JPH07196365A - Sintered ito, ito clear conductive layer and formation thereof - Google Patents

Sintered ito, ito clear conductive layer and formation thereof

Info

Publication number
JPH07196365A
JPH07196365A JP5349165A JP34916593A JPH07196365A JP H07196365 A JPH07196365 A JP H07196365A JP 5349165 A JP5349165 A JP 5349165A JP 34916593 A JP34916593 A JP 34916593A JP H07196365 A JPH07196365 A JP H07196365A
Authority
JP
Japan
Prior art keywords
ito
point
gas
sio
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5349165A
Other languages
Japanese (ja)
Inventor
Akihiko Shirakawa
彰彦 白川
Hirosumi Izawa
広純 伊沢
Takao Noda
孝男 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP5349165A priority Critical patent/JPH07196365A/en
Priority to PCT/JP1994/002214 priority patent/WO1995018080A1/en
Priority to CN94191599A priority patent/CN1119851A/en
Priority to KR1019950703610A priority patent/KR100203671B1/en
Priority to TW084100347A priority patent/TW438996B/en
Publication of JPH07196365A publication Critical patent/JPH07196365A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products

Abstract

PURPOSE:To obtain ITO clear, electrically conductive layer of low specific resistance and high light transmittance by adding specific amounts of SiO2 and Bi2O3 to the ITO sintered product and effecting the sputtering using the mixed product as a target material. CONSTITUTION:In sintered ITO, the ITO sintered product and the ITO clear conductive layer have the SiO2 and Bi2O3 composition in wt.% in the area surrounded to the lines connecting the points 1 to 5 in the SiO2-Bi2O3 binary component system in Figure 1, where point 1 (0.001; 9.0), point 2 (9.0; 9.0), point 3 (12.0; 6.0), point 4 (12.0; 0.001) and point 5 (0.001; 0.001). The sintered product is used as a target, and a mixed gas containing Ar, O2 and H2 is introduced into the vacuum tank so that the gas composition may become 0.2ppm to 20% in O2 and H2, respectively and the rest of Ar and the total pressure may be set to 1X10<-3> to 5X10<-2> torr and sputtering is performed to form the ITO clear, electrically conductive layer on the base plate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、透明電導膜の形成に使
用するスパッタリングターゲット材などとして有用なI
TO焼結体、ならびに該焼結体から得られるITO透明
電導膜およびそのような透明電導膜の形成方法に関す
る。本発明のITO焼結体は、高い焼結体密度を有し、
この焼結体から比抵抗が小さい透明電導膜を得ることが
できる。この透明電導膜は、特に液晶ディスプレー、エ
レクトロルミネッセンス、エレクトロクロミックディス
プレーの透明電極に用いるのに好適である。
INDUSTRIAL APPLICABILITY The present invention is useful as a sputtering target material used for forming a transparent conductive film.
The present invention relates to a TO sintered body, an ITO transparent conductive film obtained from the sintered body, and a method for forming such a transparent conductive film. The ITO sintered body of the present invention has a high sintered body density,
A transparent conductive film having a low specific resistance can be obtained from this sintered body. This transparent conductive film is particularly suitable for use as a transparent electrode for liquid crystal displays, electroluminescence and electrochromic displays.

【0002】[0002]

【従来の技術】透明電導膜としては金、白金等の金属あ
るいは酸化錫、酸化インジウム等の酸化物を基板上に成
膜したものが知られている。この中で液晶表示等に用い
られるのは酸化インジウムに酸化錫を添加したITO
(Indium−Tin Oxide)が主流である。
それはITOが高透明性、低抵抗性である他、エッチン
グ性、化学的安定性、基板への付着性等が良好なためで
ある。
2. Description of the Related Art As a transparent conductive film, a film in which a metal such as gold or platinum or an oxide such as tin oxide or indium oxide is formed on a substrate is known. Among them, the ITO used as a liquid crystal display is a mixture of indium oxide and tin oxide.
(Indium-Tin Oxide) is the mainstream.
This is because ITO has high transparency and low resistance, and also has good etching properties, chemical stability, and adhesion to substrates.

【0003】透明電導膜の成膜方法としては、真空蒸
着、イオンプレーティング、スパッタリング等の物理蒸
着法、熱分解等の化学反応で成膜する化学蒸着法、スプ
レー、ティップ等による塗布法等がある。この中で膜の
緻密性が良く、低抵抗膜が容易に得られることから物理
蒸着法、その中でもスパッタリング法が主流となってい
る。スパッタリング法でITO膜を形成する際、スパッ
タリングターゲットとして酸化インジウムに酸化錫を添
加したITO焼結体が用いられる場合が多い。
As a method for forming the transparent conductive film, there are physical vapor deposition methods such as vacuum vapor deposition, ion plating and sputtering, chemical vapor deposition method for forming a film by a chemical reaction such as thermal decomposition, coating method by spraying, tips and the like. is there. Among them, the physical vapor deposition method, especially the sputtering method is the mainstream because the film is dense and a low resistance film can be easily obtained. When forming an ITO film by a sputtering method, an ITO sintered body obtained by adding tin oxide to indium oxide is often used as a sputtering target.

【0004】ITO焼結体は、通常、酸化インジウムに
酸化錫を加えた粉、あるいはそれを仮焼した粉を、コー
ルドプレス、鋳込み等で成形し、その成形体を大気中で
1200℃以上で焼成するなどの方法によって製造され
る。しかし、ITO粉末は焼結性が悪く、この方法では
密度が高々4.9g/cm3 (理論密度を7.0g/c
3 としたとき相対密度70%)程度の焼結体しか得ら
れていない。
[0004] The ITO sintered body is usually obtained by molding powder obtained by adding tin oxide to indium oxide or calcined powder by cold pressing, casting, etc., and molding the molded body at 1200 ° C or higher in the atmosphere. It is manufactured by a method such as firing. However, the ITO powder has poor sinterability, and this method has a density of at most 4.9 g / cm 3 (theoretical density of 7.0 g / c).
Only a sintered body having a relative density of about 70% when m 3 is obtained.

【0005】また、原子価制御に基づく半導体化機構に
よるITO透明電導膜の低抵抗化技術としては、次のよ
うな例がある。特開昭59−163707ではITOに
酸化ルテニウム、酸化鉛、酸化銅を添加し、特開昭59
−71205ではITOに酸化りんを、特開昭61−2
94703、特開昭63−78404では酸化インジウ
ム、ITOにそれぞれフッ化アルミニウムを、特開昭6
3−178414ではITOに酸化テルルを、特開昭6
4−10507ではITOに酸化ケイ素を、特開平1−
283369ではITOに酸化セレンまたはフッ化スズ
を、特開平3−199373にはITOにI、Brをそ
れぞれ添加し透明電導膜の低抵抗化等を図っている。
Further, as a technique for lowering the resistance of an ITO transparent conductive film by a semiconductorization mechanism based on valence control, there are the following examples. In JP-A-59-163707, ruthenium oxide, lead oxide, and copper oxide are added to ITO.
In -71205, phosphorus oxide is added to ITO.
In 94703 and JP-A-63-78404, aluminum fluoride is added to indium oxide and ITO, respectively.
In JP-A-3-178414, tellurium oxide is added to ITO.
In 4-10507, ITO is added with silicon oxide, and
In 283369, selenium oxide or tin fluoride is added to ITO, and in JP-A-3-199373, I and Br are added to ITO to reduce the resistance of the transparent conductive film.

