JPH07195207A - Sintered body for tool and manufacture thereof - Google Patents

Sintered body for tool and manufacture thereof

Info

Publication number
JPH07195207A
JPH07195207A JP5355229A JP35522993A JPH07195207A JP H07195207 A JPH07195207 A JP H07195207A JP 5355229 A JP5355229 A JP 5355229A JP 35522993 A JP35522993 A JP 35522993A JP H07195207 A JPH07195207 A JP H07195207A
Authority
JP
Japan
Prior art keywords
volume
sintered body
diamond
iron group
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5355229A
Other languages
Japanese (ja)
Inventor
Makoto Kyoda
誠 鏡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP5355229A priority Critical patent/JPH07195207A/en
Publication of JPH07195207A publication Critical patent/JPH07195207A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide a sintered body for tools to satisfy the features required for cutting tool materials, etc., that is, all of toughness, strength, workability, hardness, oxidation resistance at high temperature, reaction resistance, and wear resistance, etc. CONSTITUTION:A sintered body is made up of 10 to 65 volume % carbide, nitride, boride of transition metal of any of 4a, 5a, 6a groups of the perodic table, or a mixture of these substances, or a solid solution, 2 to 30 volume % iron group metal, 5 to 20 volume % of one kind or two or more kinds of Al2O3, Y2O3, MgO, ZrO2, 5 to 20 volume % cubic boron nitride with 10mum or less particle diameter, and 10 to 50 volume % fine-grained diamond of 1 to 40mum particle diameter. In the iron group metal constituting the sintered body, or on its surface, carbon is precipitated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、切削工具等の材料に
好適に用いられる焼結体及びその製造方法に関し、特に
優れた靭性、強度、耐摩耗性などを有する工具用焼結体
及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sintered body suitable for use as a material for a cutting tool and a method for producing the same, and more particularly to a sintered body for a tool having excellent toughness, strength, wear resistance and the like. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】アルミニウム合金、銅合金などの非鉄金
属、セラミックス、コンクリート、ゴム、プラスチック
スなどの非金属材料の切削工具には、優れた靭性、強
度、加工性、硬度、耐摩耗性といったことが要請され
る。現在、切削工具用の材料として広く使用されている
超硬合金、サーメットは、セラミックスと金属との複合
材料であり、かなりの耐摩耗性を有し、靭性、強度、加
工性において優れているが、それでも最近の高速切削化
に対する厳しい要求特性には、必ずしも十分に満足した
ものとは言えなくなっている。
2. Description of the Related Art Cutting tools made of non-ferrous metals such as aluminum alloys and copper alloys, non-metallic materials such as ceramics, concrete, rubber and plastics have excellent toughness, strength, workability, hardness and wear resistance. Is requested. Cermet, which is widely used as a material for cutting tools at present, is a composite material of ceramics and metal, and has considerable wear resistance and excellent toughness, strength, and workability. Even so, it cannot be said that the recent severe requirements for high-speed cutting have been sufficiently satisfied.

【0003】こうした最近の高速切削化の傾向から、切
削工具用材料として2〜20μm程度の微粒ダイヤモン
ド粉末に少量のCo等のバインダーを添加して焼結した
ダイヤモンド焼結体が、超高圧下で製造されることによ
る著しい高価格にもかかわらず、その高い耐摩耗性ゆえ
に注目を集めている。
Due to the recent tendency toward high-speed cutting, a diamond sintered body obtained by adding a small amount of a binder such as Co to a fine-grained diamond powder of about 2 to 20 μm and sintering it as a material for a cutting tool under ultrahigh pressure. Despite its extremely high price due to its manufacture, it has attracted attention due to its high wear resistance.

【0004】しかしながら、ダイヤモンド焼結体切削工
具は、超硬合金などと比較して十分な靭性、強度を備え
たものとは言えず、被削材によってはチッピング摩耗、
刃先破損を起こすといった問題を生じていた。また、市
販されているダイヤモンド焼結体は十分な高温耐酸化性
(耐熱性)を備えていないために、温度上昇を伴なう切
削には使用することができず、またダイヤモンドは鉄系
金属と反応するため、鉄系金属切削時に容易に摩耗が進
行してしまうのが問題となっていた。
However, the diamond sinter cutting tool cannot be said to have sufficient toughness and strength as compared with cemented carbide, and depending on the work material, chipping wear,
There was a problem that the blade edge was damaged. Further, since commercially available diamond sintered bodies do not have sufficient high temperature oxidation resistance (heat resistance), they cannot be used for cutting accompanied by temperature rise, and diamond is an iron-based metal. Therefore, it has been a problem that wear easily progresses during cutting of iron-based metal.

【0005】さらに、ダイヤモンド焼結体の製造工程で
は、通常50kb以上の超高圧を必要とし著しく製造コ
ストを引上げるため、この点の改善が強く望まれてい
た。
Further, in the manufacturing process of the diamond sintered body, an ultrahigh pressure of 50 kb or more is usually required, and the manufacturing cost is remarkably increased, and therefore improvement in this point has been strongly desired.

【0006】[0006]

【発明が解決しようとする課題】この発明は、切削工具
用材料としての要求特性である靭性、強度、加工性、硬
度、高温耐酸化性、耐反応性及び耐摩耗性などの全てを
満足した工具用焼結体を、ダイヤモンド焼結体と比較し
て低圧下で焼結し、経済的に得ようとするものである。
DISCLOSURE OF THE INVENTION The present invention satisfies all of the required properties as a material for cutting tools, such as toughness, strength, workability, hardness, high temperature oxidation resistance, reaction resistance and wear resistance. The tool sintered body is intended to be economically obtained by sintering at a low pressure as compared with the diamond sintered body.

