the particle size is less than 1 μm, the wear resistance decreases, and if it exceeds 40 μm, the strength of the tool cutting edge decreases, the tool cutting edge is damaged, and the tool life of the tool obtained from this sintered body is shortened, which is not preferable.

【0014】本願の第2の発明は第1の発明の工具用焼
結体の製造方法である。ここで用いる原料は、周期律表
の第4a、5a、6a族のいずれかの遷移金属の炭化
物、窒化物、硼化物もしくはこれらの混合物またはこれ
らの固溶体20〜85容量%と、鉄族金属2〜30容量
%と、粒径1〜40μmの微粒ダイヤモンド10〜50
容量%である。これらを上記割合で配合した理由は、こ
れまで説明したところと同様である。
A second invention of the present application is a method for manufacturing a sintered body for a tool of the first invention. The raw materials used here are carbides, nitrides, borides or mixtures thereof of transition metals of any of Groups 4a, 5a and 6a of the periodic table or 20 to 85% by volume of solid solution thereof, and iron group metal 2 ˜30% by volume and 10 to 50 fine diamond particles with a particle size of 1 to 40 μm
The capacity is%. The reason for blending these in the above proportions is the same as described above.

【0015】これらの原料混合物は、ボールミル等によ
って混合され、これを粉末のまま或いは型押し成形の
後、熱間静水圧プレス(HIP)装置、ピストンシリン
ダー装置等の高温高圧発生装置で950〜1150℃、
1〜30kbの熱力学的に黒鉛の安定な領域で固相焼結
する。これによって原料中に分散した微粒ダイヤモンド
は、鉄族金属のもつ触媒作用によって表面より微量相転
移して黒鉛化し、鉄族金属中またはその表面に微粉カー
ボンが析出し結合相が強靭化する。そして、その焼結条
件は市販のダイヤモンド焼結体の焼結条件に比較して温
度圧力ともに著しく低いものである。
These raw material mixtures are mixed by a ball mill or the like, and the raw material mixture is powdered or pressed and then is subjected to hot isostatic pressing (HIP) device, high temperature and high pressure generating device such as piston cylinder device and the like at 950 to 1150. ℃,
Solid-phase sintering is performed in a thermodynamically stable region of graphite of 1 to 30 kb. As a result, the fine-grained diamond dispersed in the raw material undergoes a minute amount of phase transition from the surface to be graphitized by the catalytic action of the iron group metal, and fine carbon particles are precipitated in the iron group metal or on the surface thereof to strengthen the binder phase. The sintering conditions are significantly lower in temperature and pressure than the sintering conditions of commercially available diamond sintered bodies.

【0016】圧力および温度に関する熱力学的な黒鉛安
定領域とダイヤモンド安定領域は図1に示す通りであ
る。温度が950℃未満では焼結体は緻密化せず、また
1150℃を超える場合は、著しいダイヤモンドの相転
移が起こり黒鉛が多量に生じ、ダイヤモンド固有の耐摩
耗性が損なわれ好ましくない。
Thermodynamic graphite stable regions and diamond stable regions with respect to pressure and temperature are shown in FIG. If the temperature is lower than 950 ° C., the sintered body will not be densified, and if it exceeds 1150 ° C., a remarkable diamond phase transition will occur, a large amount of graphite will be generated, and abrasion resistance peculiar to diamond will be deteriorated, which is not preferable.

【0017】圧力が1kb未満では、950〜1150
℃の温度領域において結合相が緻密化しないため、高密
度の焼結体が得られない。また圧力が30kbを超える
と、ダイヤモンド安定領域における焼結となるため、ダ
イヤモンドの相転移に伴う結合相の強靭化がなされない
ので好ましくない。
When the pressure is less than 1 kb, 950 to 1150
Since the binder phase is not densified in the temperature range of ° C, a high density sintered body cannot be obtained. On the other hand, if the pressure exceeds 30 kb, sintering will occur in the diamond stable region, and the binder phase will not be toughened due to the phase transition of diamond, which is not preferable.

【0018】本発明の工具用焼結体では、X線回折では
黒鉛のピークはほとんど認められなかったが、透過型電
子顕微鏡(TEM)およびオージュ電子分光法等で観察
することにより、ダイヤモンド近傍の結合相を形成する
鉄族金属中またはその表面にナノメートルオーダーの非
常に微細なカーボンが析出しているのが認められた。こ
のようなカーボンは市販されているWC−Co超硬合
金、サーメットおよびダイヤモンド焼結体の鉄族金属中
またはその表面には認められない。
In the sintered body for a tool of the present invention, the peak of graphite was hardly recognized in the X-ray diffraction, but by observing with a transmission electron microscope (TEM) and Auger electron spectroscopy, it was confirmed that It was confirmed that very fine carbon of nanometer order was deposited in the iron group metal forming the binder phase or on the surface thereof. Such carbon is not found in or on the surface of the iron group metal of commercially available WC-Co cemented carbide, cermet and diamond sintered body.

【0019】本発明の工具用焼結体で結合相が強靭化さ
れる理由については必ずしも明らかではないが、以下の
ように推測される。すなわち、微粒カーボンの析出によ
って、それがピン止め的作用をして鉄族金属中またはそ
の表面での転移の移動を抑制し、これらによってマクロ
的に微小亀裂の進行を止め焼結体全体として強靭化され
たものと考えられる。
The reason why the binder phase is toughened in the sintered body for a tool of the present invention is not necessarily clear, but it is presumed as follows. In other words, by the precipitation of fine carbon, it acts as a pin to suppress the movement of transition in the iron group metal or on the surface thereof, and by these, the progress of microcracks is macroscopically stopped and the overall sintered body is tough. It is considered to have been converted.

【0020】また、TEM観察によると、市販WC−C
o超硬合金、サーメットおよびダイヤモンド焼結体中の
鉄族金属結晶粒がサブミクロン以上で大きいものでは数
百ミクロンもあるのに対し、本発明の工具用焼結体の場
合は、液相の生じない低温度で焼結されることおよび上
述の微粒カーボンの析出により、鉄族金属結晶粒の大き
さが非常に小さくサブミクロン以下であることが認めら
れた。これにより鉄族金属中またはその表面の応力集中
がなく、これも強靭化の理由の一つであると考えられ
る。
According to TEM observation, the commercially available WC-C
o If the iron group metal crystal grains in the cemented carbide, cermet or diamond sintered body are submicron or larger and are as large as several hundreds of microns, in the case of the sintered body for tools of the present invention, It was found that the size of the iron group metal crystal grains was very small and less than submicron due to the sintering at a low temperature which does not occur and the precipitation of the fine carbon particles described above. As a result, there is no stress concentration in the iron group metal or on the surface thereof, which is considered to be one of the reasons for strengthening.

【0021】さらに、焼結条件が市販ダイヤモンドの焼
結時(圧力50kb以上、温度1400℃以上)に比較
して、温度、圧力とともに著しく低いため、本発明焼結
体内部に焼結過程において生成する歪の小さいとも考え
られ、これも強靭化に寄与しているものと考えられる。
Furthermore, since the sintering conditions are significantly lower with temperature and pressure than when commercially available diamond is sintered (pressure of 50 kb or more, temperature of 1400 ° C. or more), it is produced inside the sintered body of the present invention during the sintering process. It is also considered that the strain is small, which is also considered to contribute to strengthening.

【0022】第3の発明は、前項記載原料中の鉄族金属
の代わりに鉄族金属の酸化物を鉄族金属換算で2〜30
容量%混合し、この原料混合物を温度500〜900℃
の還元雰囲気中で還元処理したのち焼結するものであ
る。これによって焼結体の抗折力すなわち強度を一段と
上げることが出来る。鉄族金属の配合比を鉄族金属換算
で2〜30容量%とした理由は、請求項1で述べた理由
と同様である。
A third invention is to replace the iron group metal in the raw material described in the preceding paragraph with an oxide of the iron group metal in the range of 2 to 30 in terms of the iron group metal.
% By volume, and mix this raw material mixture at a temperature of 500 to 900 ° C.
In the reducing atmosphere, the material is reduced and then sintered. As a result, the transverse rupture strength, that is, the strength of the sintered body can be further increased. The reason why the mixing ratio of the iron group metal is set to 2 to 30% by volume in terms of the iron group metal is the same as the reason described in claim 1.

【0023】還元雰囲気は水素雰囲気が好ましく、処理
温度は500〜900℃である。これが500℃未満で
は鉄族金属の酸化物が還元されず、また900℃を超え
る温度では原料ダイヤモンド表面より著しい相転移が起
こり、黒鉛が多量に生じるため好ましくない。この還元
処理によって下記の反応が進行する。
The reducing atmosphere is preferably a hydrogen atmosphere, and the processing temperature is 500 to 900 ° C. If it is less than 500 ° C., the oxide of the iron group metal is not reduced, and if it exceeds 900 ° C., a remarkable phase transition occurs from the surface of the raw material diamond, and a large amount of graphite is generated, which is not preferable. The following reaction proceeds by this reduction treatment.