【0006】一方、還元に基づく半導体化により透明電
導膜の低抵抗化を図る例としては、USP4,399,
194がある。この例では酸化インジウムに酸化ジルコ
ニウムを40〜60wt%添加し、比抵抗4.4×10
-4Ωcm、光透過率80%の特性を得ている。
On the other hand, as an example of reducing the resistance of a transparent conductive film by reducing the semiconductor, USP 4,399,
There is 194. In this example, 40-60 wt% of zirconium oxide is added to indium oxide to give a specific resistance of 4.4 × 10 4.
It has the characteristics of -4 Ωcm and light transmittance of 80%.

【0007】低密度の焼結体をスパッタリングターゲッ
トとして用いた場合、1枚の同一寸法のターゲットで使
用できるITO量は少なくなり、ターゲット寿命が短
く、ターゲットの交換頻度が多く、スパッタリング装置
の稼働率が低くなる。また、焼結密度が低い程、スパッ
タリング時に起こるターゲット表面の黒化現象が顕著
で、膜を形成する速度が経時的に遅くなるとともに透明
電導膜の比抵抗が高くなる。そのため、表面の黒化物を
取り除くため、実質的なターゲットの使用量も少なくな
るとともにスパッタリング装置の稼働率は更に低下す
る。
When a low-density sintered body is used as a sputtering target, the amount of ITO that can be used in a single target of the same size is small, the target life is short, the target replacement frequency is high, and the sputtering device operating rate is high. Will be lower. Further, the lower the sintering density, the more marked the blackening phenomenon of the target surface that occurs during sputtering, the slower the film formation rate and the higher the specific resistance of the transparent conductive film. Therefore, since the blackened material on the surface is removed, the amount of the target used is substantially reduced and the operating rate of the sputtering apparatus is further reduced.

【0008】従って、ターゲット一枚当たりのITO使
用可能量を増大するとともに、スパッタリング装置の稼
働率向上、安定操業のために、ITO焼結体ターゲット
の密度向上、少なくとも相対密度70%を越えるものが
求められている。この要求に対し、従来の成形焼成工程
において、ホットプレス、HIPを用いたり、焼成雰囲
気をコントロールする方法で高密度化を図り、最高で相
対密度98%のものも得ている(特開平3−20785
8)が、設備および生産コストともに高くなるという問
題がある。
Therefore, in order to increase the usable amount of ITO per target, and to improve the operating rate of the sputtering apparatus and the stable operation, the density of the ITO sintered body target should be improved, at least the relative density of which exceeds 70%. It has been demanded. In order to meet this demand, in the conventional molding and firing process, hot pressing, HIP was used, or the firing atmosphere was controlled to achieve a higher density, and a maximum relative density of 98% was also obtained (JP-A-3- 20785
However, there is a problem that the equipment and the production cost are high.

【0009】また、原料ITO粉の粒度をコントロール
して焼結体の高密度化を図る技術が提案されている(特
開昭62−12009、特開平3−218924等)
が、原料の調製が非常に難しく、そのコストも高く、実
用的であるとは言えない。上記のようなコスト高を解消
するための焼結体の緻密化の方法として、焼結助剤を添
加する方法がある。
A technique for controlling the particle size of the raw ITO powder to increase the density of the sintered body has been proposed (JP-A-62-12009, JP-A-3-218924, etc.).
However, the preparation of the raw material is very difficult and the cost is high, so it cannot be said to be practical. As a method of densifying the sintered body to eliminate the above-mentioned high cost, there is a method of adding a sintering aid.

【0010】特開昭61−136954(特公平1−2
1109)では焼結助剤としてSiおよび/またはGe
の酸化物を添加して最大の相対密度90%の焼結体を得
ている。しかしながら、本発明者が追試したところ膜特
性の最も良いものは、組成がITOにGeO2 を0.5
wt%添加したもので、膜の比抵抗は2.0×10-4Ω
cmであるが、焼結体密度は79%に留まった。GeO
2 を15wt%加えると、焼結体密度は90%となる
が、膜の比抵抗は2.9×10-4Ωcmと悪化した。
Japanese Unexamined Patent Publication No. Sho 61-136954 (Japanese Patent Publication No. 1-254)
1109) Si and / or Ge as a sintering aid.
Oxide is added to obtain a sintered body having a maximum relative density of 90%. However, as a result of additional tests conducted by the present inventor, the best film property was that the composition was 0.5% GeO 2 in ITO.
With the addition of wt%, the specific resistance of the film is 2.0 × 10 -4 Ω
cm, but the sintered body density remained at 79%. GeO
When 2 wt% of 2 was added, the sintered body density became 90%, but the specific resistance of the film deteriorated to 2.9 × 10 −4 Ωcm.

【0011】また、特開昭59−198602には、I
TOに対しAl,W,Th,Mo元素を添加した透明電
導膜が記載されているが、膜抵抗も1.2×10-2
2.42×10-2Ωcmと高く、本発明者が追試したと
ころ、焼結体密度も理論密度に対する相対密度が70%
未満と低い。
Further, Japanese Patent Laid-Open No. 59-198602 discloses an I
A transparent conductive film in which Al, W, Th, and Mo elements are added to TO is described, but the film resistance is 1.2 × 10 -2 〜.
As high as 2.42 × 10 -2 Ωcm, the inventors of the present invention made an additional test and found that the density of the sintered body was 70% relative to the theoretical density.
Less than and lower.

【0012】また、ここ数年、ワープロ、テレビ用など
に液晶表示が多用され、その液晶画面の大型化が進んで
きた結果、従来の透明電導膜の比抵抗値を悪くすること
なく、光透過率を向上させる必要が生じてきた。この際
に、比抵抗値を低く維持することは、電極の膜厚を薄く
することができ、そのため良好なエッチング性も可能と
なる。透明電導膜の膜厚が2000オングストロームを
越えるとエッチング時間が長くなり、パターンの断線、
膜表面状態の悪化による抵抗不均一化などを起こし歩留
まりの低下をきたす。
In addition, in recent years, liquid crystal displays have been widely used for word processors, televisions, etc., and the size of the liquid crystal screen has been increased. As a result, the conventional transparent conductive film does not deteriorate in the specific resistance value, and light transmission is possible. The need to improve rates has arisen. At this time, keeping the specific resistance value low can reduce the film thickness of the electrode, and thus also enable good etching properties. If the film thickness of the transparent conductive film exceeds 2000 angstroms, the etching time becomes longer and the pattern disconnection,
The deterioration of the film surface condition causes non-uniformity of resistance and the like, resulting in a decrease in yield.

