WO2023127195A1 - Oxide sintered body, method for producing same, and sputtering target material - Google Patents

Oxide sintered body, method for producing same, and sputtering target material Download PDF

Info

Publication number
WO2023127195A1
WO2023127195A1 PCT/JP2022/031765 JP2022031765W WO2023127195A1 WO 2023127195 A1 WO2023127195 A1 WO 2023127195A1 JP 2022031765 W JP2022031765 W JP 2022031765W WO 2023127195 A1 WO2023127195 A1 WO 2023127195A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
oxide sintered
mass
target material
less
Prior art date
Application number
PCT/JP2022/031765
Other languages
French (fr)
Japanese (ja)
Inventor
耕暉 三浦
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN202280020083.3A priority Critical patent/CN117043122A/en
Priority to JP2022562442A priority patent/JP7214063B1/en
Priority to KR1020237032630A priority patent/KR102620041B1/en
Publication of WO2023127195A1 publication Critical patent/WO2023127195A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to an oxide sintered body and a method for producing the same.
  • the present invention also relates to a sputtering target material.
  • a composite oxide containing indium and tin (hereinafter also referred to as “ITO”) is widely used as a material for transparent conductive films.
  • ITO indium and tin
  • a transparent conductive film with low resistance resistivity of about 2 ⁇ 10 ⁇ 4 ⁇ cm
  • FPD flat panel displays
  • a transparent conductive film for a resistive touch panel that is attached to an FPD or the like is required to have high resistance (sheet resistance of about 700 ⁇ to 1000 ⁇ ) as a required characteristic in principle.
  • sputtering target material that has a low specific resistance that allows DC sputtering and that allows formation of a transparent conductive film with a high film specific resistance (see Patent Document 1).
  • This target material is composed of a composite oxide containing silicon in addition to indium and tin.
  • an object of the present invention is to provide a sputtering target material in which the occurrence of abnormal discharge is further suppressed as compared with the above-described conventional technology.
  • Another object of the present invention is to provide an oxide sintered body suitable for such a target material and a method for producing the same.
  • the present invention provides an oxide sintered body containing indium (In) element, tin (Sn) element and silicon (Si) element, wherein the Sn content is 50% by mass or more and 70% by mass or less in terms of SnO 2 There is, the Si content is 3% by mass or more and 15% by mass or less in terms of SiO 2 , the balance is indium, oxygen and inevitable impurities, and the area ratio of the SiO 2 phase observed in the cross section of the oxide sintered body is 3% or less.
  • the present invention also provides a sputtering target material comprising the above oxide sintered body.
  • a raw material composition containing an indium (In) element source, a tin (Sn) element source and a silicon (Si) element source is prepared, the raw material composition is molded to obtain a molded body, and the molded body A method for producing an oxide sintered body, wherein the compact is sintered at 1450 ° C. or higher and 1500 ° C. or lower for 4 hours or more and 20 hours or less. It provides
  • FIG. 1 is a schematic diagram showing measurement positions of bulk resistance of sputtering target materials obtained in Examples and Comparative Examples.
  • the oxide sintered body of the present invention and the sputtering target material using the same contain indium (In) element, tin (Sn) element and silicon (Si) element. These elements form oxides alone, or form composite oxides with two or more elements.
  • the Sn content ratio is 50% by mass or more and 70% by mass or less, preferably 52% by mass or more and 68% by mass or less in terms of SnO 2 . more preferably 55% by mass or more and 65% by mass or less, and still more preferably 57% by mass or more and 63% by mass or less.
  • the oxide sintered body of the present invention and the sputtering target material using the same have a Si content of 3% by mass or more and 15% by mass or less in terms of SiO 2 , preferably 4% by mass or more and 13% by mass or less. more preferably 6% by mass or more and 12% by mass or less, and still more preferably 7% by mass or more and 11% by mass or less.