【0024】M−O+H2 → M+H2 O ここでMは鉄族金属である。この鉄族金属の酸化物は、
結合相への分散性を考慮して粒径1μm以下のものが好
ましい。このような鉄族金属の酸化物を鉄族金属の代わ
りに使用することによって、焼結体強度が向上する理由
は次のように考えられる。
M−O + H 2 → M + H 2 O Here, M is an iron group metal. This iron group metal oxide is
In consideration of dispersibility in the binder phase, those having a particle size of 1 μm or less are preferable. The reason why the strength of the sintered body is improved by using the iron group metal oxide instead of the iron group metal is considered as follows.

【0025】通常のボールミル等の混合方法では、原料
の混合と同時に多少の粉砕がなされるが、Co等の鉄族
金属はその固有の展性、延性ゆえに混合時に金属粒子同
士が水アメのように接着しやすいといった問題があっ
た。一方、混合時に鉄族金属の酸化物を用いると、酸化
物は破砕性がよいので酸化物同士が接着することなく均
一に混合され、還元処理を経た鉄族金属は均一に組織中
に分散することになる。これによって、この焼結体が強
度が向上するものと考えられる。なお、ここで使用する
鉄族金属酸化物の原料粒径は、平均粒径3μm以下好ま
しくは0.5μm以下である。
In a conventional mixing method using a ball mill or the like, some mixing is performed at the same time as the raw materials are mixed. However, the iron group metal such as Co has a unique malleability and ductility, so that the metal particles are likely to be like water candy during mixing. There was a problem that it was easy to adhere to. On the other hand, when an oxide of an iron group metal is used during mixing, the oxide has good friability, so that the oxides are mixed uniformly without adhering to each other, and the iron group metal that has undergone the reduction treatment is uniformly dispersed in the structure. It will be. It is considered that this improves the strength of the sintered body. The raw material particle size of the iron group metal oxide used here is 3 μm or less in average particle size, and preferably 0.5 μm or less.

【0026】第4の発明は、基本組成がWC−Coであ
る超硬合金の原料を成形した基板、或いはMoを主成分
とする(Mo,W)Cと鉄族金属とでなるサーメットの
原料を成形した基板と、請求項2で用いる原料混合物を
成形した成形板を積層配置し、これらを同時に高温高圧
下にて焼結、接合したものである。
A fourth invention is a substrate obtained by molding a raw material of cemented carbide having a basic composition of WC-Co, or a raw material of cermet consisting of (Mo, W) C containing Mo as a main component and an iron group metal. A substrate formed by molding and a molding plate formed by molding the raw material mixture used in claim 2 are laminated and arranged, and these are simultaneously sintered and bonded under high temperature and high pressure.

【0027】前者の基板となる基本組成がWC−Coで
ある超硬合金の原料を成形した基板、或いはMoを主成
分とする(Mo,W)Cと鉄族金属とでなるサーメット
の原料を成形した基板は、いずれも靭性、剛性、熱伝導
性および耐蝕性に優れ、切削工具として使用するのに適
している。
The former substrate is a substrate formed by molding a raw material of cemented carbide whose basic composition is WC-Co, or a raw material of cermet consisting of (Mo, W) C containing Mo as a main component and an iron group metal. The formed substrates are all excellent in toughness, rigidity, thermal conductivity and corrosion resistance, and are suitable for use as a cutting tool.

【0028】この工具用焼結体は、焼結温度が950〜
1150℃と低温度にて得られるが、通常の超硬合金、
サーメット或いは市販ダイヤモンド焼結体の焼結プロセ
スにおいて認められるような液相は出現しないで十分に
固相焼結する。しかも、ダイヤモンドを含む硬質層と他
の基板層とが同時に焼結し、基板層が硬質層に比較して
高強度であるため一体物として強度を一段と上げること
が出来る。
The sintering temperature of this tool sintered body is from 950 to 950.
It can be obtained at low temperature of 1150 ℃
The liquid phase does not appear as observed in the sintering process of the cermet or the commercially available diamond sintered body, and the solid phase sintering is sufficient. Moreover, since the hard layer containing diamond and the other substrate layer are simultaneously sintered and the substrate layer has a higher strength than the hard layer, the strength can be further increased as an integrated body.

【0029】また、ダイヤモンドを含む硬質層に比較し
て基板層は著しく加工が容易であるため、工具製作のた
めコストが低減できるなどのメリットがある。ダイヤモ
ンドを含む硬質層の厚さは、経済性、工具仕様および強
度を考慮して決定すればよく、それぞれ0.5mm以上あ
れば十分である。
Further, since the substrate layer is significantly easier to process than the hard layer containing diamond, there is an advantage that the cost can be reduced because the tool is manufactured. The thickness of the hard layer containing diamond may be determined in consideration of economical efficiency, tool specifications and strength, and 0.5 mm or more is sufficient for each.

【0030】以下に実験例をあげて、この発明の原料配
合比、微粒ダイヤモンド、焼結温度、焼結圧力などにつ
いてさらに説明する。なお、結合相を形成する原料は、
平均粒径0.8μmの炭化タングステン(WC)および
平均粒径1.0μmの高純度コバルト(Co)を用い
た。
The raw material mixture ratio, fine diamond particles, sintering temperature, sintering pressure, etc. of the present invention will be further described below with reference to experimental examples. The raw materials for forming the binder phase are
Tungsten carbide (WC) having an average particle size of 0.8 μm and high-purity cobalt (Co) having an average particle size of 1.0 μm were used.

【0031】また、WC、Coおよび微粒ダイヤモンド
の原料配合比を、図に表記する都合上、一部で重量比を
用いた。なお、WC、Co、ダイヤモンドの各粉末の真
比重測定値は次の通りで、これらの真比重測定値から、
それぞれの重量比と容量比が換算される。
Further, the raw material compounding ratios of WC, Co, and fine-grained diamond were partially weighted for convenience of notation in the figure. The true specific gravity measured values of the powders of WC, Co and diamond are as follows. From these true specific gravity measured values,
The weight ratio and volume ratio of each are converted.

【0032】WC;15.60g/cm3 ,Co;8.9
0g/cm3 ,ダイヤモンド;3.5g/cm3 実験例1 この実験は、原料配合物中のCo配合比(vol%)と
焼結体の相対密度(%)との関係を調べたものである。
結合相を形成するWC−Coと微粒ダイヤモンドとの配
合比は3種とし、重量比で95.0:5.0,同、9
0.5:9.5,同、86.4:13.6とした。微粒
ダイヤモンドはいずれも粒径7μmのものを用いた。
WC: 15.60 g / cm 3 , Co: 8.9
0 g / cm 3 , diamond; 3.5 g / cm 3 Experimental Example 1 In this experiment, the relationship between the Co blending ratio (vol%) in the raw material blend and the relative density (%) of the sintered body was examined. is there.
The compounding ratio of WC-Co forming the binder phase and the fine-grained diamond is 3 kinds, and the weight ratio is 95.0: 5.0.
0.5: 9.5, same, 86.4: 13.6. The fine diamond particles each had a particle size of 7 μm.

【0033】上記原料をポットミルで十分混合して得た
原料混合物を、焼結圧力10kb、焼結温度1050
℃、加熱保持時間10分で焼結体を得た。結果は図2の
通りであった。図2から、いずれの微粒ダイヤモンドの
配合比においても、Coの配合比は2容量%以上必要な
ことが明らかである。
A raw material mixture obtained by thoroughly mixing the above raw materials with a pot mill was used, and the sintering pressure was 10 kb and the sintering temperature was 1050.
A sintered body was obtained at a temperature of 10 ° C. for 10 minutes. The results are shown in FIG. From FIG. 2, it is clear that the compounding ratio of Co is required to be 2% by volume or more for any compounding ratio of fine diamond.

【0034】実験2 この実験は、得られた焼結体を切削チップに加工し、こ
れでセメントモルタルを切削し、その結果からCo配合
比(容量%)と工具寿命(分)との関係を調べたもので
ある。
Experiment 2 In this experiment, the obtained sintered body was processed into a cutting tip, and cement mortar was cut with the cutting tip. From the result, the relationship between the Co compounding ratio (volume%) and the tool life (minute) was shown. This is what I examined.

【0035】結合相を形成するWC−Coと微粒ダイヤ
モンドとの配合比は実験1と同じの3種とし、Co配合
比を実験1と同様に種々に変化させた。実験1と同様に
原料をポットミルで十分混合して得た原料混合物を焼結
圧力10kb、焼結温度1050℃、加熱保持時間10
分で焼結した。焼結体から製作した切削チップの形状
は、ISO ミリ呼びTNGN 160304 である。
The composition ratio of WC-Co forming the binder phase and fine diamond was set to the same three kinds as in Experiment 1, and the Co composition ratio was variously changed as in Experiment 1. Similar to Experiment 1, the raw material mixture obtained by thoroughly mixing the raw materials with a pot mill was used, and the sintering pressure was 10 kb, the sintering temperature was 1050 ° C., and the heating holding time was 10
Sintered in minutes. The shape of the cutting tip produced from the sintered body is ISO millimeter nominal TNGN 160304.