【0013】[0013]

【発明が解決しようとする課題】上記のような状況に鑑
み、本発明の目的は、相対密度90%以上の高密度IT
O焼結体であって、比抵抗の低い透明電導膜を得ること
ができるITO焼結体を提供することにある。さらに、
他の目的は、従来から使用されている透明電導膜の比抵
抗値2×10-4Ωcmを凌ぐ低い比抵抗値を有し、且つ
90%を超える高い光透過率を有し、薄く、短縮された
エッチング時間をもって、高い歩留まりで製造すること
ができるITO透明電導膜を提供することにある。
In view of the above situation, an object of the present invention is to provide a high density IT having a relative density of 90% or more.
An object of the present invention is to provide an ITO sintered body that is an O sintered body and can obtain a transparent conductive film having a low specific resistance. further,
Another purpose is to have a low specific resistance value that exceeds the specific resistance value of 2 × 10 −4 Ωcm of the transparent conductive film that has been used conventionally, and has a high light transmittance of more than 90%, which is thin and shortened. An object of the present invention is to provide an ITO transparent conductive film that can be manufactured with a high yield with a controlled etching time.

【0014】[0014]

【課題を解決するための手段】上記の問題点を解決すべ
く、種々検討した結果、ITO焼結体において、図1に
示されるSiO2 −Bi2 3 二成分系図における下記
組成を示す点1,2,3,4および5で囲まれる領域に
相当するSiO2 およびBi2 3 組成を含有する焼結
体が高い密度を有し、低い比抵抗値を有する透明電導膜
の形成に有用なことが判明した。
[Means for Solving the Problems] As a result of various studies to solve the above-mentioned problems, in the ITO sintered body, the following composition in the SiO 2 —Bi 2 O 3 binary system diagram shown in FIG. 1 is shown. A sintered body containing a composition of SiO 2 and Bi 2 O 3 corresponding to a region surrounded by 1, 2, 3, 4 and 5 has a high density and is useful for forming a transparent conductive film having a low specific resistance value. It turned out to be

【0015】また、上記の組成を持つITO焼結体をタ
ーゲットとし、真空槽内にArガスとO2 ガスとH2
スとからなる混合ガスを、全圧に対しO2 ガス、H2
スともそれぞれ0.2ppm〜20%含み、残部がAr
となるような割合で、全圧1×10-3torr〜5×1
-2torrとなるように導入し、スパッタリングを行
うことによって、比抵抗値の低いITO透明電導膜が有
利に形成できることが判明した。
With the ITO sintered body having the above composition as a target, a mixed gas of Ar gas, O 2 gas and H 2 gas was introduced into the vacuum chamber against the total pressure of O 2 gas and H 2 gas. Both contain 0.2 ppm to 20%, and the balance is Ar.
The total pressure is 1 × 10 −3 torr to 5 × 1
It was found that an ITO transparent conductive film having a low specific resistance value can be advantageously formed by introducing the silicon oxide film so as to be 0 -2 torr and performing sputtering.

【0016】ITO焼結体およびITO透明電導膜にお
いては、酸化インジウムに対し錫が酸化物の混合物また
は固溶体として存在しているが、本発明の焼結体および
電導膜においてもBiおよびSiのそれぞれが酸化物と
して混合されているが、複合酸化物としてか、固溶体と
してか、またはそれらの混合状態で存在していると思わ
れる。その状態は正確に同定し難いので、本発明では、
便宜上それぞれの酸化物として組成表示した。
In the ITO sintered body and the ITO transparent conductive film, tin is present as a mixture or solid solution of oxide with respect to indium oxide, but in the sintered body and conductive film of the present invention, Bi and Si are respectively contained. Are mixed as oxides, but are believed to exist as complex oxides, as solid solutions, or in a mixture thereof. Since it is difficult to identify the state accurately, in the present invention,
For convenience, the composition of each oxide is shown.

【0017】本発明のITO焼結体中の酸化錫量は0.
05〜25wt%が好ましい。0.05wt%未満で
も、25wt%を越えても、それによって造られる透明
電導膜の比抵抗は大きくなるので好ましくない。本発明
の焼結体および透明電導膜は、上記の範囲の酸化錫量を
含み、さらにBi2 3 およびSiO2 を前述の組成範
囲内で含むことを特徴としている。
The amount of tin oxide in the ITO sintered body of the present invention is 0.
05-25 wt% is preferable. If it is less than 0.05 wt% or more than 25 wt%, the specific resistance of the transparent conductive film produced thereby becomes large, which is not preferable. The sintered body and the transparent conductive film of the present invention are characterized by containing the amount of tin oxide in the above range and further containing Bi 2 O 3 and SiO 2 in the above composition range.

【0018】焼結体の製造に関して、酸化インジウムの
出発原料としてはInの酸化物が一般的であるが、In
金属、水酸化物、ふっ化物、硫酸塩、硝酸塩などを用い
てもよい。ただし、酸化物以外の原料を用いる場合は酸
化性の雰囲気で仮焼または焼成することにより酸化物系
焼結体とする。酸化錫の出発原料も酸化物が一般的であ
るが、Sn金属、水酸化物、ふっ化物、硫化物、硫酸
塩、硝酸塩などを用いてもよい。SnもInと同様に最
終的には酸化物とする。酸化ビスマスの出発原料も酸化
物が一般的であるが、Bi金属、水酸化物、よう化物、
硫化物、硫酸塩、硝酸塩などを用いてもよい。Biの酸
化物以外の原料を用いる場合は、焼成時に焼結の始まる
950℃までに酸化物となっていればよい。酸化ゲルマ
ニウムの出発原料も酸化物が一般的であるが、Si単
体、塩化物、窒化物、炭化物、硫化物などを用いてもよ
い。SiもBiと同様に焼成時の950℃までに酸化物
となっていればよい。
Regarding the production of the sintered body, an oxide of In is generally used as a starting material for indium oxide.
Metals, hydroxides, fluorides, sulfates, nitrates and the like may be used. However, when a raw material other than an oxide is used, the oxide-based sintered body is obtained by calcining or firing in an oxidizing atmosphere. The starting material of tin oxide is generally an oxide, but Sn metal, hydroxide, fluoride, sulfide, sulfate, nitrate or the like may be used. Similarly to In, Sn is also an oxide finally. The starting material of bismuth oxide is generally an oxide, but Bi metal, hydroxide, iodide,
Sulfides, sulfates, nitrates and the like may be used. When a raw material other than the Bi oxide is used, the oxide may be formed by 950 ° C. at which sintering starts during firing. The starting material of germanium oxide is generally an oxide, but simple substance of Si, chloride, nitride, carbide, sulfide or the like may be used. Similar to Bi, Si may be an oxide by 950 ° C. during firing.