  • the Si content ratio can be 15% by mass or less, as described below, the area ratio of the SiO 2 phase in the oxide sintered body and the sputtering target material using the same, that is, the sintered body and The area ratio in the target material can be 3% or less, and abnormal discharge can be effectively suppressed when the target material is sputtered.
  • the oxide sintered body of the present invention and the sputtering target material using the same are composed of In, O and unavoidable impurities.
  • the content ratio of In in the sputtering target material is preferably 15% by mass or more and 47% by mass or less in terms of In 2 O 3 , more preferably 19% by mass or more and 44% by mass or less, and still more preferably 23% by mass or more and 39% by mass. % or less, and more preferably 26 mass % or more and 36 mass % or less.
  • unavoidable impurities include Fe, Cr, Ni, W and Zr, and the content of each is usually 100 ppm or less.
  • the oxide sintered body of the present invention and the sputtering target material using the same are preferably a composite oxide phase of In and Si, a composite oxide phase of In and Sn, an oxide phase of Sn, and a Si Containing an oxide phase is preferable from the point of being able to effectively suppress abnormal discharge when the target material is sputtered. From the viewpoint of making this advantage more remarkable, it is preferable to include an In 2 Si 2 O 7 phase as the composite oxide phase of In and Si.
  • the composite oxide phase of In and Sn preferably contains an In 4 Sn 3 O 12 phase.
  • the Sn oxide phase preferably includes a SnO 2 phase.
  • the oxide phase of Si preferably includes a SiO 2 phase.
  • the area ratio of the SiO 2 phase observed in the cross section of the oxide sintered body is preferably 3% or less, more preferably 0. 0.1% or more and 2.8% or less, more preferably 0.5% or more and 2.5% or less, and particularly preferably 0.6% or more and 2.4% or less.
  • the SiO 2 phase is an insulating layer, so even when the oxide sintered body and the sputtering target material using the same have a low resistivity of about 10 ⁇ 1 ⁇ cm, the area ratio of the SiO 2 phase is 3. %, the discharge stability deteriorates and abnormal discharge tends to occur.
  • the oxide sintered body of the present invention and the sputtering target material using the same preferably have a relative density of 100% or more, more preferably 100.5% or more, particularly 101.0% or more. is preferred.
  • a relative density 100% or more, more preferably 100.5% or more, particularly 101.0% or more. is preferred.
  • Relative density is measured by the Archimedes method. Specifically, the air mass of the target material is divided by the volume (the mass of the target material in water/the specific gravity of water at the measurement temperature), and the percentage value for the theoretical density ⁇ (g/cm 3 ) based on the following formula (X) is calculated. Relative density (unit: %) was used.
  • C 1 to C i each indicate the content (% by mass) of the constituent material of the target material, and ⁇ 1 to ⁇ i are the density (g/cm 3 ) of each constituent material corresponding to C 1 to C i . indicates.
  • the constituent substances of the oxide sintered body and the sputtering target material using the same are considered to be In 2 O 3 , SnO 2 and SiO 2 as described below, for example C 1 : In 2 O 3 of the target material mass % of ⁇ 1 : Density of In 2 O 3 (7.18 g/cm 3 ) C2 : Mass % of SnO2 in the target material ⁇ 2 : Density of SnO 2 (6.95 g/cm 3 ) C 3 : % by mass of SiO 2 in target material ⁇ 3 : Density of SiO 2 (2.20 g/cm 3 ) is applied to the formula (X), the theoretical density ⁇ can be calculated.
  • the % by mass of In 2 O 3 , % by mass of SnO 2 and % by mass of SiO 2 in the target material may be obtained from the analysis result of each element of the target material by ICP emission spectrometry or the like.
  • the upper limit of the relative density is not particularly limited, it is, for example, 104.0%. Even if the relative density is increased further, it is difficult to effectively improve the effects described above, and the manufacturing cost of the oxide sintered body and the sputtering target material using the same tends to increase.