【0036】被削材はセメントモルタルで、ポルトラン
ドセメント1に対し標準砂を2の容量割合で混合し、水
をセメントに対し65重量%加え、28日間水中養生し
たものである。
The work material was cement mortar, which was prepared by mixing standard sand with Portland cement 1 at a volume ratio of 2 and adding 65% by weight of water to the cement, followed by curing in water for 28 days.

【0037】切削速度を50m/分、切込みを0.5m
m、送りを0.13mm/回転とし、平均逃げ面摩耗幅が
0.3mmとなったところで寿命とした。結果は図3に示
す通りであった。図3から明らかなように、Coの配合
比を2〜30容量%とすることで、この焼結体から優れ
た工具寿命を有した切削工具を得ることが出来る。前記
の実験1と合わせると、鉄族金属は2〜30容量%の範
囲がよいことが分かる。
Cutting speed 50 m / min, depth of cut 0.5 m
m, feed was 0.13 mm / revolution, and life was determined when the average flank wear width was 0.3 mm. The result was as shown in FIG. As is clear from FIG. 3, a cutting tool having an excellent tool life can be obtained from this sintered body by setting the compounding ratio of Co to 2 to 30% by volume. In combination with Experiment 1 described above, it is found that the iron group metal is preferably in the range of 2 to 30% by volume.

【0038】実験3 この実験は微粒ダイヤモンド配合比(vol%)と焼結
体の相対密度(%)の関係を調べたものである。
Experiment 3 In this experiment, the relationship between the compounding ratio of fine diamond particles (vol%) and the relative density (%) of the sintered body was investigated.

【0039】WC:Coの配合比を、重量比で94.
7:5.3,同、89.5:10.5,同、84.2:
15.8の3種とした。微粒ダイヤモンドの容量比(v
ol%)は図4に示すように変化させた。微粒ダイヤモ
ンドの粒度は7μmとした。
The compounding ratio of WC: Co is 94.
7: 5.3, ibid, 89.5: 10.5, ibid, 84.2:
There are 3 types of 15.8. Capacity ratio of fine diamond (v
ol%) was changed as shown in FIG. The grain size of fine diamond was 7 μm.

【0040】この原料混合物をポットミルで十分混合
し、これを焼結圧力10kb、焼結温度1050℃、加
熱保持時間10分で焼結した。得られた焼結体の相対密
度(%)を測定し、ダイヤモンド容量比(vol%)と
の関係で求めた。結果は図4に示す通りである。図4か
ら、微粒ダイヤモンドの容量比が50%以下においての
み焼結体は緻密化していることが明らかである。
This raw material mixture was thoroughly mixed with a pot mill, and this was sintered at a sintering pressure of 10 kb, a sintering temperature of 1050 ° C., and a heating and holding time of 10 minutes. The relative density (%) of the obtained sintered body was measured and determined in relation to the diamond volume ratio (vol%). The result is as shown in FIG. From FIG. 4, it is clear that the sintered body is densified only when the volume ratio of the fine-grained diamond is 50% or less.

【0041】実験4 この実験は、焼結体から切削チップに加工し、これでセ
メントモルタルを切削したときの、微粒ダイヤモンド配
合比(vol%)と工具寿命(分)の関係を調べたもの
である。
Experiment 4 In this experiment, the relationship between the fine diamond blending ratio (vol%) and the tool life (min) was investigated when a cutting tip was processed from a sintered body and cement mortar was cut with this. is there.

【0042】原料混合物のWC:Coは、重量比で8
9.5:10.5と一定とした。微粒ダイヤモンド容量
比を種々に変化させた。なお、微粒ダイヤモンドの粒径
は7μmとした。原料混合物を、実験1と同様にポット
ミルで十分混合し焼結した。焼結圧力は、5kb、10
kb、20kbの3種とした。焼結温度はいずれも10
50℃、加熱保持時間はいずれも10分とした。
The WC: Co of the raw material mixture is 8 by weight.
It was fixed at 9.5: 10.5. The volume ratio of fine diamond was changed variously. The particle size of the fine-grained diamond was 7 μm. The raw material mixture was thoroughly mixed and sintered in a pot mill as in Experiment 1. Sintering pressure is 5 kb, 10
There were 3 types of kb and 20 kb. The sintering temperature is 10
The temperature was 50 ° C. and the heating and holding time was 10 minutes in each case.

【0043】切削チップの形状は、実験2と同様にISO
ミリ呼びTNGN 160304 とし、被削材についても実験2と
同様にして得たセメントモルタルとした。切削速度を5
0m/分、切込みを0.5mm、送りを0.13mm/回転
とし、平均逃げ面摩耗幅が0.3mmとなったところで寿
命とし、これらについても実験2と同様にした。結果は
図5に示す通りであった。図5から明らかなように、微
粒ダイヤモンドの容量比は10〜50容量%において良
好な結果を得ていることが明らかである。
The shape of the cutting tip was ISO as in Experiment 2.
Cement mortar obtained in the same manner as in Experiment 2 was used as the work material. Cutting speed is 5
The life was determined when the average flank wear width was 0.3 mm at 0 m / min, the depth of cut was 0.5 mm, the feed was 0.13 mm / revolution, and these were the same as in Experiment 2. The result was as shown in FIG. As is clear from FIG. 5, it is clear that good results are obtained when the volume ratio of the fine-grained diamond is 10 to 50% by volume.

【0044】なお、微粒ダイヤモンドの容量比が10%
未満では、機械的な定常摩耗以外に工具刃先の損傷が認
められた。これは微粒ダイヤモンドの容量比が10%未
満では焼結体がダイヤモンド粒子による分散強化がされ
ず、刃先の靭性が低下したものとして理解される。実験
3と合わせると、微粒ダイヤモンドの容量比は、10〜
50容量%で良好な焼結体を得ることが出来る。
The volume ratio of fine diamond is 10%.
Below, damage to the cutting edge of the tool was recognized in addition to steady mechanical wear. It is understood that this is because when the volume ratio of fine-grained diamond is less than 10%, the sintered body is not dispersed and strengthened by the diamond particles, and the toughness of the cutting edge is lowered. When combined with Experiment 3, the volume ratio of fine diamond is 10 to 10.
A good sintered body can be obtained with 50% by volume.

【0045】実験5 この実験は微粒ダイヤモンド粒径(μm)と工具寿命
(分)の関係を調べたものである。この実験では原料混
合物のWC:Co:微粒ダイヤモンドの比率を、重量比
で81.0:9.5:9.5、容量比で57.8:1
2.0:30.2と一定にし、ここに用いる微粒ダイヤ
モンドの粒径を種々に変化させた。
Experiment 5 In this experiment, the relationship between the fine diamond particle size (μm) and the tool life (min) was investigated. In this experiment, the ratio of WC: Co: fine diamond in the raw material mixture was 81.0: 9.5: 9.5 by weight and 57.8: 1 by volume.
The particle size of the fine-grained diamond used here was variously changed while keeping the ratio constant at 2.0: 30.2.

【0046】この原料混合物を用い、実験2と同様にし
て焼結体を得てこれより切削チップを作製した。被削材
も実験2と同じものを用い、その工具寿命を調べた。結
果を図6に示した。図6から明らかなように、焼結圧力
が5〜20kbの範囲全ての場合に、微粒ダイヤモンド
は粒径1〜40μmの範囲のもので、工具寿命が良好で
あることが明らかである。
Using this raw material mixture, a sintered body was obtained in the same manner as in Experiment 2, and a cutting tip was produced therefrom. The same work material as in Experiment 2 was used, and the tool life was examined. The results are shown in Fig. 6. As is clear from FIG. 6, when the sintering pressure is all in the range of 5 to 20 kb, the fine grain diamond has a grain size in the range of 1 to 40 μm, and it is clear that the tool life is good.

【0047】なお、微粒ダイヤモンドの粒径が40μm
を超える場合、工具寿命が低下しているのは、微粒ダイ
ヤモンドが大きすぎるため刃先強度が低下したものと理
解される。
The grain size of fine diamond is 40 μm.
It is understood that the tool life is shortened when the value exceeds 0.1 because the fine diamond particles are too large and the cutting edge strength is reduced.

【0048】実験6 この実験は、原料配合比を一定にして、焼結温度(℃)
と焼結体の相対密度(%)の関係を調べたものである。
即ち、原料配合比は、重量比でWC:Co:微粒ダイヤ
モンドを81.0:9.5:9.5、容量比で57.
8:12.0:30.2とした。微粒ダイヤモンドは粒
径7μmのものを用いた。
Experiment 6 In this experiment, the sintering temperature (° C.) was kept constant with the raw material mixture ratio kept constant.
And the relative density (%) of the sintered body was investigated.
That is, the raw material mixing ratio was WC: Co: fine-grained diamond 81.0: 9.5: 9.5 by weight and 57.
8: 12.0: 30.2. The fine diamond used had a grain size of 7 μm.