【0007】[0007]

【課題を解決するための手段】第1の発明は、周期律表
第4a、5a、6a族のいずれかの遷移金属の炭化物、
窒化物、硼化物もしくはこれらの混合物又はこれらの固
溶体10〜65容量%、鉄族金属2〜30容量%、Al
、Y、MgO、ZrOのうちの1種又は
2種以上5〜20容量%、粒径10μm以下の立方晶窒
化硼素5〜20容量%及び粒径1〜40μmの微粒ダイ
ヤモンド10〜50容量%からなる焼結体であって、該
焼結体を構成する鉄族金属中又はその表面にカーボンが
析出していることを特徴とする工具用焼結体[請求項
1]、第2の発明は、周期律表第4a、5a、6a族の
いずれかの遷移金属の炭化物、窒化物、硼化物もしくは
これらの混合物又はこれらの固溶体10〜65容量%、
鉄族金属2〜30容量%、Al、Y、Mg
O、ZrOのうちの1種又は2種以上5〜20容量
%、粒径10μm以下の立方晶窒化硼素5〜20容量%
及び粒径1〜40μmの微粒ダイヤモンド10〜50容
量%を混合した原料混合物を、温度950〜1150
℃、圧力1〜30kbで焼結することを特徴とする工具
用焼結体の製造方法[請求項2]、および、第3の発明
は、基本組成がWC−Coである超硬合金の原料を成形
した基板又はMoを主成分とする(Mo,W)Cと鉄族
金属とからなるサーメットの原料を成形した基板の上
に、周期律表第4a、5a、6a族のいずれかの遷移金
属の炭化物、窒化物、硼化物もしくはこれらの混合物又
はこれらの固溶体10〜65容量%、鉄族金属2〜30
容量%、Al、Y、MgO、ZrOのう
ちの1種又は2種以上5〜20容量%、粒径10μm以
下の立方晶窒化硼素5〜20容量%及び粒径1〜40μ
mの微粒ダイヤモンド10〜50容量%を混合した原料
混合物で成形した成形板を積層し、温度950〜115
0℃、圧力1〜30kbで焼結、接合した工具用焼結体
[請求項3]である。
A first invention is a carbide of a transition metal of any one of groups 4a, 5a and 6a of the periodic table,
Nitride, boride or mixture thereof or solid solution thereof 10 to 65% by volume, iron group metal 2 to 30% by volume, Al
One or more of 2 O 3 , Y 2 O 3 , MgO, and ZrO 2 5 to 20% by volume, cubic boron nitride 5 to 20% by volume having a particle size of 10 μm or less, and fine particles having a particle size of 1 to 40 μm A sintered body for a tool, comprising 10 to 50% by volume of diamond, wherein carbon is deposited in or on the surface of an iron group metal constituting the sintered body [claim 1 ], The second invention is a carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a, and 6a of the Periodic Table, or a mixture thereof, or a solid solution thereof in an amount of 10 to 65% by volume,
Iron group metal 2 to 30% by volume, Al 2 O 3 , Y 2 O 3 , Mg
One or more of O and ZrO 2 5 to 20% by volume, and cubic boron nitride 5 to 20% by volume having a grain size of 10 μm or less
And 10 to 50% by volume of fine diamond particles having a particle size of 1 to 40 μm are mixed at a temperature of 950 to 1150.
A method for producing a sintered body for a tool, which comprises sintering at a temperature of 1 ° C. and a pressure of 1 to 30 kb [claim 2], and a third invention is a raw material for a cemented carbide having a basic composition of WC-Co. On a substrate formed with or on a substrate formed with a cermet raw material composed of (Mo, W) C containing Mo as a main component and an iron group metal, and any of transitions of groups 4a, 5a, and 6a of the periodic table. Metal carbides, nitrides, borides or mixtures thereof or solid solutions thereof 10 to 65% by volume, iron group metals 2 to 30
1% or more of Al 2 O 3 , Y 2 O 3 , MgO, and ZrO 2 of 5% to 20% by volume, 5 to 20% by volume of cubic boron nitride having a particle size of 10 μm or less, and a particle size of 1 ~ 40μ
m formed of a raw material mixture in which 10 to 50% by volume of fine diamond particles are mixed, and laminated at a temperature of 950 to 115.
This is a sintered body for a tool [claim 3] sintered and bonded at 0 ° C and a pressure of 1 to 30 kb.

【0008】以下にこれらの発明をさらに説明する。第
1の発明の工具用焼結体は、周期律表の第4a、5a、
6a族のいずれかの遷移金属の炭化物、窒化物、硼化物
もしくはこれらの混合物又はこれらの固溶体と、Al
、Y、MgO、ZrOのうちの1種又は2
種以上と、鉄族金属と、微粒立方晶窒化硼素(cBN)
と、微粒ダイヤモンドとで構成される。
These inventions will be further described below. The sintered body for a tool of the first invention is 4a, 5a of the periodic table,
Carbides, nitrides, borides or mixtures thereof of any of the Group 6a transition metals or solid solutions thereof, and Al 2
O 3, Y 2 O 3, MgO, 1 kind of ZrO 2 or 2
More than seed, iron group metal, fine grained cubic boron nitride (cBN)
And fine diamond.