【0019】これら4元素の原料化合物は、同時に混合
してもよく、またあらかじめ2元素以上の化合物を混合
して仮焼し、仮焼した粉と他の元素の化合物とを混合し
てもよい。原料の混合には乳鉢混合、ボールミル混合等
が用いられる。原料粉末は2μm以下にするのが好まし
い。混合した粉を仮焼する場合は400〜1500℃で
行われる。
The raw material compounds of these four elements may be mixed at the same time, or the compounds of two or more elements may be mixed in advance and calcined, and the calcined powder and the compounds of other elements may be mixed. . For mixing the raw materials, mortar mixing, ball mill mixing and the like are used. The raw material powder is preferably 2 μm or less. When the mixed powder is calcined, it is performed at 400 to 1500 ° C.

【0020】得られた粉にはポリビニルアルコール(P
VA)、ポリビニルブチラール(PVB)などのバイン
ダーを加え、スプレードライヤーなどで1〜50μmに
造粒し、500〜8000kg/cm2 程度の圧力にて
成形する。またはPVAなどのバインダーとともにスラ
リーとし、鋳込み成形してもよい。成形体は乾燥、脱脂
をする場合もある。得られた成形体の焼結は1200〜
1600℃で行われる。焼結を大気中で行うことによっ
て十分緻密化できるが、もちろんホットプレス、HI
P、雰囲気調整による焼成を行っても良い。
Polyvinyl alcohol (P
VA), polyvinyl butyral (PVB) and other binders are added, and the mixture is granulated to a particle size of 1 to 50 μm with a spray dryer or the like and molded at a pressure of about 500 to 8000 kg / cm 2 . Alternatively, it may be made into a slurry together with a binder such as PVA and then cast-molded. The molded body may be dried and degreased. Sintering of the obtained compact is 1200-
It is carried out at 1600 ° C. Sufficient densification can be achieved by sintering in the air, but of course hot pressing, HI
P may be fired by adjusting the atmosphere.

【0021】一般に、透明電導膜を形成する方法として
は、スパッタリング法、電子ビーム蒸着法が採られる
が、他にイオンプレーティング法、化学蒸着法、塗布法
も用いられる。各膜を形成する原料に適した方法が選ば
れる。スパッタリング法および電子ビーム蒸着法では、
蒸着材(ターゲット)としてインジウムと添加元素の酸
化物の焼結体またはこれらの合金が用いられる。焼結体
を用い、スパッタリングで膜を形成する場合には、ター
ゲットとして焼結体と被成膜基板とをセットし、1×1
-5torr以下に真空引きした後、焼結体の場合はA
rガスのみか、ArガスとO2 ガスとからなる混合ガス
か、ArガスとO2 ガスとH2 ガスとからなる混合ガス
を導入し膜を形成する。
Generally, as a method for forming a transparent conductive film, a sputtering method and an electron beam vapor deposition method are adopted, but an ion plating method, a chemical vapor deposition method and a coating method are also used. A method suitable for the raw material for forming each film is selected. In the sputtering method and the electron beam evaporation method,
As a vapor deposition material (target), a sintered body of indium and an oxide of an additional element or an alloy thereof is used. When a film is formed by sputtering using a sintered body, the sintered body and the film formation substrate are set as a target, and 1 × 1
After vacuuming below 0 -5 torr, in the case of a sintered body, A
or r gas only, or a mixed gas composed of Ar gas and O 2 gas, by introducing a mixed gas composed of Ar gas and O 2 gas and H 2 gas to form a film.

【0022】本発明の焼結体をターゲットとして用いス
パッタリングする場合、真空槽内に、ArガスとO2
スとH2 ガスとからなる混合ガスを、O2 ガスおよびH
2 ガスがそれぞれ0.2ppm〜20%含まれ、残部が
Arとなるような割合で全圧1×10-3torr〜5×
10-2torrとなるように導入する。
[0022] When sputtering using a sintered body of the present invention as a target, in a vacuum chamber, a mixed gas of Ar gas and O 2 gas and H 2 gas, O 2 gas and H
The total pressure is 1 × 10 −3 torr to 5 × at a rate such that each of the 2 gases contains 0.2 ppm to 20% and the balance is Ar.
It is introduced so that it becomes 10 -2 torr.

【0023】この際、スパッタリングガス中のO2 分圧
が高くなると透過率が高くなり、抵抗値は低下してくる
が、高くなりすぎると抵抗値は、逆に増加する。O2
スを加えずArガスのみをスパッタリングガスとしても
酸化物中の酸素が混合スパッタリングガス中のO2 ガス
と同様の働きをするので、抵抗値等の膜特性はあまり悪
化しない。しかしながら、或る割合以上のO2 ガスが存
在するほうが有利であり、従って、本発明の電導膜形成
方法においては、O2 ガスを0.2ppm〜20%の割
合でスパッタリング混合ガス中に含有せしめる。
At this time, when the partial pressure of O 2 in the sputtering gas is high, the transmittance is high and the resistance value is low, but when it is too high, the resistance value is conversely increased. Even if only Ar gas is used as the sputtering gas without adding O 2 gas, oxygen in the oxide functions similarly to O 2 gas in the mixed sputtering gas, so that the film characteristics such as the resistance value are not significantly deteriorated. However, it is more advantageous that O 2 gas is present at a certain ratio or more, and therefore, in the conductive film forming method of the present invention, O 2 gas is contained in the sputtering mixed gas at a ratio of 0.2 ppm to 20%. .

【0024】H2 を導入しなくても低抵抗化することが
できるが、H2 を導入すると、膜の光透過率を損なうこ
と無く、低抵抗化できる。H2 分圧が1×10-3tor
rを越えると、光透過率が低下する。従って、本発明の
電導膜形成方法においては、H2 ガスを0.2ppm〜
20%の割合でスパッタリング混合ガス中に含有せしめ
る。スパッタリングガスの全圧が1×10-3torr未
満の低い圧力では安定したプラズマが発生せず、また、
5×10-2torrを越える高圧では膜の抵抗値を悪化
する。
[0024] without introducing of H 2 can be low resistance, the introduction of H 2, without impairing the light transmittance of the film can lower the resistance. H 2 partial pressure is 1 × 10 -3 torr
When it exceeds r, the light transmittance decreases. Therefore, in the conductive film forming method of the present invention, H 2 gas of 0.2 ppm to
It is contained in the sputtering mixed gas at a rate of 20%. When the total pressure of the sputtering gas is a low pressure of less than 1 × 10 −3 torr, stable plasma is not generated, and
At a high pressure exceeding 5 × 10 -2 torr, the resistance value of the film deteriorates.