  • the relative density of the oxide sintered body is ⁇ T
  • the measurement pieces Of the relative densities when the relative density that deviates most from the relative density ⁇ T is ⁇ P , the difference in the relative density defined by the following formula (1) is ⁇ 1% or less is preferable, more preferably ⁇ 0.5% or less, and particularly preferably ⁇ 0.3% or less.
  • Rmax is the maximum bulk resistance value
  • Rmin is the minimum resistance value
  • the value of Rmax / Rmin is preferably 1.0 or more and 2.0 or less, more preferably 1.1 or more and 1.8 or less, particularly 1.2 or more and 1.6 or less Preferably.
  • the reason for this is that when the variation in the bulk resistance value of the oxide sintered body and the sputtering target material using the same increases, the potential at the high-resistance portion increases and the potential at the low-potential portion decreases. This is because discharge from a potential point to a low potential point is more likely to occur, and when the variation in the bulk resistance value is reduced, the discharge is less likely to occur, thereby suppressing abnormal discharge.
  • the Vickers hardness of the surface of the oxide sintered body of the present invention and the sputtering target material using the same is preferably 900 HV1 or more, more preferably 950 HV1 or more, particularly 1000 HV1 or more. preferable.
  • the sputtering target material is prevented from cracking during sputtering, which is preferable.
  • the upper limit of the Vickers hardness of the oxide sintered body and the sputtering target material using the same is not particularly limited, it is, for example, 1100HV1. Even if the surface hardness is further improved, it is difficult to effectively improve the effects described above, and the manufacturing costs of the oxide sintered body and the sputtering target material using the same tend to increase.
  • the area of the sputtering surface of the sputtering target material of the present invention is preferably 70,000 mm 2 or more, more preferably 120,000 mm 2 or more, further preferably 157,500 mm 2 or more, particularly preferably 200,000 mm 2 or more. .
  • the number of gaps between adjacent target materials can be reduced, and the gaps between the adjacent target materials during sputtering You can suppress particles that Although the upper limit of the area of the sputtering surface is not particularly limited, it is usually 500000 mm 2 .
  • the oxide sintered body of the present invention and the sputtering target material using the same have the properties as described above, it is possible to provide a sputtering target material in which the occurrence of abnormal discharge is further suppressed. It is possible to provide an oxide sintered body suitable for a variety of target materials.
  • the oxide sintered body of the present invention and the sputtering target material using the same can be suitably produced by the following method.
  • an indium (In) element source, a tin (Sn) element source, and a silicon (Si) element source are prepared.
  • the indium (In) element source, tin (Sn) element source and silicon (Si) element source can be In2O3 powder, SnO2 powder and SiO2 powder.
  • the In 2 O 3 powder, the SnO 2 powder and the SiO 2 powder are mixed so that the contents of In, Sn and Si in the obtained sintered body are within the ranges described above, respectively, to prepare a raw material composition.
  • the indium (In) element source, the tin (Sn) element source, and the silicon (Si) element source in the raw material composition are the In content ratio in terms of In 2 O 3 and the Sn content in terms of SnO 2 in the oxide sintered body. and the Si content ratio in terms of SiO2 , respectively.
  • each raw material powder Since the particles of each raw material powder are usually agglomerated, it is preferable to grind and mix in advance, or to grind while mixing.
  • the raw material powder can be put in a pot and pulverized or mixed with a ball mill.
  • an indium (In) element source, a tin (Sn) element source and a silicon (Si) element source such as In 2 O 3 powder, SnO 2 powder and SiO 2 powder
  • fatty acids preferably saturated fatty acids having from 10 to 22 carbon atoms.
  • saturated fatty acids examples include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, and behenic acid. These saturated fatty acids can be used individually by 1 type, or can be used in combination of 2 or more types. In addition to saturated fatty acids, unsaturated fatty acids such as palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, erucic acid, linoleic acid, linolenic acid and arachidonic acid can also be used. In particular, stearic acid, and industrial stearic acid (stearic acid + palmitic acid) can be preferably used from the viewpoint of easy availability. These unsaturated fatty acids can be used singly or in combination of two or more. Saturated fatty acids and unsaturated fatty acids can also be used in combination of one or more of each.