【0009】これらの中で結合相を構成する物質は、周
期律表の第4a、5a、6a族のいずれかの遷移金属の
炭化物、窒化物、硼化物もしくはこれらの混合物又はこ
れらの固溶体と、Al、Y、MgO、Zr
のうちの1種又は2種以上と、鉄族金属とである。
Among these, the substance constituting the binder phase is a carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table or a mixture thereof or a solid solution thereof. Al 2 O 3 , Y 2 O 3 , MgO, Zr
One or more of O 2 and an iron group metal.

【0010】周期律表の第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体は、工具として使用する場
合に、高温硬度、強度、熱伝導性及び化学的安定性に優
れ、超硬合金、サーメット等の工具用焼結体で用いられ
ているものと本質的な相違はない。これらの中ではタン
グステンカーバイドが好適に用いられるが、外にチタン
カーバイド等も好んで用いることができる。
Carbides, nitrides, borides or mixtures thereof of transition metals of any of Groups 4a, 5a and 6a of the Periodic Table or solid solutions thereof, when used as a tool, have high hardness, strength, It has excellent thermal conductivity and chemical stability, and is essentially the same as that used in sintered compacts for tools such as cemented carbide and cermet. Of these, tungsten carbide is preferably used, but titanium carbide and the like can also be preferably used.

【0011】これらの含有率は、10〜65容量%とす
る。これが10容量%未満では結合相の硬度、剛性、耐
摩耗性が低下するため好ましくない。また、これが65
容量%を超えると、鉄族金属、微粒ダイヤモンドなどの
含有率が相対的に低下し焼結体の強度、靭性、耐摩耗性
が低下するため好ましくない。
The content of these is 10 to 65% by volume. If this content is less than 10% by volume, the hardness, rigidity, and wear resistance of the binder phase will decrease, which is not preferable. Also, this is 65
When the content exceeds the volume%, the content of the iron group metal, the fine-grained diamond, etc. is relatively reduced, and the strength, toughness, and wear resistance of the sintered body are reduced, which is not preferable.

【0012】結合相を構成する物質として、上記の外に
鉄族金属を2〜30容量%含むようにする。この鉄族金
属はダイヤモンド、cBN及び周期律表第4a、5a、
6a族遷移金属の炭化物、窒化物、硼化物との濡れ性が
非常に良く、粘性流動により緻密化を促進し、分散した
微粒ダイヤモンドの結合相への保持力が強固となる。
In addition to the above, iron group metal is contained in an amount of 2 to 30% by volume as a substance constituting the binder phase. This iron group metal is diamond, cBN and the periodic table 4a, 5a,
The group 6a transition metal has very good wettability with carbides, nitrides, and borides, promotes densification by viscous flow, and strengthens the retention of the dispersed fine diamond in the binding phase.

【0013】鉄族金属の含有率が2容量%未満では結合
相の緻密化がはかられず、結合相の高靭化、高強度化を
達成することができない。また、30容量%を超えると
結合相の硬度、剛性、耐摩耗性が低下するため好ましく
ない。
If the content of the iron group metal is less than 2% by volume, the binder phase cannot be densified and the binder phase cannot be toughened and strengthened. Further, if it exceeds 30% by volume, the hardness, rigidity, and wear resistance of the binder phase decrease, which is not preferable.

【0014】結合相を形成するもう一つの物質として、
Al、Y、MgO、ZrOがある。これ
らの酸化物はいずれも高融点高硬度を有し、しかもダイ
ヤモンド及び周期律表第4a、5a、6a族遷移金属の
炭化物、窒化物、硼化物に比して優れた高温耐酸化性
(耐熱性)を有する。またこれらの酸化物は焼結時及び
切削時にも安定しているため、ダイヤモンド及び遷移金
属の炭化物、窒化物、硼化物を酸化することはない。さ
らにこれらの酸化物は、それ自体の高温硬さがcBN及
びダイヤモンドに比して低いため、高圧焼結中に容易に
変形すると共に、粒子間で辷りを生じてダイヤモンド粒
子、cBN粒子及び遷移金属の炭化物、窒化物、硼化物
の粒子間を緻密に埋めて靭性を向上させる作用効果があ
る。しかしその含有率が5容量%未満では、前記の作用
効果を奏することができないことから高温耐酸化性の低
下をきたすようになる。また20容量%を超えて含有さ
せると、相対的にダイヤモンド、cBN又は遷移金属の
炭化物、窒化物、硼化物の含有量が少なくなり過ぎて、
ダイヤモンド及びcBNのもつ高硬度を焼結材料に十分
反映することができず、この結果耐摩耗性低下をきたし
たり、遷移金属の炭化物、窒化物、硼化物に由来する強
靭化がなされない。
As another substance forming the bonded phase,
There are Al 2 O 3 , Y 2 O 3 , MgO, and ZrO 2 . Each of these oxides has a high melting point and a high hardness, and is superior in high temperature oxidation resistance (heat resistance) to diamond and carbides, nitrides, and borides of group 4a, 5a, and 6a transition metals of the periodic table. Sex). Further, since these oxides are stable during sintering and cutting, they do not oxidize carbides, nitrides and borides of diamond and transition metals. Furthermore, since these oxides have low high temperature hardness as compared with cBN and diamond, they are easily deformed during high-pressure sintering, and snarling occurs between the particles, resulting in diamond particles, cBN particles and transition metal. The effect of improving the toughness by densely filling the spaces between the carbide, nitride, and boride particles. However, if the content rate is less than 5% by volume, the above-mentioned effects cannot be exhibited, so that the high temperature oxidation resistance is deteriorated. When the content is more than 20% by volume, the content of diamond, cBN or transition metal carbides, nitrides and borides becomes relatively small,
The high hardness of diamond and cBN cannot be sufficiently reflected in the sintered material, and as a result, wear resistance is not reduced, and toughness derived from carbides, nitrides and borides of transition metals is not achieved.