【0049】焼結圧力を、5kb、10kb、20kb
の3種とし、加熱保持時間はいずれも10分とした。結
果を図7に示した。同図に示すように、焼結圧力を変え
ても、焼結温度が950〜1150℃においてのみ焼結
体が緻密化していることが認められる。なお、ここで焼
結温度が950℃未満では結合相が緻密化せず、また1
150℃を超える温度では微粒ダイヤモンドの著しい黒
鉛化により密度が低下したことが明らかである。
The sintering pressure is 5 kb, 10 kb, 20 kb.
And the heating and holding time was set to 10 minutes. The results are shown in Fig. 7. As shown in the figure, it is recognized that the sintered body is densified only at the sintering temperature of 950 to 1150 ° C. even if the sintering pressure is changed. If the sintering temperature is lower than 950 ° C, the binder phase will not be densified.
It is clear that at a temperature above 150 ° C., the density was reduced due to the remarkable graphitization of fine-grained diamond.

【0050】実験7 この実験は、原料配合比を変えたものにつき、焼結圧力
を一定にして、焼結温度と相対密度の関係を調べたもの
である。なお、焼結圧力を10kb、加熱保持時間を1
0分とした。
Experiment 7 In this experiment, the relationship between the sintering temperature and the relative density was examined with the sintering pressure kept constant for the materials having different raw material mixing ratios. The sintering pressure is 10 kb and the heating and holding time is 1
It was set to 0 minutes.

【0051】原料配合比は3種用い、WC:Co:微粒
ダイヤモンドの比を、重量比で85.0:10.0:
5.0(容量比で68.1:14.1:17.8),重
量比で81.0:9.5:9.5(容量比で57.8:
12.0:30.2),重量比で77.3:9.1:1
3.6(容量比で50.2:10.4:39.4)とし
た。微粒ダイヤモンドは粒径7μmのものを用いた。結
果を図8に示した。図8から、原料混合物中の微粒ダイ
ヤモンドの配合比を変えても、焼結温度が950〜11
50℃の範囲で最も緻密化した焼結体が得られることが
明らかである。
Three kinds of raw material compounding ratios are used, and a weight ratio of WC: Co: fine-grained diamond is 85.0: 10.0 :.
5.0 (volume ratio 68.1: 14.1: 17.8), weight ratio 81.0: 9.5: 9.5 (volume ratio 57.8:
12.0: 30.2), 77.3: 9.1: 1 by weight.
It was set to 3.6 (50.2: 10.4: 39.4 in volume ratio). The fine diamond used had a grain size of 7 μm. The results are shown in Fig. 8. From FIG. 8, even if the compounding ratio of the fine-grained diamond in the raw material mixture was changed, the sintering temperature was 950 to 11
It is clear that the most densified sintered body can be obtained in the range of 50 ° C.

【0052】実験8 この実験は、原料配合比を変えたものにつき、焼結圧力
を一定とし、焼結温度(℃)とビッカース硬度(kg/ mm
2 )の関係を調べたものである。なお、焼結圧力を10
kb、加熱保持時間を10分とした。
Experiment 8 In this experiment, the sintering pressure was kept constant and the sintering temperature (° C.) and the Vickers hardness (kg / mm) were obtained with the raw material mixture ratio changed.
This is a study of the relationship in 2 ). The sintering pressure is 10
The heating time was 10 minutes.

【0053】原料配合比は3種用い、WC:Co:微粒
ダイヤモンドの比を、重量比で85.7:4.8:9.
5(容量比で62.9:6.1:31.0),重量比で
81.0:9.5:9.5(容量比で57.8:12.
0:30.2),重量比で76.2:14.3:9.5
(容量比で53.1:17.4:29.5)とした。微
粒ダイヤモンドは7μmのものを用いた。結果を図9に
示す。図9から明らかなように、WC、Co、ダイヤモ
ンドの配合比を変えても、焼結温度が950〜1150
℃の範囲で高いビッカース硬度の焼結体を得ることが出
来る。実験5〜7の結果と合わせると、焼結温度として
は950〜1150℃の範囲が好ましいことが分かる。
Three raw material mixing ratios were used, and the weight ratio of WC: Co: fine-grained diamond was 85.7: 4.8: 9.
5 (volume ratio 62.9: 6.1: 31.0), weight ratio 81.0: 9.5: 9.5 (volume ratio 57.8: 12.
0: 30.2), and the weight ratio is 76.2: 14.3: 9.5.
(The volume ratio is 53.1: 17.4: 29.5). The fine diamond used was 7 μm. The results are shown in Fig. 9. As is clear from FIG. 9, even if the composition ratio of WC, Co and diamond is changed, the sintering temperature is 950 to 1150.
It is possible to obtain a sintered body having a high Vickers hardness in the range of ° C. When combined with the results of Experiments 5 to 7, it is found that the sintering temperature is preferably in the range of 950 to 1150 ° C.

【0054】実験9 この実験は、原料配合比を変えたものにつき、焼結温度
を一定とし、焼結圧力(kb)と相対密度(%)の関係
を調べたものである。なお、焼結温度を1050℃、加
熱保持時間を10分とした。
Experiment 9 In this experiment, the relationship between the sintering pressure (kb) and the relative density (%) was investigated under the condition that the sintering temperature was constant and the mixing ratio of the raw materials was changed. The sintering temperature was 1050 ° C. and the heating and holding time was 10 minutes.

【0055】原料配合比は3種用い、WC:Co:微粒
ダイヤモンドの比を、重量比で85.0:10.0:
5.0(容量比で68.1:14.1:17.8),重
量比で81.0:9.5:9.5(容量比で57.8:
12.0:30.2),重量比で77.3:9.1:1
3.6(容量比で50.2:10.4:39.4)とし
た。微粒ダイヤモンドは粒径7μmのものを用いた。結
果を図10および図11に示す。なお、図11は図10
の横軸の焼結圧力(kb)の0ないし5の範囲を拡大し
て示した部分図である。図10および図11から明らか
なように、微粒ダイヤモンドの配合比が変化しても焼結
圧力が1kb以上においてのみ緻密な焼結体が得られる
ことが分かる。
Three raw material mixing ratios were used, and the weight ratio of WC: Co: fine-grained diamond was 85.0: 10.0 :.
5.0 (volume ratio 68.1: 14.1: 17.8), weight ratio 81.0: 9.5: 9.5 (volume ratio 57.8:
12.0: 30.2), 77.3: 9.1: 1 by weight.
It was set to 3.6 (50.2: 10.4: 39.4 in volume ratio). The fine diamond used had a grain size of 7 μm. The results are shown in FIGS. 10 and 11. Note that FIG. 11 is similar to FIG.
FIG. 6 is an enlarged partial view showing the range of 0 to 5 of the sintering pressure (kb) on the horizontal axis of FIG. As is clear from FIGS. 10 and 11, it is understood that a dense sintered body can be obtained only when the sintering pressure is 1 kb or more even if the compounding ratio of the fine-grained diamond changes.

【0056】実験10 この実験は、焼結温度を一定とし、微粒ダイヤモンドの
粒径を変化した場合における、焼結圧力(kb)と相対
密度(%)の関係を調べたものである。なお、焼結温度
を1050℃、保持時間を10分とした。
Experiment 10 In this experiment, the relationship between the sintering pressure (kb) and the relative density (%) was examined when the sintering temperature was kept constant and the particle size of the fine diamond particles was changed. The sintering temperature was 1050 ° C. and the holding time was 10 minutes.

【0057】原料混合物は、WC:Co:微粒ダイヤモ
ンドの配合比を、重量比で81.0:9.5:9.5
(容量比で57.8:12.0:30.2)と固定し
た。微粒ダイヤモンドの粒径を、2μm、7μm、14
μmの3種とした。結果を図12および図13に示す。
なお、図13は図12の横軸の焼結圧力(kb)の0な
いし5の範囲を拡大して示した部分図である。図12お
よび図13から明らかなように、微粒ダイヤモンドの粒
径が変化しても、焼結圧力が1kb以上においてのみ緻
密な焼結体を得ることが出来る。
The raw material mixture has a compounding ratio of WC: Co: fine grain diamond of 81.0: 9.5: 9.5 by weight.
(The volume ratio was 57.8: 12.0: 30.2). The particle size of fine diamond is 2 μm, 7 μm, 14
Three types of μm were used. The results are shown in FIGS. 12 and 13.
Note that FIG. 13 is an enlarged partial view showing the range of 0 to 5 of the sintering pressure (kb) on the horizontal axis of FIG. As is clear from FIGS. 12 and 13, even if the particle size of the fine-grained diamond changes, a dense sintered body can be obtained only when the sintering pressure is 1 kb or more.