  • the obtained raw material composition can be molded as it is to form a molded body, which can be sintered.
  • a binder may be added to the raw material composition and molded to form a molded body.
  • this binder one or two or more of binders used in obtaining a molded body in a known powder metallurgy method, such as polyvinyl alcohol and acrylic emulsion binders, can be used.
  • a slurry may be prepared by adding a dispersion medium to the mixed powder, the slurry may be spray-dried to prepare granules, and the granules may be molded.
  • the forming method methods conventionally employed in powder metallurgy, such as cold pressing and CIP (cold isostatic pressing), can be used.
  • the raw material composition may be temporarily pressed to produce a temporary molded body, and the pulverized powder obtained by pulverizing this may be pressed to produce a molded body.
  • you may produce a molded object using wet molding methods, such as a slip casting method.
  • the relative density of the compact is usually 50-75%.
  • a sintered body can be obtained by firing the molded body obtained as described above.
  • the firing furnace used for firing is not particularly limited as long as the heating rate and cooling rate can be controlled during firing and cooling, and a firing furnace generally used for powder metallurgy may be used.
  • An oxygen-containing atmosphere is suitable as the firing atmosphere.
  • the heating rate is usually 50 to 400°C/h
  • the cooling rate is usually 300°C/h or less, preferably 100°C/h or less.
  • the firing temperature is 1450°C or higher and 1500°C or lower, preferably 1460°C or higher and 1490°C or lower.
  • the firing time is 4 hours or more and 20 hours or less, preferably 8 hours or more and 18 hours or less.
  • the sputtering target material can be obtained by cutting out the sintered body obtained as described above into a desired shape and grinding the sintered body, if necessary.
  • the shape of the sputtering target material is not particularly limited, and may be flat, cylindrical, or the like.
  • the sputtering target material is usually used by bonding to the base material.
  • the substrate is usually made of Cu, Al, Ti or stainless steel.
  • As the bonding material a bonding material used for bonding conventional ITO target materials, such as In metal, can be used.
  • the bonding method is also the same as the conventional ITO target material bonding method.
  • the sputtering target material has a low specific resistance, DC sputtering can be performed, enabling high-speed film formation. Moreover, since the characteristics described above are satisfied, the occurrence of abnormal discharge is further suppressed.
  • Elemental analysis of sputtering target material Elemental analysis in the sputtering target material is performed using a measuring instrument (name, model number): ICP emission spectrometer 720 ICP-OES (equipment manufacturer: Agilent Technologies), JIS standard: ICP-OES method. (JIS K 0116-2014).
  • SiO 2 phase area ratio of sputtering target material The cut surface obtained by cutting the sputtering target material was polished in stages using #180, #400, #800, #1000, and #2000 emery papers, and finally It was buffed to a mirror finish. Then, using a scanning electron microscope (SU3500, manufactured by Hitachi High-Technologies Co., Ltd.), BSE-COMP images of 41.6 ⁇ m ⁇ 59.2 ⁇ m in a range of 10 fields of view were randomly photographed at a magnification of 3000 times. SEM images were obtained. Next, the area occupied by the SiO 2 phase was drawn and filled in with different colors using Pictbear (manufactured by Fenrir).
  • the image in which the SiO 2 phase was painted over was recognized, and this image was binarized.
  • the conversion value was set so that one pixel was displayed in units of ⁇ m.
  • the areas of the SiO 2 phase and the whole were calculated using particle analysis software, and the percentage of the SiO 2 phase to the whole was obtained as the area ratio.
  • the average value of the area ratios obtained in 10 fields of view was taken as the area ratio of the SiO2 phase in the sintered body.