【0015】結合相以外の物質の1つとしてcBNがあ
る。cBNはダイヤモンドに次ぐ硬さを有し、かつダイ
ヤモンドより高温まで安定した性質を持つと共に、焼入
鋼、鋳鉄等の鉄系金属に対して反応しにくい性質を持つ
物質であるが、その含有率が5容量%未満では、所望の
高温耐酸化性及び鉄系金属に対する耐反応性を確保する
ことができない。一方20容量%を超えて含有させる
と、相対的にダイヤモンド及び結合相形成物質の含有量
が少なくなり過ぎて、前記ダイヤモンドの持つ高硬度を
焼結材料に十分反映させることができず、この結果耐摩
耗性の低下をもたらすようになり、また結合相形成物質
による靭性、強度等が得られなくなる。なお、ここで用
いるcBNの平均粒径は10μm以下、好ましくは3μ
m以下である。10μmを超えると、ダイヤモンド粒子
間にcBNが均一に分散し難く、所望の靭性、強度が得
られない。
One of substances other than the binder phase is cBN. cBN is a substance that has hardness second only to diamond, is stable at higher temperatures than diamond, and is difficult to react with ferrous metals such as hardened steel and cast iron. Is less than 5% by volume, desired high temperature oxidation resistance and desired resistance to reaction with iron-based metals cannot be secured. On the other hand, if the content exceeds 20% by volume, the content of diamond and the binder phase forming substance becomes relatively small, and the high hardness of the diamond cannot be sufficiently reflected in the sintered material. As a result, the wear resistance is lowered, and the toughness and strength due to the binder phase forming substance cannot be obtained. The average particle size of cBN used here is 10 μm or less, preferably 3 μm.
m or less. If it exceeds 10 μm, it is difficult to uniformly disperse cBN between diamond particles, and desired toughness and strength cannot be obtained.

【0016】上記の外は微粒ダイヤモンドである。微粒
ダイヤモンドはその固有の著しい硬度ゆえに焼結体の耐
摩耗性の向上及び焼結体中に分散することによる焼結体
の強靭化に役立つ。その含有率は10〜50容量%であ
る。これが10容量%未満では十分な耐摩耗性を有した
焼結体が得られず、微粒ダイヤモンド分散による靭性の
向上がはかれない。またこれが50容量%を超えると結
合相の緻密化が阻害され、緻密な焼結体を得ることがで
きない。ここに用いる微粒ダイヤモンドは、粒径が平均
で1〜40μmの範囲のものを用いる。粒径が1μm未
満の場合は微粒ダイヤモンドが脱落しやすいため、耐摩
耗性が低下し、40μmを超えたものを用いると工具刃
先の強度が低下するため、工具刃先が欠損し、この焼結
体で得られた工具の工具寿命が短くなってしまう。
Outside of the above is fine diamond. Due to its inherent hardness, fine-grained diamond serves to improve the wear resistance of the sintered body and to strengthen the sintered body by being dispersed in the sintered body. Its content is 10 to 50% by volume. If it is less than 10% by volume, a sintered body having sufficient wear resistance cannot be obtained, and the toughness cannot be improved by dispersing fine diamond particles. If it exceeds 50% by volume, the densification of the binder phase is hindered and a dense sintered body cannot be obtained. The fine-grained diamond used here has an average grain size in the range of 1 to 40 μm. If the particle size is less than 1 μm, fine diamond particles tend to fall off, resulting in reduced wear resistance. If the particle size exceeds 40 μm, the strength of the tool cutting edge decreases, and the tool cutting edge becomes defective. The tool life of the tool obtained in step 3 will be shortened.

【0017】第2の発明は、第1の発明の工具用焼結体
の製造方法である。ここで用いる原料とその配合比と
を、周期律表第4a、5a、6a族のいずれかの遷移金
属の炭化物、窒化物、硼化物もしくはこれらの混合物又
はこれらの固溶体10〜65容量%、鉄族金属2〜30
容量%、Al、Y、MgO、ZrOのう
ちの1種又は2種以上5〜20容量%、粒径10μm以
下の立方晶窒化硼素5〜20容量%及び粒径1〜40μ
mの微粒ダイヤモンド10〜50容量%とした理由は、
これまでに説明したところと同様である。
A second invention is a method for manufacturing a sintered body for a tool according to the first invention. The raw materials used here and their compounding ratios are set to the carbides, nitrides, borides or mixtures thereof of transition metals of any of Groups 4a, 5a and 6a of the Periodic Table, 10 to 65% by volume of solid solutions thereof, iron. Group metal 2-30
1% or more of Al 2 O 3 , Y 2 O 3 , MgO and ZrO 2 or more and 5 to 20% by volume, 5 to 20% by volume of cubic boron nitride having a particle size of 10 μm or less, and a particle size of 1 ~ 40μ
The reason for setting 10 to 50% by volume of fine-grained diamond of m is
It is the same as that described above.