【0058】実験11 この実験は、原料配合比を一定にして、焼結圧力(k
b)と焼結体の相対密度(%)の関係を調べたものであ
る。即ち、原料配合比は、重量比でWC:Co:微粒ダ
イヤモンドを81.0:9.5:9.5、容量比で5
7.8:12.0:30.2とした。微粒ダイヤモンド
は平均粒径7μmのものを用いた。
Experiment 11 In this experiment, the sintering pressure (k
The relationship between b) and the relative density (%) of the sintered body was investigated. That is, the raw material mixing ratio is WC: Co: fine-grained diamond 81.0: 9.5: 9.5 by weight, and 5 by volume.
7.8: 12.0: 30.2. The fine diamond particles used had an average particle size of 7 μm.

【0059】焼結温度は、1000℃、1050℃、1
100℃の3種として、加熱保持時間はいずれも10分
とした。結果を図14および図15に示した。なお、図
15は図14の横軸の焼結圧力(kb)の0ないし5の
範囲を拡大して示したものである。図14および図15
に示すように、焼結温度をこの発明の範囲内で変化させ
ても、焼結圧力が1kb以上においてのみ緻密な焼結体
が得られることが認められる。
The sintering temperature is 1000 ° C., 1050 ° C., 1
The heat retention time was set to 10 minutes for each of the three types at 100 ° C. The results are shown in FIGS. 14 and 15. Note that FIG. 15 is an enlarged view of the range of 0 to 5 of the sintering pressure (kb) on the horizontal axis of FIG. 14 and 15
It is recognized that even if the sintering temperature is changed within the range of the present invention, a dense sintered body can be obtained only when the sintering pressure is 1 kb or more, as shown in FIG.

【0060】実験12 この実験は、原料配合比を変えたものにつき、焼結温度
を一定として、焼結圧力(kb)と焼結体の抗折力の関
係を調べたものである。なお、焼結温度は1050℃と
し、加熱保持時間を10分とした。
Experiment 12 In this experiment, the relationship between the sintering pressure (kb) and the transverse rupture strength of the sintered body was investigated with the sintering temperature kept constant with the raw material mixture ratio changed. The sintering temperature was 1050 ° C., and the heating and holding time was 10 minutes.

【0061】原料配合比は、重量比でWC:Co:微粒
ダイヤモンドを85.7:4.8:9.5(容量比で6
2.9:6.1:31.0)、重量比で81.0:9.
5:9.5(容量比で57.8:12.0:30.
2)、重量比で76.2:14.3:9.5(容量比で
53.1:17.4:29.5)の3種とした。微粒ダ
イヤモンドはいずれも平均粒径7μmのものを用いた。
抗折力は、JIS R 1601に従い3点曲げ強度(kg/mm 2
を測定して調べた。但し、試験片寸法は焼結体寸法の制
約上、2mm×1.5mm×20mm(10.05mm)とし、
スパンは15mmとした。
The mixing ratio of the raw materials is as follows: WC: Co: fine-grained diamond by weight 85.7: 4.8: 9.5 (volume ratio 6
2.9: 6.1: 31.0), and the weight ratio is 81.0: 9.
5: 9.5 (volume ratio 57.8: 12.0: 30.
2) and 76.2: 14.3: 9.5 by weight (53.1: 17.4: 29.5 by volume). The fine-grained diamond used had an average grain size of 7 μm.
Three-point bending strength (kg / mm 2 ) according to JIS R 1601
Was measured and investigated. However, the size of the test piece is 2 mm x 1.5 mm x 20 mm (10.05 mm) due to the limitation of the size of the sintered body,
The span was 15 mm.

【0062】結果を図16および図17に示した。な
お、図17は図16の横軸の焼結圧力(kb)の0ない
し5の範囲を拡大して示したものである。図16および
図17に示すように、原料配合比がこの発明の範囲内で
変化しても、焼結圧力が1〜30kbの範囲で焼結体の
抗折力、すなわち強度が最も高いことが認められる。
The results are shown in FIGS. 16 and 17. Note that FIG. 17 is an enlarged view of the range of 0 to 5 of the sintering pressure (kb) on the horizontal axis of FIG. As shown in FIG. 16 and FIG. 17, even if the raw material mixture ratio changes within the range of the present invention, the bending strength of the sintered body, that is, the strength is the highest in the sintering pressure range of 1 to 30 kb. Is recognized.

【0063】実験13 この実験は、原料配合比を一定にして、焼結圧力(k
b)と抗折力(kg/mm 2)の関係を調べたものである。
なお、原料配合比は、重量比でWC:Co:微粒ダイヤ
モンドを81.0:9.5:9.5、容量比で57.
8:12.0:30.2で、微粒ダイヤモンドは粒径7
μmのものを用いた。
Experiment 13 In this experiment, the sintering pressure (k
The relationship between b) and transverse rupture strength (kg / mm 2 ) was investigated.
The raw material mixing ratio was WC: Co: fine-grained diamond 81.0: 9.5: 9.5 by weight, and the volume ratio was 57.
8: 12.0: 30.2 with a fine diamond grain size of 7
The thing with a micrometer was used.

【0064】焼結温度は、1000℃、1050℃、1
100℃の3種として、加熱保持時間はいずれも10分
とした。結果を図18および図19に示した。なお、図
19は図18の横軸の焼結圧力(kb)の0ないし5の
範囲を拡大して示したものである。図18および図19
に示すように、焼結温度が変化しても、焼結圧力が1〜
30kbの範囲で焼結体の抗折力、すなわち強度が最も
高いことが認められる。
The sintering temperature is 1000 ° C., 1050 ° C., 1
The heat retention time was set to 10 minutes for each of the three types at 100 ° C. The results are shown in FIGS. 18 and 19. Note that FIG. 19 is an enlarged view of the range of 0 to 5 of the sintering pressure (kb) on the horizontal axis of FIG. 18 and 19
As shown in, even if the sintering temperature changes, the sintering pressure is 1 to
It is recognized that the bending strength, that is, the strength of the sintered body is the highest in the range of 30 kb.

【0065】実験14 この実験は焼結圧力(kb)と工具寿命(分)の関係を
調べたものである。原料混合物のWC:Co:微粒ダイ
ヤモンドの配合を、重量比で81.0:9.5:9.
5、容量比で57.8:12.0:30.2、ダイヤモ
ンドの粒径を7μmと一定にし、焼結圧力を種々に変化
させて焼結体を得た。これらの焼結体から実験4と同様
にして切削チップを作製した。
Experiment 14 In this experiment, the relationship between the sintering pressure (kb) and the tool life (min) was investigated. The raw material mixture was mixed with WC: Co: fine-grained diamond in a weight ratio of 81.0: 9.5: 9.
5, the volume ratio was 57.8: 12.0: 30.2, the particle size of diamond was kept constant at 7 μm, and the sintering pressure was variously changed to obtain a sintered body. Cutting chips were produced from these sintered bodies in the same manner as in Experiment 4.

【0066】被削材は実験4と同じものを用い、実験4
と同じようにしてその工具寿命を調べた。結果を図20
および図21に示した。なお、図21は図20の横軸の
焼結圧力(kb)の0ないし5の範囲を拡大して示した
ものである。図20および図21から明らかなように、
焼結圧力が1〜30kbの範囲で良好な工具寿命を得る
ことが出来る。以上の実験9〜14の結果から、焼結圧
力は1〜30kbで良好な結果の得られることが分か
る。
The same work material as in Experiment 4 was used.
The tool life was examined in the same manner as in. The result is shown in FIG.
21 and FIG. Note that FIG. 21 is an enlarged view of the range of 0 to 5 of the sintering pressure (kb) on the horizontal axis of FIG. As is clear from FIGS. 20 and 21,
Good tool life can be obtained when the sintering pressure is in the range of 1 to 30 kb. From the results of the above Experiments 9 to 14, it is understood that good results can be obtained at a sintering pressure of 1 to 30 kb.

【0067】実験15 この実験は、原料配合比を一定にして、焼結温度(℃)
と得られた焼結体のX線的黒鉛化度(%)の関係を調べ
たものである。
Experiment 15 In this experiment, the sintering temperature (° C.) was kept constant with the raw material mixture ratio kept constant.
And the relationship between the X-ray graphitization degree (%) of the obtained sintered body.

【0068】ここでX線的黒鉛化度は、次式で求めた値
(%)とした。すなわち、得られた焼結体の粉末X線回
折強度において、 X線的黒鉛化度(%)=X線回折強度(黒鉛)/(X線
回折強度(黒鉛)+X線強度(ダイヤモンド)×100 このX線的黒鉛化度が高い程焼結体中に黒鉛が多く存在
することが定性的に分かる。
Here, the X-ray graphitization degree is a value (%) obtained by the following equation. That is, in the powder X-ray diffraction intensity of the obtained sintered body, X-ray graphitization degree (%) = X-ray diffraction intensity (graphite) / (X-ray diffraction intensity (graphite) + X-ray intensity (diamond) × 100 It is qualitatively understood that the higher the X-ray graphitization degree is, the more graphite is present in the sintered body.