【0025】また、基板温度は150〜500℃、ター
ゲットの投入電力は0.5〜4W/cm2 で成膜するこ
とが好ましい。ここで投入電力はターゲット1cm2
たりの電力をいい、スパッタリングガスのプラズマ化と
プラズマを構成するイオンを加速するのに用いられる。
基板温度が150℃未満では抵抗値が劣り、500℃を
越えると基板が変形するために使用に耐えなくなる。投
入電力が0.5W/cm2 未満では蒸着速度が遅くな
り、生産効率が悪くなり、逆に、4W/cm2 を越える
と抵抗値が劣る。
It is preferable that the substrate temperature is 150 to 500 ° C. and the target input power is 0.5 to 4 W / cm 2 . Here, the input power refers to the power per 1 cm 2 of the target, and is used to turn the sputtering gas into plasma and accelerate the ions forming the plasma.
If the substrate temperature is lower than 150 ° C, the resistance value is inferior, and if it exceeds 500 ° C, the substrate is deformed and cannot be used. If the applied power is less than 0.5 W / cm 2 , the vapor deposition rate will be slow and production efficiency will be poor, while if it exceeds 4 W / cm 2 , the resistance value will be poor.

【0026】膜形成速度は投入電力のほかスパッタリン
グガスの全圧、基板間距離等によって決まるが、同一の
膜形成速度でも膜の特性に優劣がでる。以上のことを考
慮しつつ、膜の光透過率が90%以上で、できるだけ高
く、かつもっとも低い抵抗値をとるスパッタリング条件
を選ぶことが好ましい。
The film formation rate is determined by the total pressure of the sputtering gas, the distance between the substrates, etc. in addition to the input power, but the film characteristics are superior or inferior even at the same film formation rate. In consideration of the above, it is preferable to select a sputtering condition in which the light transmittance of the film is 90% or more, and the resistance value is as high as possible and has the lowest resistance value.

【0027】また、スパッタリング法に比べると劣るが
電子ビーム蒸着法で成膜することもできる。この場合に
は、Arガスは導入しないがO2 ガスのみか、O2 ガス
とH2 ガスの導入ガスを導入し、基板加熱することは、
スパッタリングと同様で、蒸着速度は電子ビームの電
圧、電流、ビーム径で決まる。水素分圧、基板温度、蒸
着速度を適当に選び、透過率90%以上で抵抗値の最も
低い膜が得られる。最初の到達真空度は10-5torr
以下とし、その後のO2 ガス分圧を0.1×10-4〜5
×10-4torr、H2 ガス分圧0.1×10-5〜5×
10-5torr、基板温度200〜400℃、蒸着速度
0.5×10オングストローム/secが適当な条件で
ある。被成膜基板としては、ガラス、プラスチックのシ
ートやフィルムなどあるいは、それらに保護膜や機能性
膜を施したものなどが用いられる。
Although it is inferior to the sputtering method, the film can be formed by the electron beam evaporation method. In this case, Ar gas is not introduced, but only O 2 gas or O 2 gas and H 2 gas is introduced to heat the substrate.
Similar to sputtering, the deposition rate is determined by the electron beam voltage, current, and beam diameter. By appropriately selecting the hydrogen partial pressure, the substrate temperature and the vapor deposition rate, a film having a transmittance of 90% or more and the lowest resistance value can be obtained. First ultimate vacuum is 10 -5 torr
The following O 2 gas partial pressure is 0.1 × 10 −4 to 5
× 10 −4 torr, H 2 gas partial pressure 0.1 × 10 −5 to 5 ×
Appropriate conditions are 10 −5 torr, substrate temperature of 200 to 400 ° C., and vapor deposition rate of 0.5 × 10 Å / sec. As the film formation substrate, a glass or plastic sheet or film, or a substrate or a film having a protective film or a functional film applied thereto is used.

【0028】[0028]

【作用】酸化インジウムに酸化錫のみを添加したITO
は焼結時蒸気圧が高いため、蒸発と凝縮とによる焼結機
構をとり、収縮が起こり難く、焼結体の緻密化は進まな
い。
Function: ITO in which only tin oxide is added to indium oxide
Since the vapor pressure during sintering is high, a sintering mechanism by evaporation and condensation is adopted, shrinkage does not easily occur, and densification of the sintered body does not proceed.

【0029】しかしながら、驚くべきことに、Bi2
3 を焼結助剤として加えると約830℃で液相を形成
し、その液相はITOの蒸発(昇華)を阻止するため、
蒸発と凝縮とによる焼結は抑えられ、以下に述べる液相
による焼結機構によって焼結が進む。すなわち、液相焼
結は、液相の存在により、物質移動が起こり、収縮を伴
い、焼結体の高密度化が起こる。但し、SiO2 を添加
せずにBi2 3 のみを単独で添加した場合は高密度化
効果が十分でなく、Bi2 3 を16wt%添加しても
相対密度は79%にとどまった。本発明の前記SiO2
−Bi2 3 組成においては、この液相焼結が加速さ
れ、さらに高密度化するため、良好な透明電導膜が形成
されると考えられる。
However, surprisingly, Bi 2 O
When 3 is added as a sintering aid, a liquid phase is formed at about 830 ° C., and this liquid phase prevents evaporation (sublimation) of ITO,
Sintering due to evaporation and condensation is suppressed, and sintering proceeds by the liquid phase sintering mechanism described below. That is, in the liquid phase sintering, due to the existence of the liquid phase, mass transfer occurs, shrinkage occurs, and the density of the sintered body increases. However, when only Bi 2 O 3 was added alone without adding SiO 2 , the densification effect was not sufficient, and the relative density remained at 79% even if 16 wt% of Bi 2 O 3 was added. The SiO 2 of the present invention
In the —Bi 2 O 3 composition, this liquid phase sintering is accelerated and further densified, so that a good transparent conductive film is considered to be formed.

【0030】後記実施例に実証されるように、ITOに
前記特定のSiO2 −Bi2 3 組成を組合せることに
よって、相対密度が90%を超える高密度の焼結体が得
られ、さらに、この焼結体をターゲットとして用いスパ
ッタリングを行うことによって比抵抗値が非常に低く且
つ可視光透過率の大きいITO電導膜を工業的有利に得
ることができる。
As will be demonstrated in Examples described later, by combining ITO with the above specific SiO 2 —Bi 2 O 3 composition, a high density sintered body having a relative density of more than 90% was obtained, and further, By carrying out sputtering using this sintered body as a target, it is possible to industrially obtain an ITO conductive film having a very low specific resistance value and a large visible light transmittance.