【0018】第3の発明は、基本組成がWC−Coであ
る超硬合金の原料成形基板又はMoを主成分とする(M
o,W)Cと鉄族金属とからなるサーメット原料成形基
板上に、第2の発明で用いる原料混合物を積層配置し、
これらを同時に温度950〜1150℃、圧力1〜30
kbで焼結、接合したものである。基板となる超硬合金
及びサーメットは、いずれも靭性、剛性、熱伝導性及び
耐蝕性に優れ、切削工具として使用するのに適してい
る。この工具用焼結体は、焼結温度が950〜1150
℃と低温度にて得られるため、通常の超硬合金、サーメ
ットあるいは市販ダイヤモンド焼結体の焼結プロセスに
おいて認められる液相は、超硬合金あるいはサーメット
基板中には出現しないが、高圧力下での焼結であるた
め、十分に固相焼結し、ダイヤモンドを含む硬質層との
接合強度も十分である。そしてこのようにダイヤモンド
を含む硬質層と基板層とを同時焼結すると、基板層が硬
質層に比較して高強度であるため、一体物としての抗折
力すなわち強度を一段と上げることができる。また、ダ
イヤモンドを含む硬質層に比較して基板層は著しく加工
が容易であるため、工具作製のためのコストが低減でき
るなどの利点を有する。ダイヤモンドを含む硬質層及び
基板層の厚さは、経済性、工具仕様及び強度を考慮して
決定すれば良いが、それぞれ0.5mm以上あれば十分
である。
In a third aspect of the present invention, a raw material molded substrate of cemented carbide having a basic composition of WC-Co or Mo is a main component (M).
o, W) A raw material mixture used in the second invention is laminated and arranged on a cermet raw material molded substrate composed of C and an iron group metal,
Simultaneously, these are temperature 950 ~ 1150 ℃, pressure 1 ~ 30
It was sintered and joined at kb. Cemented carbide and cermet, which are substrates, are excellent in toughness, rigidity, thermal conductivity and corrosion resistance, and are suitable for use as cutting tools. This sintered body for tools has a sintering temperature of 950 to 1150.
Since it is obtained at a low temperature of ℃, the liquid phase observed in the sintering process of ordinary cemented carbide, cermet or commercially available diamond sinter does not appear in the cemented carbide or cermet substrate, but under high pressure. In this case, the solid phase sintering is sufficient, and the bonding strength with the hard layer containing diamond is also sufficient. When the hard layer containing diamond and the substrate layer are co-sintered in this manner, the strength of the substrate layer is higher than that of the hard layer, and therefore the transverse strength, that is, the strength of the integrated body can be further increased. Further, since the substrate layer is significantly easier to process than the hard layer containing diamond, it has an advantage that the cost for producing the tool can be reduced. The thicknesses of the hard layer containing diamond and the substrate layer may be determined in consideration of economical efficiency, tool specifications and strength, but it is sufficient if each is 0.5 mm or more.

【0019】これらの原料混合物は、ボールミル等の混
合機によって混合され、これを粉末のままあるいは型押
し成形の後、HIP装置、ピストンシリンダー装置等の
高温高圧発生装置で950〜1150℃、1〜30kb
の熱力学的に黒鉛の安定な領域で固相焼結する。これに
よって原料中に分散した微粒ダイヤモンドは、鉄族金属
のもつ触媒作用によって表面より微量相転移して鉄族金
属中又はその表面に微量のカーボンが析出し結合相が強
靭化する。
These raw material mixtures are mixed by a mixer such as a ball mill, and are mixed as a powder or after embossing, and then at a high temperature and high pressure generating device such as a HIP device and a piston cylinder device at 950 to 1150 ° C. 30 kb
Solid-state sintering in the thermodynamically stable region of graphite. As a result, the fine-grained diamond dispersed in the raw material undergoes a slight amount of phase transition from the surface due to the catalytic action of the iron group metal, and a small amount of carbon is precipitated in or on the surface of the iron group metal to strengthen the bond phase.

【0020】そして、この焼結条件は市販のダイヤモン
ド焼結体の焼結条件に比較して、温度、圧力共に著しく
低いものである。圧力及び温度に関する熱力学的な黒鉛
安定領域とダイヤモンド安定領域は図1に示す通りであ
る。
Both the temperature and the pressure of this sintering condition are significantly lower than those of the commercially available diamond sintered body. Thermodynamic graphite stable regions and diamond stable regions related to pressure and temperature are as shown in FIG.

【0021】温度が950℃未満では焼結体は緻密化せ
ず、また1150℃を超える場合は、著しいダイヤモン
ドの相転移が起こり黒鉛が多量に生じ、ダイヤモンド固
有の耐摩耗性が損なわれるため好ましくない。
If the temperature is lower than 950 ° C., the sintered body will not be densified, and if it exceeds 1150 ° C., remarkable diamond phase transition will occur, a large amount of graphite will be generated, and the wear resistance inherent to diamond will be impaired. Absent.

【0022】圧力が1kb未満では、950〜1150
℃の温度領域において結合相が緻密化しないため、高密
度の焼結体が得られず、また30kbを超えると、ダイ
ヤモンド安定領域における焼結となるため、ダイヤモン
ドの相転移に伴う結合相の強靭化がなされないため好ま
しくない。
When the pressure is less than 1 kb, 950 to 1150
Since the binder phase does not densify in the temperature range of ℃, a high-density sintered body cannot be obtained, and when it exceeds 30 kb, sintering occurs in the diamond stable region, and therefore the toughness of the binder phase accompanying the diamond phase transition. It is not preferable because it is not converted.