【0069】原料配合比は、重量比でWC:Co:微粒
ダイヤモンドを81.0:9.5:9.5、容量比で5
7.8:12.0:30.2とした。微粒ダイヤモンド
は粒径7μmのものを用いた。焼結圧力は、5kb、1
0kb、20kbの3種とし、加熱保持時間はいずれも
10分とした。結果を図22に示した。同図に示すよう
に、この発明におけるいずれの焼結圧力においても、焼
結温度が500℃以上より黒鉛の存在が認められるが、
950〜1150℃の温度領域では黒鉛の存在は殆ど認
められない。この温度領域で黒鉛の存在が殆ど認められ
ないのは、昇温あるいは加熱保持中に生成したカーボン
が鉄族金属中またはその表面に析出したものと理解され
る。そして、その鉄族金属中またはその表面に析出した
カーボンが結合相の強靭化に寄与する。なお、1150
℃を超える場合にはダイヤモンドの黒鉛化が著しいため
X線的に多量の黒鉛が検出されたことが明らかである。
The raw material mixing ratio was WC: Co: fine-grained diamond 81.0: 9.5: 9.5 by weight, and 5 by volume.
7.8: 12.0: 30.2. The fine diamond used had a grain size of 7 μm. Sintering pressure is 5 kb, 1
Three kinds of 0 kb and 20 kb were used, and the heating and holding time was 10 minutes in all cases. The results are shown in Fig. 22. As shown in the figure, at any sintering pressure in the present invention, the presence of graphite is recognized when the sintering temperature is 500 ° C. or higher.
In the temperature range of 950 to 1150 ° C, the existence of graphite is hardly recognized. The fact that the presence of graphite is hardly observed in this temperature range is understood to be that carbon generated during heating or heating and holding was precipitated in the iron group metal or on the surface thereof. Then, the carbon deposited in the iron group metal or on the surface thereof contributes to the strengthening of the binder phase. 1150
It is clear that a large amount of graphite was detected by X-ray because the graphitization of diamond was remarkable when the temperature was higher than ° C.

【0070】実験16 この実験は、本願の第3の発明との関連で行われたもの
で、ここで使用した鉄族金属の酸化物は平均粒径0.2
μmの高純度酸化コバルト(Co34 )である。ここ
で下記の各種原料組成毎に鉄族金属を金属Coの形で混
合すると、酸化Co(Co34 )の形で混合する場合
の抗折力(Kg/mm2 )の違いを比較した。これらの原料
混合物を800℃の水素雰囲気中で還元処理した後高温
高圧処理を行った。焼結圧力は10kb、焼結温度は1
050℃、加熱保持時間は10分とした。
Experiment 16 This experiment was conducted in connection with the third invention of the present application, and the iron group metal oxide used here had an average particle size of 0.2.
It is high-purity cobalt oxide (Co 3 O 4 ) of μm. Here, when iron group metals were mixed in the form of metallic Co for each of the following various raw material compositions, the difference in transverse rupture strength (Kg / mm 2 ) when mixed in the form of Co oxide (Co 3 O 4 ) was compared. . These raw material mixtures were subjected to reduction treatment in a hydrogen atmosphere at 800 ° C. and then subjected to high temperature and high pressure treatment. Sintering pressure is 10 kb, sintering temperature is 1
The heating and holding time was 050 ° C. and 10 minutes.

【0071】原料は3種類を用い、WC:Co:微粒ダ
イヤモンドの配合比を、重量比で85.0:10.0:
5.0(容量比で68.1:14.1:17.8)、重
量比で81.0:9.5:9.5(容量比で57.8:
12.0:30.2)、重量比で17.3:9.1:1
3.6(容量比で50.2:10.4:39.4)で、
微粒ダイヤモンドは粒径7μmのものを用いた。結果を
表1に示した。この表から明らかなように、Co(Co
34 )の形で混合する場合には、金属Coの形で混合
する場合に比較して抗折力が20%以上も向上している
ことが確認された。
Three kinds of raw materials were used, and the weight ratio of WC: Co: fine diamond was 85.0: 10.0:
5.0 (volume ratio 68.1: 14.1: 17.8), weight ratio 81.0: 9.5: 9.5 (volume ratio 57.8:
12.0: 30.2), by weight 17.3: 9.1: 1.
3.6 (50.2: 10.4: 39.4 by volume ratio),
The fine diamond used had a grain size of 7 μm. The results are shown in Table 1. As is clear from this table, Co (Co
It was confirmed that in the case of mixing in the form of 3 O 4 ), the transverse rupture strength was improved by 20% or more as compared with the case of mixing in the form of metallic Co.

【0072】[0072]

【表1】 [Table 1]

【0073】[0073]

【作用】以上にように、遷移金属の炭化物、窒化物、硼
化物もしくはこれらの混合物またはこれらの固溶体およ
び鉄族金属とからなる結合相形成材料と、微粒ダイヤモ
ンドを所定の割合で均一に配合した原料混合物を、熱力
学的に黒鉛の安定な温度、圧力で焼結すると、微粒ダイ
ヤモンドの一部が相転移し、カーボンが鉄族金属中また
はその表面に析出することで、結合相が著しく高靭化お
よび高強度化された工具用焼結体が得られる。
As described above, a binder phase forming material composed of a carbide, a nitride, a boride of a transition metal, or a mixture thereof, or a solid solution thereof and an iron group metal, and fine diamond are uniformly blended at a predetermined ratio. When the raw material mixture is thermodynamically sintered at a stable temperature and pressure of graphite, a part of the fine-grained diamond undergoes a phase transition and carbon precipitates in the iron group metal or on the surface thereof, resulting in a significantly high binder phase. A toughened and high-strength sintered body for tools can be obtained.

【0074】[0074]

【実施例】【Example】

(実施例1〜16)表2に示す結合相形成原料を用い、
微粒ダイヤモンドを配合し、ポットミルで十分に混合し
て得た原料混合物を成形し、直径30mm、厚さ2mmの予
備成形体を得た。この成形体とあらかじめ作成した直径
30mm、厚さ2mmのWC−15wt%Coからなる超硬合
金予備成形体とを積層し、800℃の水素雰囲気中で還
元処理を施した後ピストンシリンダー型高温高圧発生装
置に挿入した。発熱体としては黒鉛ヒ−タを使用し、固
体圧力媒体としてはろう石および六方晶窒化硼素を用い
た。焼結条件は表2に示す通りであり加熱保持時間は1
0分とした。
(Examples 1 to 16) Using the binder phase forming raw materials shown in Table 2,
A raw material mixture obtained by mixing fine diamond particles and thoroughly mixing with a pot mill was molded to obtain a preform having a diameter of 30 mm and a thickness of 2 mm. This compact and a preformed cemented carbide preform of WC-15wt% Co having a diameter of 30 mm and a thickness of 2 mm were laminated and subjected to a reduction treatment in a hydrogen atmosphere at 800 ° C., and then a piston cylinder type high temperature and high pressure. It was inserted into the generator. Graphite heater was used as the heating element, and pyroxene and hexagonal boron nitride were used as the solid pressure medium. The sintering conditions are as shown in Table 2 and the heating and holding time is 1
It was set to 0 minutes.

【0075】なお、鉄族金属酸化物を使用した場合は、
還元した場合の配合比に換算した。回収された焼結体
は、ダイヤモンドを含有する硬質層と超硬合金部分が強
固に一体化したものであった。
When an iron group metal oxide is used,
It was converted to the compounding ratio when reduced. The recovered sintered body was one in which the hard layer containing diamond and the cemented carbide portion were firmly integrated.

【0076】この同時焼結体を放電加工によって切断
し、切削工具および抗折力試験片を作成した。工具形状
は実験2と同様のISO ミリ呼び TNGN 160304であり、抗
折力試験片形状は、JIS R 1601に従った。焼結体寸法の
制約上、試験寸法は2mm×1.5mm×20mm(±0.0
5mm)とし、スパンは15mmとした。
The simultaneous sintered body was cut by electric discharge machining to prepare a cutting tool and a bending strength test piece. The tool shape was ISO millimeter nominal TNGN 160304 similar to Experiment 2, and the bending strength test piece shape was in accordance with JIS R 1601. Due to the size of the sintered body, the test size is 2mm x 1.5mm x 20mm (± 0.0
5 mm) and the span was 15 mm.

【0077】比較のため市販K10種超硬合金および市
販ダイヤモンド焼結体を準備して同様な形状に加工し
た。被削材には実験2と同様のセメントモルタルを使用
した。また、被削材としては切削速度,50m/分、切
込み,0.5mm、送り,0.13mm/回転とし、平均逃
げ面摩耗幅が0.3mmとなったところで寿命とした。抗
折力は、JIS R 1601に従い、3点曲げ強度(kg/mm2
を測定して調べた。切削試験および抗折力試験の結果は
表2に示した。
For comparison, a commercially available K10 type cemented carbide and a commercially available diamond sintered body were prepared and processed into the same shape. The same cement mortar as in Experiment 2 was used as the work material. The work material had a cutting speed of 50 m / min, a depth of cut of 0.5 mm, a feed of 0.13 mm / revolution, and the life was reached when the average flank wear width was 0.3 mm. Flexural strength is in accordance with JIS R 1601, 3-point bending strength (kg / mm 2 )
Was measured and investigated. The results of the cutting test and the transverse rupture strength test are shown in Table 2.