  • the constituent substances of the target material are considered to be In 2 O 3 , SnO 2 and SiO 2 , for example C 1 : mass % of In 2 O 3 in the target material ⁇ 1 : Density of In 2 O 3 (7.18 g/cm 3 ) C2 : Mass % of SnO2 in the target material ⁇ 2 : Density of SnO 2 (6.95 g/cm 3 ) C 3 : % by mass of SiO 2 in target material ⁇ 3 : Density of SiO 2 (2.20 g/cm 3 ) is applied to the formula (X1) to calculate the theoretical density ⁇ .
  • the mass % of In 2 O 3 , the mass % of SnO 2 , and the mass % of SiO 2 can be determined from the analysis results of each element of the target material by ICP-OES analysis. Variation in relative density is determined by dividing a rectangular target material into 3 squares in length and 5 squares in width, and measuring the relative density of each of the divided measurement pieces by the method described above. Of the 15 measured relative densities, the relative density ⁇ P of the measurement piece that deviates most from the value of the relative density ⁇ T of the target material before division is determined, and the relative density is calculated from the calculation formula of ⁇ T - ⁇ P. was calculated.
  • the bulk resistance of the sputtering target material is measured by using LORESTA (registered trademark)-GX MSP-T700 (series 4 probe probe TYPE ESP) manufactured by MITSUBISHI CHEMICAL ANALYTECH. , was measured in AUTO RANGE mode. 15 points were measured evenly on the surface of the oxide sintered body (see FIG. 1), and the arithmetic mean value of each measured value was taken as the bulk resistance value of the sintered body.
  • Rmax/Rmin of the sputtering target material was calculated by setting the maximum bulk resistance value as Rmax and the minimum resistance value as Rmin among the bulk resistance values measured at the 15 locations described above.
  • Vickers Hardness of Sputtering Target Material Vickers hardness tester MHT-1 (manufacturer: MATSUZAWA SEIKI) was used and measured according to JIS standard: JIS-R-1610:2003 (hardness test method for fine ceramics). Specifically, the cut surface obtained by cutting the oxide sintered body is polished in stages using #180, #400, #800, #1000, and #2000 emery papers, and finally buffed. It was then polished to a mirror surface and used as the measurement surface. In addition, the surface opposite to the measurement surface was polished using the emery paper #180 so as to be parallel to the measurement surface. Using the test piece, the hardness was measured under a load of 1 kgf according to the hardness measurement method of JIS-R-1610:2003 (hardness test method for fine ceramics).
  • DC sputtering was performed under the following conditions using a DC magnetron sputtering device (high rate sputtering device manufactured by Shinku Kikai Kogyo Co., Ltd.), an exhaust system cryopump and a rotary pump. Ultimate degree of vacuum: 3 ⁇ 10 -6 [Pa] Sputtering pressure: 0.65 [Pa] Argon gas flow rate: 50 [cc] Oxygen gas flow rate: 2.0 [cc] Input power: 0.72 [kW] Time: 24 hours The number of occurrences of abnormal discharge was evaluated as follows using an arcing counter (model: ⁇ Arc Monitor MAM Genesis MAM data collector Ver. 2.02 (manufactured by LANDMARK TECHNOLOGY)). A: little B: somewhat much C: much
  • Example 1 In 2 O 3 powder, SnO 2 powder, and SiO 2 powder were mixed at the ratio shown in Table 1, then put into a resin pot and mixed for 21 hours by a dry ball mill to obtain a raw material composition. was prepared. Zirconia balls were used as media in the dry ball mill.
  • the media and the raw material composition are classified by sieving, and 8.0% by mass of polyvinyl alcohol diluted with pure water to 5.5% by mass is added to the raw material composition with respect to the total mass of the raw material composition. 0.5% by mass of stearic acid was further added.
  • the above raw material composition was mixed with a mortar until the additives were blended and passed through a 5.5 mesh sieve.
  • the obtained raw material composition was temporarily pressed under the condition of 200 kg/cm 2 by a cold press method, and the obtained temporary compact was pulverized in a mortar.
  • the powder obtained by the pulverization was filled in a press mold and molded by a cold press method at a press pressure of 600 kg/cm 2 for 60 seconds to obtain a compact.