【0023】本発明の焼結体においてはX線回折等の手
法では、黒鉛のピークはほとんど認められなかったが、
透過型電子顕微鏡(TEM)及びオージェ電子分光法等
による観察により、結合相を形成する分散ダイヤモンド
に近接した鉄族金属中又はその表面に、ナノメートルオ
ーダーの非常に微細なカーボンが折出しているのが認め
られた。このようなカーボンは市販されているWC−C
o超硬合金、サーメット及びダイヤモンド焼結体の鉄族
金属中又はその表面には一切認められない。本発明焼結
体で結合相が強靭化される理由については、必ずしも明
らかにはなっていないが、以下のように推測される。す
なわち、微細カーボンの析出によって、それがピン止め
的作用をして、鉄族金属中又はその表面に存在する転移
の移動を抑制し、マクロ的に微小亀裂の進行を止め、焼
結体全体として強靭化されたものと考えられる。またT
EM観察によると、市販WC−Co超硬合金、サーメッ
ト及びダイヤモンド焼結体中の鉄族金属結晶粒の大きさ
がサブミクロンから大きいものでは数百ミクロンである
のに対し、本発明焼結体の場合、液相の生じない低温度
で焼結されること、微細カーボンの析出により、鉄族金
属結晶粒の大きさがサブグレイン化されるため非常に小
さくサブミクロン以下であることが認められた。これに
より鉄族金属中又はその表面の応力集中が分散され、こ
れも強靭化に寄与しているものと考えられる。さらに、
焼結条件が市販のダイヤモンド焼結体の焼結温度(14
00℃以上)、焼結圧力(50kb以上)に比較して温
度、圧力共に著しく低いために、本発明焼結体内部に、
焼結過程において生成する歪量が小さいことも考えられ
る。これも強靭化に寄与しているものと考えられる。
In the sintered body of the present invention, a graphite peak was hardly recognized by a method such as X-ray diffraction,
By observation with a transmission electron microscope (TEM) and Auger electron spectroscopy, very fine carbon of nanometer order is projected in or on the surface of the iron group metal close to the dispersed diamond forming the bonded phase. Was recognized. Such carbon is commercially available WC-C
o It is not observed at all in the iron group metals of cemented carbide, cermet and diamond sintered bodies or on the surface thereof. The reason why the binder phase is toughened in the sintered body of the present invention has not necessarily been clarified, but it is presumed as follows. That is, by the precipitation of fine carbon, it acts as a pin to suppress the movement of the transition existing in or on the surface of the iron group metal, macroscopically stopping the progress of microcracks, and as a whole sintered body. It is considered to be toughened. See also T
According to EM observation, the size of the iron group metal crystal grains in the commercially available WC-Co cemented carbide, cermet and diamond sintered body is several hundreds of microns in the submicron to large size, whereas the sintered body of the present invention. In the case of, it is recognized that the size of the iron group metal crystal grains is made to be subgrain due to the sintering at a low temperature in which a liquid phase does not occur, and the precipitation of fine carbon makes it extremely small and below submicron. It was It is thought that this disperses the stress concentration in the iron group metal or on the surface thereof, which also contributes to the toughness. further,
The sintering conditions are the sintering temperature (14
Since the temperature and the pressure are remarkably low as compared with the sintering pressure (50 ° C. or more) and the sintering pressure (50 kb or more),
It is also possible that the amount of strain generated in the sintering process is small. This is also considered to have contributed to strengthening.

【0024】[0024]

【作用】以上のように、遷移金属の炭化物、窒化物、硼
化物もしくはこれらの混合物又はこれらの固溶体、鉄族
金属、Al、Y2O、MgO、ZrOのうち
の1種又は2種以上からなる結合相形収材料と、微粒c
BN及び微粒ダイヤモンドを所定の割合で均一に配合し
た原料混合物を、熱力学的に黒鉛の安定な温度、圧力で
焼結すると、微粒ダイヤモンドの一部が相転移し、その
結果生成した微細カーボンが鉄族金属中又はその表面に
析出し、結合相が高靭化、高強度化された工具用焼結体
が得られると共に、微粒cBN及びAl、Y
、MgO、ZrOによって、高温耐酸化性と鉄系金
属に対する耐反応性に優れる工具用焼結体が得られる。
As described above, one or two of transition metal carbides, nitrides, borides or mixtures thereof or solid solutions thereof, iron group metals, Al 2 O 3 , Y 2 O 3 , MgO and ZrO 2 are used. Bound phase type collecting material consisting of more than one kind, and fine particles c
When a raw material mixture in which BN and fine diamond particles are uniformly mixed at a predetermined ratio is sintered at a thermodynamically stable temperature and pressure of graphite, a part of the fine diamond particles undergoes a phase transition, resulting in the formation of fine carbon. It is possible to obtain a sintered body for a tool which is precipitated in or on the surface of an iron group metal and has a toughened and strengthened binder phase, and fine particles of cBN and Al 2 O 3 , Y 2 O.
3 , MgO, and ZrO 2 provide a sintered body for tools that has excellent high-temperature oxidation resistance and resistance to iron-based metals.

【0025】[0025]

【実施例】粒径1μm以下の結合相形成原料を用い、微
粒ダイヤモンド及び粒径2μmの微粒cBNを配合し、
ポットミルで十分に混合して得た原料混合物を成形し、
直径30mm、厚さ2mmの予備成形体を得た。この成
形体と、あらかじめ作製した直径30mm、厚さ2mm
のWC−15wt%Coからなる超硬合金予備成形体と
を積層し、800℃の真空雰囲気で熱処理を施した後、
ピストンシリンダー型高温高圧発生装置に挿入した。発
熱体としては黒鉛ヒーターを使用し、固体圧力媒体とし
ては、ろう石及び六方晶窒化硼素を使用した。原料配合
比、焼結条件は表1〜表4に示す通りであり、加熱保持
時間は10分とした。また、表1及び表2に本発明例焼
結体の試験結果を、表3及び表4に比較例焼結体の試験
結果を併せ示してある。
EXAMPLE Using a binder phase forming raw material having a particle size of 1 μm or less, fine diamond and fine cBN having a particle size of 2 μm were mixed,
Mold the raw material mixture obtained by thoroughly mixing with a pot mill,
A preform having a diameter of 30 mm and a thickness of 2 mm was obtained. This molded product, with a diameter of 30 mm and a thickness of 2 mm prepared in advance
Of the cemented carbide preform of WC-15 wt% Co, and heat-treated in a vacuum atmosphere at 800 ° C.,
It was inserted into a piston cylinder type high temperature and high pressure generator. A graphite heater was used as the heating element, and pyroxene and hexagonal boron nitride were used as the solid pressure medium. The raw material mixing ratios and sintering conditions are as shown in Tables 1 to 4, and the heating and holding time was 10 minutes. Further, Tables 1 and 2 show the test results of the inventive sintered bodies, and Tables 3 and 4 show the test results of the comparative sintered bodies.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