【0078】市販超硬合金チップおよび市販ダイヤモン
ド焼結体チップの場合、逃げ面の摩耗幅が0.1mm程度
において工具刃先が欠損し寿命となったのに対し、本発
明焼結体を用いたチップの場合は工具逃げ面の摩耗状態
は定常摩耗であり工具寿命も大幅に優れていた(表
3)。
In the case of the commercially available cemented carbide chip and the commercially available diamond sintered body chip, the tool edge was broken and the tool life was reached when the flank wear width was about 0.1 mm, whereas the sintered body of the present invention was used. In the case of chips, the wear state of the tool flank was steady wear and the tool life was also significantly superior (Table 3).

【0079】[0079]

【表2】 [Table 2]

【0080】[0080]

【表3】 (実施例17〜25)表3に示す結合相形成原料を用
い、微粒ダイヤモンドを配合しポットミルで十分に混合
して得た原料混合物を成形し、直径30mm、厚さ2mmの
予備成形体を得た。この成形体とあらかじめ作成してお
いた直径30mm、厚さ2mmの(Mo73 )−20wt%
Coとからなるサーメット予備成形体とを積層し、80
0℃の水素雰囲気中で還元処理を施した。この積層成形
体をカプセルとなる80mm角、厚さ0.1mmのステンレ
ス製の薄板間に挟み、成形体とステンレス板の間には離
型のため六方晶窒化硼素粉末を塗布した。これらを真空
容器内に配置し真空中にてステンレス板を溶接し成形体
を封入した。そしてこの成形体を封入したカプセルを熱
間静水圧プレス(HIP)装置に挿入し、昇温,昇圧同
時パターンにて表3に示す焼結条件で30分保持のHI
P処理を行った。なお、鉄金属酸化物を使用した場合
は、還元した場合の配合比に換算した。
[Table 3] (Examples 17 to 25) Using the binder phase forming raw materials shown in Table 3, raw material mixtures obtained by blending fine diamond particles and thoroughly mixing them in a pot mill were obtained to obtain preforms having a diameter of 30 mm and a thickness of 2 mm. It was This molded product and (Mo 7 W 3 ) -20 wt% with a diameter of 30 mm and a thickness of 2 mm prepared in advance
A cermet preform made of Co is laminated to obtain 80
The reduction treatment was performed in a hydrogen atmosphere at 0 ° C. This laminated compact was sandwiched between 80 mm square and 0.1 mm thick stainless steel thin plates to be capsules, and hexagonal boron nitride powder was applied between the compact and the stainless plate for mold release. These were placed in a vacuum container, a stainless plate was welded in a vacuum, and the molded body was enclosed. Then, the capsule encapsulating this compact was inserted into a hot isostatic press (HIP) device, and the HI was held for 30 minutes under the sintering conditions shown in Table 3 in the simultaneous temperature rising and pressurizing pattern.
P treatment was performed. When the iron metal oxide was used, it was converted to the compounding ratio when it was reduced.

【0081】HIP処理後にステンレスカプセルおよび
離型のために用いた六方晶窒化硼素を除去し、焼結体を
回収したところ、ダイヤモンドを含有する硬質層と超硬
合金部が強固に一体化したものであった。
After the HIP treatment, the stainless capsule and the hexagonal boron nitride used for the mold release were removed, and the sintered body was recovered. As a result, the hard layer containing diamond and the cemented carbide portion were firmly integrated. Met.

【0082】この同時焼結体から実施例1〜16と同様
な方法で工具および試験片を作成し、切削試験および抗
折力試験を行った。この結果は表3に示す通りであっ
た。本発明焼結体を用いたチップの場合、工具逃げ面の
摩耗状態は定常摩耗であり、実験例1〜16と同様に、
市販超合金チップおよび市販ダイヤモンド焼結体チップ
に比較して大幅に工具寿命が優れていた。
Tools and test pieces were prepared from this co-sintered body in the same manner as in Examples 1 to 16 and subjected to a cutting test and a bending strength test. The results are shown in Table 3. In the case of the chip using the sintered body of the present invention, the wear state of the tool flank is steady wear, and similar to Experimental Examples 1 to 16,
The tool life was significantly longer than that of the commercially available superalloy chips and commercially available diamond sintered body chips.

【0083】[0083]

【発明の効果】この発明によれば、切削工具材料として
要求される、靭性、強度、加工性、硬度および耐摩耗性
などの全てを満足した工具用焼結体を、熱力学的に黒鉛
の安定な領域である低圧領域で焼結することが出来るの
で、従来のダイヤモンド焼結体と比較して製造コストを
大幅に低下させ、優れた工具用焼結体が出来るようにな
った。
According to the present invention, a sintered body for a tool satisfying all of the toughness, strength, workability, hardness and wear resistance required as a cutting tool material is thermodynamically made of graphite. Since it is possible to sinter in a low pressure region which is a stable region, the manufacturing cost is significantly reduced as compared with the conventional diamond sintered body, and an excellent sintered body for tools can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】圧力および温度に関する熱力学的な黒鉛安定領
域とダイヤモンド安定領域を示す線図。
FIG. 1 is a diagram showing thermodynamically graphitic and diamond stable regions with respect to pressure and temperature.

【図2】原料混合物中の中のCo配合比(vol%)と焼結
体の相対密度(%)との関係を、原料配合比を変えて示
した線図。
FIG. 2 is a diagram showing the relationship between the Co blending ratio (vol%) in the raw material mixture and the relative density (%) of the sintered body, while changing the raw material blending ratio.

【図3】原料混合物中の中のCo配合比(vol%)と工具寿
命(分)との関係を、原料配合比を変えて示した線図。
FIG. 3 is a diagram showing a relationship between a Co blending ratio (vol%) in a raw material mixture and a tool life (min) while changing the raw material blending ratio.

【図4】原料混合物中の微粒ダイヤモンド配合比(vol%)
と焼結体の相対密度(%)との関係を、原料配合比を変
えて示した線図。
[Fig. 4] Mixing ratio of fine-grained diamond in the raw material mixture (vol%)
FIG. 6 is a diagram showing the relationship between the relative density (%) of the sintered body and the raw material mixture ratio.

【図5】原料混合物中の微粒ダイヤモンド配合比(vol%)
と焼結体から作製した切削チップの工具寿命(分)との
関係を、焼結圧力を変えて示した線図。
[Fig. 5] Compounding ratio of fine diamond in the raw material mixture (vol%)
FIG. 6 is a diagram showing the relationship between the tool life (minutes) of a cutting tip manufactured from a sintered body and the sintering pressure varied.

【図6】原料混合物中の微粒ダイヤモンドの粒度(μ
m)とその原料を用いて得られた焼結体から作製された
切削チップの工具寿命(分)との関係を、焼結圧力を変
えて示した線図。
FIG. 6 is the particle size (μ of fine diamond in the raw material mixture.
m) and a tool life (minutes) of a cutting tip produced from a sintered body obtained by using the raw material, with the sintering pressure being changed.

【図7】焼結体を得る際の焼結温度(℃)と得られた焼
結体の相対密度(%)との関係を、焼結圧力を変えて示
した線図。
FIG. 7 is a diagram showing the relationship between the sintering temperature (° C.) when obtaining a sintered body and the relative density (%) of the obtained sintered body, while changing the sintering pressure.

【図8】焼結体を得る際の焼結温度(℃)と得られた焼
結体の相対密度(%)との関係を、原料配合比を変えて
示した線図。
FIG. 8 is a diagram showing the relationship between the sintering temperature (° C.) when obtaining a sintered body and the relative density (%) of the obtained sintered body, while changing the raw material mixture ratio.

【図9】焼結体を得る際の焼結温度(℃)と得られた焼
結体のビッカース硬度(kg/mm2 )との関係を、原料配
合比を変えて示した線図。
FIG. 9 is a diagram showing the relationship between the sintering temperature (° C.) when obtaining a sintered body and the Vickers hardness (kg / mm 2 ) of the obtained sintered body while changing the raw material mixing ratio.

【図10】焼結体を得る際の焼結圧力(kb)と得られ
た焼結体の相対密度(%)との関係を、原料配合比を変
えて示した線図。
FIG. 10 is a diagram showing the relationship between the sintering pressure (kb) when obtaining a sintered body and the relative density (%) of the obtained sintered body, while changing the raw material mixing ratio.

【図11】図10の焼結圧力の0ないし5kbの範囲を
拡大して示す部分拡大図。
FIG. 11 is a partially enlarged view showing a sintering pressure range of 0 to 5 kb in FIG. 10 in an enlarged manner.

【図12】焼結体を得る際の焼結圧力(kb)と得られ
た焼結体の相対密度(%)との関係を、微粒ダイヤモン
ドの粒径を変えて示した線図。
FIG. 12 is a diagram showing the relationship between the sintering pressure (kb) for obtaining a sintered body and the relative density (%) of the obtained sintered body while changing the grain size of fine diamond.