  • the obtained compact was placed in a firing furnace, and oxygen was allowed to flow into the furnace at 1 L/h, and fired at 1480°C for 16 hours. After that, it was cooled at a cooling rate of 50°C/h.
  • the surface of the obtained oxide sintered body was machined with a #170 whetstone to produce a sputtering target material having a surface Ra of 1.0 ⁇ m.
  • the sputtering target material was rectangular with a long side dimension of 490 mm and a short side dimension of 370 mm.
  • Example 6 A rectangular sputtering target material of 490 mm x 370 mm was manufactured in the same manufacturing method as in Example 3, except that the firing temperature was changed from 1480°C to 1500°C. Cracks in the target material were visually confirmed, and each property was evaluated according to the evaluation method described above. Also, a ⁇ 4-inch sample was cut out from the target material, and abnormal discharge was evaluated. Table 1 shows the results.
  • Example 7 A rectangular sputtering target material of 490 mm ⁇ 370 mm was manufactured in the same manufacturing method as in Example 3, except that stearic acid was not added. Cracks in the target material were visually confirmed, and each property was evaluated according to the evaluation method described above. Also, a ⁇ 4-inch sample was cut out from the target material, and abnormal discharge was evaluated. Table 1 shows the results.
  • Example 1 A rectangular sputtering target material of 490 mm x 370 mm was manufactured in the same manufacturing method as in Example 3, except that the firing temperature was changed from 1480°C to 1550°C. In this comparative example, since cracks occurred in the target material, a ⁇ 4-inch sample was cut out from the uncracked portion to evaluate abnormal discharge. Cracks in the target material were visually confirmed, and each characteristic was evaluated according to the evaluation method described above. Table 1 shows the results.
  • Example 2 A rectangular sputtering target material of 490 mm x 370 mm was manufactured in the same manufacturing method as in Example 4, except that the firing temperature was changed from 1480°C to 1550°C. In this comparative example, since cracks occurred in the target material, a ⁇ 4-inch sample was cut out from the uncracked portion to evaluate abnormal discharge. Cracks in the target material were visually confirmed, and each characteristic was evaluated according to the evaluation method described above. Table 1 shows the results.
  • Example 1-5 the contents of In, Sn and Si are within the scope of the present invention, and the SiO observed in the cross section of the oxide sintered body constituting the target material Since the area ratio of the two phases is less than 3%, it has been found that the number of abnormal discharge occurrences is small and good DC sputtering is possible. However, in Example 6, the firing temperature was as high as 1500° C. and the area ratio of the SiO 2 phase was as high as 3% compared to Example 1-5, so some abnormal discharge was observed in DC sputtering. rice field.
  • Example 7 stearic acid was not added to the raw material composition, so each element source was contained in the raw material composition in a relatively non-uniform and coarse state, and the uniformity and density of the raw material composition decreased. are doing. Therefore, some abnormal discharge was observed in DC sputtering.
  • the decrease in the uniformity and density of the raw material composition can be seen from Table 1 that the relative density difference, Rmax/Rmin and bending strength are lower than those of Examples 1-5.
  • production of abnormal discharge was suppressed further, and its manufacturing method are provided.
  • a sputtering target material in which the occurrence of abnormal discharge is further suppressed is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is an oxide sintered body comprising an indium (In) element, a tin (Sn) element, and a silicon (Si) element, with the balance consisting of indium, oxygen and inevitable impurities, wherein the Sn content is 50 mass% to 70 mass% in terms of SnO2, the Si content is 3 mass% to 15 mass% in terms of SiO2, and the area percentage of the SiO2 phase observed in the cross section of the oxide sintered body is at most 3%. A sputtering target material is formed by using said oxide sintered body.

Description

酸化物焼結体及びその製造方法、並びにスパッタリングターゲット材Oxide sintered body, manufacturing method thereof, and sputtering target material
 本発明は、酸化物焼結体及びその製造方法に関する。また本発明はスパッタリングターゲット材に関する。 The present invention relates to an oxide sintered body and a method for producing the same. The present invention also relates to a sputtering target material.