【0030】得られた本発明の同時焼結体は、ダイヤモ
ンドを含有する硬質層と超硬合金部分が強固に一体化し
たものであった。この同時焼結体を、放電加工によって
切断して、切削工具及び抗折力試験片を作製した。工具
形状はISOミリ呼びTNGN160304であり、抗
折力試験片形状は、JIS R 1601に従ったが、
焼結体寸法の制約上、試験片寸法は2mm×1.5mm
×20mm(±0.05mm)とし、スパンは15mm
とした。比較のため、市販K10種超硬合金(表4中の
比較例No.15)及び市販ダイヤモンド焼結体(表4
中の比較例No.16)を準備して、同様な形状に加工
した。
The obtained co-sintered body of the present invention was one in which the hard layer containing diamond and the cemented carbide portion were firmly integrated. This co-sintered body was cut by electric discharge machining to prepare a cutting tool and a bending strength test piece. The tool shape is ISO millimeter nominal TNGN160304, and the bending strength test piece shape is in accordance with JIS R 1601.
The size of the test piece is 2 mm x 1.5 mm due to the size of the sintered body.
× 20mm (± 0.05mm), span is 15mm
And For comparison, a commercially available K10 type cemented carbide (Comparative Example No. 15 in Table 4) and a commercially available diamond sintered body (Table 4)
Comparative example No. 16) was prepared and processed into a similar shape.

【0031】この結果得られた上記各種切削工具を用い
て、切削速度;400m/分、送り;0.13mm/回
転、切込み;0.2mm、切削油:なし、の条件で鋳鉄
(FC30)の仕上げ面加工を行ない、上記各種切削工
具の逃げ面摩耗が0.2mmに達するのに要する時間を
測定した。また、抗折力試験は、JIS R 1601
に従い、3点曲げ強度(kg/mm)を測定して調べ
た。
Using the above various cutting tools obtained as a result, the cast iron (FC30) was cut under the following conditions: cutting speed: 400 m / min, feed: 0.13 mm / revolution, depth of cut: 0.2 mm, cutting oil: none. Finished surface processing was performed, and the time required for the flank wear of the various cutting tools to reach 0.2 mm was measured. The transverse rupture strength test is based on JIS R 1601.
According to the above, the three-point bending strength (kg / mm 2 ) was measured and examined.

【0032】表1及び表2に示されるように、本発明焼
結材料は、優れた強度、靭性、耐酸性及び耐摩耗性を有
し、この発明の範囲から外れた組成及び焼結条件を有す
る比較焼結材料及び従来の焼結材料に比してきわめて優
れた切削特性を示すことが明らかである。
As shown in Tables 1 and 2, the sintered material of the present invention has excellent strength, toughness, acid resistance and abrasion resistance, and composition and sintering conditions outside the scope of the present invention. It is clear that it shows extremely superior cutting characteristics as compared with the comparative sintered material and the conventional sintered material.

【0033】上述のように、本発明焼結材料は、優れた
強度、靭性、高温耐酸化性(耐熱性)及び耐摩耗性を兼
ね備えているので、特に切削工具用材料として使用した
場合に優れた切削性能を発揮するのである。
As described above, the sintered material of the present invention has excellent strength, toughness, high temperature oxidation resistance (heat resistance) and wear resistance, and therefore is excellent when used as a cutting tool material. It exhibits excellent cutting performance.

【0034】[0034]