【図13】図12の焼結圧力の0ないし5kbの範囲を
拡大して示す部分拡大図。
FIG. 13 is a partially enlarged view showing the sintering pressure range of 0 to 5 kb in FIG. 12 in an enlarged manner.

【図14】焼結体を得る際の焼結圧力(kb)と得られ
た焼結体の相対密度(%)との関係を、焼結温度を変え
て示した線図。
FIG. 14 is a diagram showing the relationship between the sintering pressure (kb) when obtaining a sintered body and the relative density (%) of the obtained sintered body, while changing the sintering temperature.

【図15】図14の焼結圧力の0ないし5kbの範囲を
拡大して示す部分拡大図。
FIG. 15 is a partially enlarged view showing a sintering pressure range of 0 to 5 kb in FIG. 14 in an enlarged manner.

【図16】焼結体を得る際の焼結圧力(kb)と得られ
た焼結体の抗折力(kg/mm 2 )との関係を、原料配合比
を変えて示した線図。
FIG. 16 is a diagram showing the relationship between the sintering pressure (kb) for obtaining a sintered body and the transverse rupture strength (kg / mm 2 ) of the obtained sintered body, while changing the raw material mixing ratio.

【図17】図16の焼結圧力の0ないし5kbの範囲を
拡大して示す部分拡大図。
FIG. 17 is a partially enlarged view showing a sintering pressure range of 0 to 5 kb in FIG. 16 in an enlarged manner.

【図18】焼結体を得る際の焼結圧力(kb)と得られ
た焼結体の抗折力(kg/mm 2 )との関係を、焼結温度を
変えて示した線図。
FIG. 18 is a diagram showing the relationship between the sintering pressure (kb) for obtaining a sintered body and the transverse rupture strength (kg / mm 2 ) of the obtained sintered body, while changing the sintering temperature.

【図19】図18の焼結圧力の0ないし5kbの範囲を
拡大して示す部分拡大図。
FIG. 19 is a partially enlarged view showing the sintering pressure in the range of 0 to 5 kb in FIG. 18 in an enlarged manner.

【図20】焼結体を得る際の焼結圧力(kb)とその焼
結体から作製した切削チップの工具寿命(分)の関係を
示した線図。
FIG. 20 is a diagram showing a relationship between a sintering pressure (kb) for obtaining a sintered body and a tool life (min) of a cutting tip manufactured from the sintered body.

【図21】図20の焼結圧力の0ないし5kbの範囲を
拡大して示す部分拡大図。
FIG. 21 is a partially enlarged view showing an enlarged range of sintering pressure of 0 to 5 kb in FIG. 20.

【図22】焼結体を得る際の焼結温度(℃)と得られた
焼結体のX線的黒鉛化度(%)との関係を、焼結圧力を
変えて示した線図。
FIG. 22 is a diagram showing the relationship between the sintering temperature (° C.) for obtaining a sintered body and the X-ray graphitization degree (%) of the obtained sintered body, while changing the sintering pressure.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 周期律表の第4a、5a、6a族のいず
れかの遷移金属の炭化物、窒化物、硼化物もしくはこれ
らの混合物またはこれらの固溶体20〜85容量%と、
鉄族金属2〜30容量%と、粒径1〜40μmの微粒ダ
イヤモンド10〜50容量%とからなる焼結体であっ
て、該焼結体を構成する鉄族金属中またはその表面にカ
ーボンが析出していることを特徴とする工具用焼結体。
1. A carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, or a mixture thereof or a solid solution thereof in an amount of 20 to 85% by volume,
A sintered body composed of 2 to 30% by volume of an iron group metal and 10 to 50% by volume of fine-grained diamond having a particle size of 1 to 40 μm, wherein carbon is present in the iron group metal constituting the sintered body or on the surface thereof. A sintered body for tools, which is characterized by being precipitated.
【請求項2】 周期律表の第4a、5a、6a族のいず
れかの遷移金属の炭化物、窒化物、硼化物もしくはこれ
らの混合物またはこれらの固溶体20〜85容量%と、
鉄族金属2〜30容量%と、粒径1〜40μmの微粒ダ
イヤモンド10〜50容量%とを混合した原料混合物を
温度950〜1150℃、圧力1〜30kbで焼結する
ことを特徴とする工具用焼結体の製造方法。
2. A carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, or a mixture thereof or a solid solution thereof in an amount of 20 to 85% by volume,
A tool characterized by sintering a raw material mixture obtained by mixing 2 to 30% by volume of an iron group metal and 10 to 50% by volume of fine diamond particles having a particle size of 1 to 40 μm at a temperature of 950 to 1150 ° C. and a pressure of 1 to 30 kb. For manufacturing sintered body for automobile.
【請求項3】 鉄族金属に代えて鉄族金属の酸化物を、
鉄族金属換算で2〜30容量%混合し、この原料混合物
を温度500〜900℃の還元雰囲気中で還元処理した
のち、温度950〜1150℃、圧力1〜30kbで焼
結することを特徴とする請求項2記載の工具用焼結体の
製造方法。
3. An oxide of an iron group metal in place of the iron group metal,
It is characterized in that the raw material mixture is mixed in a reducing atmosphere at a temperature of 500 to 900 ° C. and then sintered at a temperature of 950 to 1150 ° C. and a pressure of 1 to 30 kb. The method for manufacturing a sintered body for a tool according to claim 2.
【請求項4】 基本組成がWC−Coである超硬合金の
原料を成形した基板またはMoを主成分とする(Mo,
W)Cと鉄族金属とからなるサ−メットの原料を成形し
た基板の上に、周期律表の第4a、5a、6a族のいず
れかの遷移金属の炭化物、窒化物、硼化物もしくはこれ
らの混合物またはこれらの固溶体20〜85容量%と、
鉄族金属2〜30容量%と、粒径1〜40μmの微粒ダ
イヤモンド10〜50容量%とを混合した原料混合物で
成形した成形板を積層し、これを高温高圧下で焼結、接
合したことを特徴とする請求項1記載の工具用焼結体。
4. A substrate formed by molding a raw material of a cemented carbide having a basic composition of WC-Co or having Mo as a main component (Mo,
W) Carbide, nitride, boride of transition metals of any one of Groups 4a, 5a, and 6a of the Periodic Table, or these on a substrate on which a raw material for cermet composed of C and an iron group metal is formed. 20-85% by volume of a solid solution or a solid solution thereof,
Formed plates formed by mixing a raw material mixture in which 2 to 30% by volume of an iron group metal and 10 to 50% by volume of fine-grained diamond having a particle size of 1 to 40 μm are laminated, and sintered and joined under high temperature and high pressure. The sintered body for a tool according to claim 1, wherein:
JP31805193A 1993-02-10 1993-12-17 Sintered compact for tool and its production Pending JPH06306525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31805193A JPH06306525A (en) 1993-02-10 1993-12-17 Sintered compact for tool and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-22937 1993-02-10
JP2293793 1993-02-10
JP31805193A JPH06306525A (en) 1993-02-10 1993-12-17 Sintered compact for tool and its production

Publications (1)

Publication Number Publication Date
JPH06306525A true JPH06306525A (en) 1994-11-01

Family

ID=26360236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31805193A Pending JPH06306525A (en) 1993-02-10 1993-12-17 Sintered compact for tool and its production

Country Status (1)

Country Link
JP (1) JPH06306525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107043882A (en) * 2017-03-17 2017-08-15 昆明理工大学 A kind of preparation method of diamond composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107043882A (en) * 2017-03-17 2017-08-15 昆明理工大学 A kind of preparation method of diamond composite

Similar Documents

Publication Publication Date Title
JP5226522B2 (en) Cubic boron nitride compact
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP6048522B2 (en) Sintered body and cutting tool
JPH09316587A (en) High strength fine-grained diamond sintered compact and tool using the same
JP2004076049A (en) Hard metal of ultra-fine particles
JP6048521B2 (en) Sintered body and cutting tool
JPH11302767A (en) Cemented carbide excellent in mechanical characteristic and its production
JP4227835B2 (en) W-Ti-C composite and method for producing the same
JPH06306525A (en) Sintered compact for tool and its production
JPH0849037A (en) Sintered compact for tool and its production
JP5008789B2 (en) Super hard sintered body
JPH08310867A (en) Production of boride ceramic
JPH07188805A (en) Sintered compact for tool and its production
JPH07195206A (en) Sintered body for tool and manufacture thereof
JPH07188827A (en) Sintered body for tool and its manufacture
JPH0215515B2 (en)
JPH07185907A (en) Sintered body for tool and its manufacture
JPS6137221B2 (en)
JPH07188804A (en) Sintered compact for tool and its production
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH0849036A (en) Sintered body for dressing tool and its production
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPH07197146A (en) Sintered compact for tool and its production
JPH07195207A (en) Sintered body for tool and manufacture thereof
JPH07172923A (en) Production of hard sintered material having high tenacity for tool