 インジウム及びスズを含む複合酸化物(以下「ITO」ともいう。)は、透明導電膜の材料として広く用いられている。例えば、フラットパネルディスプレイ(以下「FPD」ともいう。)に使われる透明導電膜は、低抵抗(抵抗率2×10-4Ωcm程度)のものが選択される。一方、FPD等に取り付けて使われる抵抗式タッチパネル用透明導電膜は、その原理上、高抵抗なもの(シート抵抗700Ω~1000Ω程度)が要求特性として求められている。 A composite oxide containing indium and tin (hereinafter also referred to as “ITO”) is widely used as a material for transparent conductive films. For example, a transparent conductive film with low resistance (resistivity of about 2×10 −4 Ωcm) is selected for use in flat panel displays (hereinafter also referred to as “FPD”). On the other hand, a transparent conductive film for a resistive touch panel that is attached to an FPD or the like is required to have high resistance (sheet resistance of about 700Ω to 1000Ω) as a required characteristic in principle.
 そこで本出願人は先に、DCスパッタリングが可能な低比抵抗を有し、且つ、高い膜比抵抗を有する透明導電膜の形成が可能なスパッタリングターゲット材を提案した(特許文献1参照)。このターゲット材は、インジウム及びスズに加えてケイ素を含む複合酸化物から構成されている。 Therefore, the present applicant previously proposed a sputtering target material that has a low specific resistance that allows DC sputtering and that allows formation of a transparent conductive film with a high film specific resistance (see Patent Document 1). This target material is composed of a composite oxide containing silicon in addition to indium and tin.
国際公開第2018/211792号公報International Publication No. 2018/211792
 ところでスパッタリングによって薄膜を形成する場合に課題として挙げられる現象の一つに、スパッタリング時に生じる異常放電がある。特許文献1に記載のターゲット材を用いれば、この現象は問題とならないが、薄膜の生産性の向上の観点からは、この現象の更に一層の低減化が求められている。 By the way, one of the phenomena raised as a problem when forming a thin film by sputtering is abnormal discharge that occurs during sputtering. Although this phenomenon does not pose a problem if the target material described in Patent Document 1 is used, there is a demand for further reduction of this phenomenon from the viewpoint of improving the productivity of thin films.
 したがって本発明の課題は、前述した従来技術よりも異常放電の発生が一層抑制されたスパッタリングターゲット材を提供することにある。また本発明の課題は、そのようなターゲット材に適した酸化物焼結体及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a sputtering target material in which the occurrence of abnormal discharge is further suppressed as compared with the above-described conventional technology. Another object of the present invention is to provide an oxide sintered body suitable for such a target material and a method for producing the same.
 本発明は、インジウム(In)元素、スズ(Sn)元素及びケイ素(Si)元素を含む酸化物焼結体であって、Snの含有量がSnO換算で50質量%以上70質量%以下であり、Siの含有量がSiO換算で3質量%以上15質量%以下であり、残部インジウム、酸素及び不可避不純物からなり、前記酸化物焼結体の断面に観察されるSiO相の面積率が3%以下である、酸化物焼結体を提供するものである。 The present invention provides an oxide sintered body containing indium (In) element, tin (Sn) element and silicon (Si) element, wherein the Sn content is 50% by mass or more and 70% by mass or less in terms of SnO 2 There is, the Si content is 3% by mass or more and 15% by mass or less in terms of SiO 2 , the balance is indium, oxygen and inevitable impurities, and the area ratio of the SiO 2 phase observed in the cross section of the oxide sintered body is 3% or less.
 また本発明は、前記の酸化物焼結体からなるスパッタリングターゲット材を提供するものである。 The present invention also provides a sputtering target material comprising the above oxide sintered body.