【0031】前記の特定のSiO2 −Bi2 3 組成は
臨界的であって、例えば、Bi2 3 を加えない場合
(比較例10〜13:焼結体相対密度72〜88、電導
膜比抵抗2.0〜2.3×10-4Ωcm)と比較して、
Bi2 3 が所定量含まれる場合(実施例21〜24:
焼結体相対密度95〜93、電導膜比抵抗1.2〜1.
3)は、焼結体密度が高く、電導膜比抵抗はかなり低
い。
The above specific SiO 2 --Bi 2 O 3 composition is critical, and for example, when Bi 2 O 3 is not added (Comparative Examples 10 to 13: relative density of sintered bodies 72 to 88, conductive film). Specific resistance of 2.0 to 2.3 × 10 −4 Ωcm),
When Bi 2 O 3 is included in a predetermined amount (Examples 21 to 24:
Sintered body relative density 95-93, conductive film specific resistance 1.2-1.
In 3), the density of the sintered body is high and the specific resistance of the conductive film is considerably low.

【0032】[0032]

【実施例】以下、実施例および比較例について、本発明
の焼結体ならびに透明電導膜およびその膜の形成方法を
具体的に説明する。 実施例1〜47、比較例1〜23 酸化インジウム(同和ケミカル製酸化インジウムN、純
度99.99%、平均粒度d50=0.93μm)900
gと酸化錫(新日本金属製、純度99.9%、粒度d50
=0.72μm)100gを容量4.8リットルのボー
ルミルにて24時間混合した後、大気中で1450℃で
15時間仮焼し、ITO粉末を得た。このITO粉末に
対して酸化ビスマス(三津和化学薬品製、純度99.9
%、粒度d50=0.78μm)と、酸化ケイ素(和光純
薬製、純度99.9999%、粒度d50=1.1μm)
を表1に示すような割合で混合した。表1〜3には酸化
ビスマスと酸化珪素の混合量を重量%で示しており、残
部がITOである。混合はボールミルで行った。これら
それぞれの混合粉末に、0.05wt%のPVA溶液を
加えて固形分濃度20wt%のスラリーとし、このスラ
リーをスプレードライヤーにて噴霧乾燥して平均粒径2
0μmの顆粒とした。
EXAMPLES The sintered body of the present invention, the transparent conductive film, and the method for forming the film will be specifically described below with reference to Examples and Comparative Examples. Examples 1 to 47, Comparative Examples 1 to 23 Indium oxide (indium oxide N manufactured by Dowa Chemical Co., purity 99.99%, average particle size d 50 = 0.93 μm) 900
g and tin oxide (manufactured by Shin Nippon Metal, purity 99.9%, particle size d 50
(0.72 μm) was mixed in a ball mill having a capacity of 4.8 liters for 24 hours and then calcined in the air at 1450 ° C. for 15 hours to obtain ITO powder. Bismuth oxide (manufactured by Mitsuwa Chemical Co., purity 99.9)
%, Particle size d 50 = 0.78 μm) and silicon oxide (manufactured by Wako Pure Chemical Industries, purity 99.9999%, particle size d 50 = 1.1 μm)
Were mixed in the proportions shown in Table 1. In Tables 1 to 3, the mixing amount of bismuth oxide and silicon oxide is shown by weight%, and the balance is ITO. Mixing was done with a ball mill. A 0.05 wt% PVA solution was added to each of these mixed powders to form a slurry having a solid content concentration of 20 wt%, and this slurry was spray-dried with a spray dryer to obtain an average particle size of 2
The granules were 0 μm.

【0033】この顆粒を1ton/cm2 で一軸加圧成
形し、直径90mmφ、厚さ3.5mmの円盤状成形体
を得た。この成形体を大気中にて1450℃で10時間
焼成した。焼結体の組成(化学分析)および相対密度を
表1〜3に示す。
The granules were uniaxially pressure-molded at 1 ton / cm 2 to obtain a disk-shaped molded body having a diameter of 90 mmφ and a thickness of 3.5 mm. This molded body was fired in the air at 1450 ° C. for 10 hours. Tables 1 to 3 show the composition (chemical analysis) and relative density of the sintered body.

【0034】これら焼結体をそれぞれターゲットとし
て、DCマグネトロンスパッタリング装置にセットし、
1×10-6torrまで真空に引いた後、分圧真空計で
モニターしながら、H2 ガスを3×10-7torr、O
2 ガスを3×10-6torr導入し、その後、Arガス
を全圧5×10-3torrになるまで導入した。スライ
ドグラス(寸法76×26×1mm)基板を300℃に
加熱し、投入電力100W、基板間距離65mmの条件
で透明電導膜を作成した。
Each of these sintered bodies was set as a target in a DC magnetron sputtering apparatus,
After evacuating to 1 × 10 −6 torr, H 2 gas was 3 × 10 −7 torr and O while monitoring with a partial pressure vacuum gauge.
2 gas was introduced at 3 × 10 −6 torr, and then Ar gas was introduced until the total pressure became 5 × 10 −3 torr. A slide glass (size: 76 × 26 × 1 mm) substrate was heated to 300 ° C., and a transparent conductive film was formed under the conditions of an input power of 100 W and a substrate-to-substrate distance of 65 mm.

【0035】実施例のいずれのターゲットもスパッタリ
ングを繰り返してもターゲットの黒化は薄く、スパッタ
速度も10オングストローム/secでほとんど変化し
なかった。得られた透明電導膜の組成はターゲットの組
成とほぼ同一であることをEPMAで確かめた。得られ
た透明電導膜の厚さ、可視光の平均透過率および比抵抗
値を表1〜3に示す。
The blackening of the targets was thin even when the sputtering was repeated in all the targets of the examples, and the sputtering rate was almost unchanged at 10 Å / sec. It was confirmed by EPMA that the composition of the obtained transparent conductive film was almost the same as the composition of the target. Tables 1 to 3 show the thickness, average transmittance of visible light and specific resistance of the obtained transparent conductive film.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】実施例48〜50、比較例24,25 実施例1と同じ原料粉をそれぞれ用い酸化錫量を変えて
試料を作成した。酸化インジウムおよび酸化錫の混合量
は表4の割合で行い、実施例1と同一条件で仮焼し、I
TO粉末とした。それぞれのITO粉末に酸化ケイ素
0.1wt%、酸化ビスマス1.5wt%の割合で更に
混合した。その他の条件は実施例1と同一にして焼結体
を得て、透明電導膜を作製した。焼結体組成、密度およ
び膜特性値を表4に示す。
Examples 48 to 50, Comparative Examples 24 and 25 Samples were prepared by using the same raw material powders as in Example 1 and varying the amount of tin oxide. The amounts of indium oxide and tin oxide mixed were as shown in Table 4, and calcined under the same conditions as in Example 1, and I
TO powder was used. Each ITO powder was further mixed with silicon oxide 0.1 wt% and bismuth oxide 1.5 wt%. Other conditions were the same as in Example 1 to obtain a sintered body, and a transparent conductive film was produced. Table 4 shows the composition, density and film characteristic values of the sintered body.