【発明の効果】この発明によれば、切削工具材料として
要求される、靭性、強度、加工性、硬度、高温耐酸化
性、耐反応性及び耐摩耗性などの全てを満足した工具用
焼結体を、熱力学的に黒鉛の安定な領域である低圧領域
で焼結することができるので、従来のダイヤモンド焼結
体に比較して製造コストを大幅に低下させ、優れた工具
用焼結体ができるようになった。
According to the present invention, sintering for tools satisfying all of the toughness, strength, workability, hardness, high temperature oxidation resistance, reaction resistance, wear resistance, etc. required for cutting tool materials. Since the body can be sintered in the low-pressure region, which is a thermodynamically stable region of graphite, the manufacturing cost is greatly reduced compared to conventional diamond sintered bodies, and it is an excellent sintered body for tools. Is now possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 圧力及び温度に関する熱力学的な黒鉛安定領
域とダイヤモンド安定領域を示す線図。
FIG. 1 is a diagram showing a thermodynamic graphite stable region and a diamond stable region related to pressure and temperature.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 周期律表第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体10〜65容量%、鉄族金
属2〜30容量%、Al、Y、MgO、Z
rOのうちの1種又は2種以上5〜20容量%、粒径
10μm以下の立方晶窒化硼素5〜20容量%及び粒径
1〜40μmの微粒ダイヤモンド10〜50容量%から
なる焼結体であって、該焼結体を構成する鉄族金属中又
はその表面にカーボンが析出していることを特徴とする
工具用焼結体。
1. A carbide, a nitride, a boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, or a mixture thereof or a solid solution thereof in an amount of 10 to 65% by volume and an iron group metal in an amount of 2 to 30% by volume. %, Al 2 O 3 , Y 2 O 3 , MgO, Z
Sintered body consisting of 5 to 20% by volume of one or more of rO 2 and 5 to 20% by volume of cubic boron nitride having a particle size of 10 μm or less and 10 to 50% by volume of fine diamond particles having a particle size of 1 to 40 μm. A sintered body for a tool, wherein carbon is precipitated in or on the surface of an iron group metal constituting the sintered body.
【請求項2】 周期律表第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体10〜65容量%、鉄族金
属2〜30容量%、Al、Y、MgO、Z
rOのうちの1種又は2種以上5〜20容量%、粒径
10μm以下の立方晶窒化硼素5〜20容量%及び粒径
1〜40μmの微粒ダイヤモンド10〜50容量%を混
合した原料混合物を、温度950〜1150℃、圧力1
〜30kbで焼結することを特徴とする工具用焼結体の
製造方法。
2. A carbide, nitride, boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table, or a mixture thereof or 10 to 65% by volume of a solid solution thereof, and 2 to 30 volumes of an iron group metal. %, Al 2 O 3 , Y 2 O 3 , MgO, Z
A raw material mixture in which 5 to 20% by volume of one or more of rO 2 and 5 to 20% by volume of cubic boron nitride having a particle size of 10 μm or less and 10 to 50% by volume of fine diamond particles having a particle size of 1 to 40 μm are mixed. At a temperature of 950 to 1150 ° C and a pressure of 1
A method for manufacturing a sintered body for a tool, which comprises sintering at 30 kb.
【請求項3】 基本組成がWC−Coである超硬合金の
原料を成形した基板又はMoを主成分とする(Mo,
W)Cと鉄族金属とからなるサーメットの原料を成形し
た基板の上に、周期律表第4a、5a、6a族のいずれ
かの遷移金属の炭化物、窒化物、硼化物もしくはこれら
の混合物又はこれらの固溶体10〜65容量%、鉄族金
属2〜30容量%、Al、Y、MgO、Z
rOのうちの1種又は2種以上5〜20容量%、粒径
10μm以下の立方晶窒化硼素5〜20容量%及び粒径
1〜40μmの微粒ダイヤモンド10〜50容量%を混
合した原料混合物で成形した成形板を積層し、温度95
0〜1150℃、圧力1〜30kbで焼結、接合した工
具用焼結体。
3. A substrate formed by molding a raw material of a cemented carbide having a basic composition of WC—Co or having Mo as a main component (Mo,
W) On a substrate obtained by molding a cermet raw material composed of C and an iron group metal, a carbide, a nitride, a boride of a transition metal of any one of Groups 4a, 5a and 6a of the Periodic Table or a mixture thereof, or These solid solutions are 10 to 65% by volume, iron group metals are 2 to 30% by volume, Al 2 O 3 , Y 2 O 3 , MgO, and Z.
A raw material mixture in which 5 to 20% by volume of one or more of rO 2 and 5 to 20% by volume of cubic boron nitride having a particle size of 10 μm or less and 10 to 50% by volume of fine diamond particles having a particle size of 1 to 40 μm are mixed. The forming plates formed by
A sintered body for a tool, which is sintered and bonded at 0 to 1150 ° C. and a pressure of 1 to 30 kb.
JP5355229A 1993-12-29 1993-12-29 Sintered body for tool and manufacture thereof Pending JPH07195207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5355229A JPH07195207A (en) 1993-12-29 1993-12-29 Sintered body for tool and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5355229A JPH07195207A (en) 1993-12-29 1993-12-29 Sintered body for tool and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07195207A true JPH07195207A (en) 1995-08-01

Family

ID=18442711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5355229A Pending JPH07195207A (en) 1993-12-29 1993-12-29 Sintered body for tool and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07195207A (en)

Similar Documents

Publication Publication Date Title
CN107200590A (en) Cutting element composite sinter and the cutting element using the composite sinter
JPH10182234A (en) Cubic boron nitride-base sintered material and its production
JPH04507396A (en) Alumina-titanium carbide-silicon carbide composition
JP2523452B2 (en) High strength cubic boron nitride sintered body
KR20170120485A (en) Sintered body and cutting tool
KR20170122103A (en) Sintered body and cutting tool
JP2000044348A (en) High-hardness sintered compact for cutting working of cast iron
JPH10182233A (en) Titanium aluminum nitride-base sintered material and its production
JP4560604B2 (en) Cubic boron nitride based sintered material and method for producing the same
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
JPH0849037A (en) Sintered compact for tool and its production
JPH08310867A (en) Production of boride ceramic
JPH07188827A (en) Sintered body for tool and its manufacture
JP5008789B2 (en) Super hard sintered body
JPH07195207A (en) Sintered body for tool and manufacture thereof
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JPS644989B2 (en)
JPH0328172A (en) High toughness-and high hardness-sintered material
JP2004256861A (en) Cemented carbide, production method therefor, and cutting tool using the same
JPH07185907A (en) Sintered body for tool and its manufacture
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JPH07195206A (en) Sintered body for tool and manufacture thereof
JPH07188805A (en) Sintered compact for tool and its production
RU2576745C1 (en) COMPOSITE NANOSTRUCTURED MATERIAL BASED ON cBN AND PREPARATION METHOD THEREOF
JPH01122971A (en) Cubic boron nitride sintered product