【0040】[0040]

【表4】 [Table 4]

【0041】実施例51〜94、比較例26〜39 実施例14で得られたターゲットを用い、表5,6に示
す量のO2 ガスとH2ガスと残部がArガスとからなる
混合ガスをスパッタリングガスとした以外は実施例1と
同一条件で透明電導膜を作製した。膜特性値を表5,6
に示す。
Examples 51 to 94, Comparative Examples 26 to 39 Using the targets obtained in Example 14, a mixed gas containing O 2 gas, H 2 gas and the balance Ar gas in the amounts shown in Tables 5 and 6 was used. A transparent conductive film was produced under the same conditions as in Example 1 except that was used as the sputtering gas. The film characteristic values are shown in Tables 5 and 6.
Shown in.

【0042】[0042]

【表5】 [Table 5]

【0043】[0043]

【表6】 [Table 6]

【0044】[0044]

【発明の効果】上記のように前記の特定のSiO2 −B
2 3 組成によれば、容易に安定して相対密度が90
%以上の高密度ITO焼結体が得られ、この焼結体から
低抵抗で透明度が高いITO透明電導膜を得ることがで
きる。焼結体からスパッタリングで透明電導膜を形成す
る際、ターゲット表面の黒化現象もなく、膜を形成する
速度が経時的に遅くなることもなく膜の比抵抗が悪化し
てくることもない。また工業的には、表面の黒化物を取
り除く目的でターゲットをはずすために、または、ター
ゲット寿命が短く、ターゲットの交換頻度が多いために
スパッタリング装置の稼働率が低くなるという問題点も
解決される。また、透明電導膜をより薄くし、エッチン
グ時間を短縮するとともに歩留まりを向上することがで
きる。
As described above, the above specific SiO 2 -B is used.
According to the i 2 O 3 composition, the relative density is easily and stably 90%.
% High density ITO sintered body is obtained, and an ITO transparent conductive film having low resistance and high transparency can be obtained from this sintered body. When a transparent conductive film is formed from a sintered body by sputtering, the target surface is not blackened, the film forming speed does not decrease with time, and the specific resistance of the film does not deteriorate. Further, industrially, the problem that the operating rate of the sputtering apparatus is lowered because the target is removed for the purpose of removing the blackened substance on the surface, or the target life is short and the target is frequently replaced, is solved. . In addition, the transparent conductive film can be made thinner, the etching time can be shortened, and the yield can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】SiO2 −Bi2 3 の二成分系図で、特許請
求の範囲に規定されるITO焼結体およびITO透明電
導膜のSiO2 およびBi2 3 含有量を示している。
FIG. 1 is a two-component system diagram of SiO 2 —Bi 2 O 3 , showing the SiO 2 and Bi 2 O 3 contents of an ITO sintered body and an ITO transparent conductive film defined in the claims.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 14/34 8414−4K G09F 9/30 339 7610−5G H01B 5/14 A 13/00 B 7244−5G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C23C 14/34 8414-4K G09F 9/30 339 7610-5G H01B 5/14 A 13/00 B 7244 -5G

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ITO焼結体において、図1に示される
SiO2 −Bi2 3 二成分系における下記組成を示す
点1,2,3,4および5で囲まれる領域に相当するS
iO2 及びBi2 3 組成を含有するITO焼結体。 点1:SiO2 =0.001wt%、Bi2 3 =9.
0wt% 点2:SiO2 = 9.0wt%、Bi2 3 =9.0
wt% 点3:SiO2 =12.0wt%、Bi2 3 =6.0
wt% 点4:SiO2 =12.0wt%、Bi2 3 =0.0
01wt% 点5:SiO2 =0.001wt%、Bi2 3 =0.
001wt%
1. In an ITO sintered body, S corresponding to a region surrounded by points 1, 2, 3, 4 and 5 showing the following composition in the SiO 2 —Bi 2 O 3 binary system shown in FIG.
An ITO sintered body containing a composition of iO 2 and Bi 2 O 3 . Point 1: SiO 2 = 0.001 wt%, Bi 2 O 3 = 9.
0 wt% Point 2: SiO 2 = 9.0 wt%, Bi 2 O 3 = 9.0
wt% Point 3: SiO 2 = 12.0 wt%, Bi 2 O 3 = 6.0
wt% Point 4: SiO 2 = 12.0 wt%, Bi 2 O 3 = 0.0
01 wt% point 5: SiO 2 = 0.001 wt%, Bi 2 O 3 = 0.
001wt%
【請求項2】 ITO透明電導膜において、図1に示さ
れるSiO2 −Bi2 3 二成分系における下記組成を
示す点1,2,3,4および5で囲まれる領域に相当す
るSiO2 及びBi2 3 組成を含有するITO透明電
導膜。 点1:SiO2 =0.001wt%、Bi2 3 =9.
0wt% 点2:SiO2 = 9.0wt%、Bi2 3 =9.0
wt% 点3:SiO2 =12.0wt%、Bi2 3 =6.0
wt% 点4:SiO2 =12.0wt%、Bi2 3 =0.0
01wt% 点5:SiO2 =0.001wt%、Bi2 3 =0.
001wt%
2. In an ITO transparent conductive film, SiO 2 corresponding to the region surrounded by points 1, 2, 3, 4 and 5 showing the following composition in the SiO 2 —Bi 2 O 3 binary system shown in FIG. And an ITO transparent conductive film containing a Bi 2 O 3 composition. Point 1: SiO 2 = 0.001 wt%, Bi 2 O 3 = 9.
0 wt% Point 2: SiO 2 = 9.0 wt%, Bi 2 O 3 = 9.0
wt% Point 3: SiO 2 = 12.0 wt%, Bi 2 O 3 = 6.0
wt% Point 4: SiO 2 = 12.0 wt%, Bi 2 O 3 = 0.0
01 wt% point 5: SiO 2 = 0.001 wt%, Bi 2 O 3 = 0.
001wt%
【請求項3】 請求項1の焼結体をターゲットとし、真
空槽内にArガスとO2 ガスとH2 ガスとからなる混合
ガスを、全圧に対しO2 ガス、H2 ガスともそれぞれ
0.2ppm〜20%含み、残部がArとなるような割
合で、全圧1×10-3torr〜5×10-2torrと
なるように導入し、スパッタリングを行うことを特徴と
するITO透明電導膜の形成方法。
3. A mixed gas comprising Ar gas, O 2 gas and H 2 gas in a vacuum chamber, wherein the sintered body according to claim 1 is used as a target, and O 2 gas and H 2 gas are respectively supplied to the total pressure. ITO transparent, characterized by containing 0.2 ppm to 20% and introducing Ar so that the balance is Ar so that the total pressure is 1 × 10 −3 torr to 5 × 10 −2 torr and performing sputtering. Method for forming conductive film.
JP5349165A 1993-12-28 1993-12-28 Sintered ito, ito clear conductive layer and formation thereof Pending JPH07196365A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5349165A JPH07196365A (en) 1993-12-28 1993-12-28 Sintered ito, ito clear conductive layer and formation thereof
PCT/JP1994/002214 WO1995018080A1 (en) 1993-12-28 1994-12-26 Ito sintered body, ito transparent conductive film and method of forming the film
CN94191599A CN1119851A (en) 1993-12-28 1994-12-26 ITO sintered body, ITO transparent conductive film and method of forming the film
KR1019950703610A KR100203671B1 (en) 1993-12-28 1994-12-26 Ito sintered body ito transparent conductive film and method of forming the film
TW084100347A TW438996B (en) 1993-12-28 1995-01-16 ITO sintered body, ITO transparent electrically conductive film and method of producing said film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5349165A JPH07196365A (en) 1993-12-28 1993-12-28 Sintered ito, ito clear conductive layer and formation thereof

Publications (1)

Publication Number Publication Date
JPH07196365A true JPH07196365A (en) 1995-08-01

Family

ID=18401914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5349165A Pending JPH07196365A (en) 1993-12-28 1993-12-28 Sintered ito, ito clear conductive layer and formation thereof

Country Status (5)

Country Link
JP (1) JPH07196365A (en)
KR (1) KR100203671B1 (en)
CN (1) CN1119851A (en)
TW (1) TW438996B (en)
WO (1) WO1995018080A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338983A (en) * 2005-06-01 2006-12-14 Univ Of Electro-Communications Transparent conductive molding, and method of manufacturing same
JP2014159638A (en) * 2008-08-28 2014-09-04 Jx Nippon Mining & Metals Corp Method of manufacturing mixed powder containing noble metal powder and oxide powder and mixed powder containing noble metal powder and oxide powder
CN104802284A (en) * 2015-03-31 2015-07-29 中国船舶重工集团公司第七二五研究所 Method for preparing large-scale ITO green body
CN104882191A (en) * 2014-02-27 2015-09-02 南昌欧菲光科技有限公司 Transparent conducting film and electronic equipment
JP7214063B1 (en) * 2021-12-28 2023-01-27 三井金属鉱業株式会社 Oxide sintered body, manufacturing method thereof, and sputtering target material
WO2023127195A1 (en) * 2021-12-28 2023-07-06 三井金属鉱業株式会社 Oxide sintered body, method for producing same, and sputtering target material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5855948B2 (en) * 2012-01-12 2016-02-09 ジオマテック株式会社 Transparent conductive film, substrate with transparent conductive film, IPS liquid crystal cell, capacitive touch panel, and method for manufacturing substrate with transparent conductive film
CN103243298A (en) * 2012-02-10 2013-08-14 海洋王照明科技股份有限公司 Halogen-doped ITO conductive film and preparation method thereof
CN107130217B (en) * 2017-06-01 2019-02-19 安徽拓吉泰新型陶瓷科技有限公司 A kind of inexpensive, high-density ITO targe material preparation method
CN109802016B (en) * 2019-01-11 2020-10-02 芜湖德豪润达光电科技有限公司 Transparent conducting layer preparation method, light-emitting diode and preparation method thereof
TWI813161B (en) * 2022-01-28 2023-08-21 光洋應用材料科技股份有限公司 Indium-tin-oxide film, preparation method thereof and light absorption element comprising the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065760A (en) * 1983-09-21 1985-04-15 東ソー株式会社 Manufacture of highly electroconductive tin oxide film material
JPS61136954A (en) * 1984-12-06 1986-06-24 三井金属鉱業株式会社 Indium oxide sintered body
JPH02225366A (en) * 1989-02-28 1990-09-07 Tosoh Corp Production of oxide sintered compact

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006338983A (en) * 2005-06-01 2006-12-14 Univ Of Electro-Communications Transparent conductive molding, and method of manufacturing same
JP4570152B2 (en) * 2005-06-01 2010-10-27 国立大学法人電気通信大学 Transparent conductive molding and method for producing the same
JP2014159638A (en) * 2008-08-28 2014-09-04 Jx Nippon Mining & Metals Corp Method of manufacturing mixed powder containing noble metal powder and oxide powder and mixed powder containing noble metal powder and oxide powder
CN104882191A (en) * 2014-02-27 2015-09-02 南昌欧菲光科技有限公司 Transparent conducting film and electronic equipment
CN104802284A (en) * 2015-03-31 2015-07-29 中国船舶重工集团公司第七二五研究所 Method for preparing large-scale ITO green body
JP7214063B1 (en) * 2021-12-28 2023-01-27 三井金属鉱業株式会社 Oxide sintered body, manufacturing method thereof, and sputtering target material
WO2023127195A1 (en) * 2021-12-28 2023-07-06 三井金属鉱業株式会社 Oxide sintered body, method for producing same, and sputtering target material

Also Published As

Publication number Publication date
TW438996B (en) 2001-06-07
KR100203671B1 (en) 1999-06-15
CN1119851A (en) 1996-04-03
KR960700977A (en) 1996-02-24
WO1995018080A1 (en) 1995-07-06

Similar Documents

Publication Publication Date Title
US6042752A (en) Transparent conductive film, sputtering target and transparent conductive film-bonded substrate
US5045235A (en) Transparent conductive film
JP3806521B2 (en) Transparent conductive film, sputtering target, and substrate with transparent conductive film
TW200307757A (en) Transparent conductive thin film, process for producing the same, sintered target for producing the same, and transparent, electroconductive substrate for display panel, and organic electroluminescence device
US20100003495A1 (en) Transparent conductive film and method for manufacturing the transparent conductive film, and sputtering target used in the method
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
JP4018839B2 (en) SnO2-based sintered body, thin film forming material and conductive film
JPH07196365A (en) Sintered ito, ito clear conductive layer and formation thereof
JPH06290641A (en) Noncrystal transparent conductive membrane
JP3331584B2 (en) Polycrystalline MgO deposited material
JP2011074479A (en) Target for ion plating for producing zinc oxide-based transparent conductive thin film, and zinc oxide-based transparent conductive thin film
KR101583124B1 (en) Sintered compact of conductive oxide and method for manufacturing the same
JP2000273622A (en) Material for forming thin film
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JPH0121109B2 (en)
JP2002338354A (en) Niobium oxide sintered compact, its manufacturing method and sputtering target using the same
EP1004687B1 (en) SUBSTRATE COATED WITH A TRANSPARENT CONDUCTIVE FILM and SPUTTERING TARGET FOR THE DEPOSITION OF SAID FILM
JPH06166561A (en) Sintered ito material, transparent conductive ito film and its formation
JPH0371510A (en) Transparent conductive film
JPH0656503A (en) Ito sintered compact
JPH054768B2 (en)
JP2003100154A (en) Transparent conductive film, its manufacturing method and its application
JPH05148638A (en) Production of ito sputtering target
JP3004518B2 (en) Sputtering target and method for manufacturing the same
JPH0726371A (en) Sputtering target and low refractivity film