 更に本発明は、インジウム(In)元素源、スズ(Sn)元素源及びケイ素(Si)元素源を含む原料組成物を調製し、前記原料組成物を成形して成形体を得、前記成形体を焼成する工程を含む、酸化物焼結体の製造方法であって、前記成形体の焼成を、1450℃以上1500℃以下で、4時間以上20時間以下行う、酸化物焼結体の製造方法を提供するものである。 Further, in the present invention, a raw material composition containing an indium (In) element source, a tin (Sn) element source and a silicon (Si) element source is prepared, the raw material composition is molded to obtain a molded body, and the molded body A method for producing an oxide sintered body, wherein the compact is sintered at 1450 ° C. or higher and 1500 ° C. or lower for 4 hours or more and 20 hours or less. It provides
図1は、実施例及び比較例で得られたスパッタリングターゲット材についてのバルク抵抗の測定位置を示す模式図である。FIG. 1 is a schematic diagram showing measurement positions of bulk resistance of sputtering target materials obtained in Examples and Comparative Examples.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、インジウム(In)元素、スズ(Sn)元素及びケイ素(Si)元素を含む。これらの元素は単独で酸化物を形成しているか、又は2種以上の元素で複合酸化物を形成している。 The oxide sintered body of the present invention and the sputtering target material using the same contain indium (In) element, tin (Sn) element and silicon (Si) element. These elements form oxides alone, or form composite oxides with two or more elements.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、Snの含有比率がSnO換算で50質量%以上70質量%以下であり、好ましくは52質量%以上68質量%以下であり、より好ましくは55質量%以上65質量%以下であり、更に好ましくは57質量%以上63質量%以下である。
 Snの含有比率を50質量%以上とすることで、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材をスパッタリングして得た透明導電膜の膜比抵抗を高くすることができ、FPD等に取り付けて使われる抵抗式タッチパネル用透明導電膜として使用することが可能になる。
 Snの含有比率を70質量%以下とすることで、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材の比抵抗が高くなることを防止でき、DCスパッタリングを行うことが容易となり、DCスパッタリングによる高速成膜等の利点を享受できる。
In the oxide sintered body of the present invention and the sputtering target material using the same, the Sn content ratio is 50% by mass or more and 70% by mass or less, preferably 52% by mass or more and 68% by mass or less in terms of SnO 2 . more preferably 55% by mass or more and 65% by mass or less, and still more preferably 57% by mass or more and 63% by mass or less.
By setting the content ratio of Sn to 50% by mass or more, the film specific resistance of the transparent conductive film obtained by sputtering the oxide sintered body and the sputtering target material using the same can be increased. It can be used as a transparent conductive film for resistive touch panels that are attached to
By setting the Sn content ratio to 70% by mass or less, it is possible to prevent the specific resistance of the oxide sintered body and the sputtering target material using the same from increasing, making it easier to perform DC sputtering. Advantages such as high-speed film formation can be enjoyed.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、Siの含有比率がSiO換算で3質量%以上15質量%以下であり、好ましくは4質量%以上13質量%以下であり、より好ましくは6質量%以上12質量%以下であり、更に好ましくは7質量%以上11質量%以下である。
 Siの含有比率を3質量%以上とすることで、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材をスパッタリングして得た透明導電膜の膜比抵抗を高くすることができ、FPD等に取り付けて使われる抵抗式タッチパネル用透明導電膜として使用することが可能になる。
 Siの含有比率を15質量%以下とすることで、以下に説明するように、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材中のSiO相の面積率、すなわち当該焼結体及びターゲット材中での面積率を3%以下とすることができ、該ターゲット材をスパッタリングしたときの異常放電を効果的に抑制することができる。また、比抵抗が高くなることを抑制でき、DCスパッタリングを行うことが容易となり、DCスパッタリングによる高速成膜等の利点を享受できる。
The oxide sintered body of the present invention and the sputtering target material using the same have a Si content of 3% by mass or more and 15% by mass or less in terms of SiO 2 , preferably 4% by mass or more and 13% by mass or less. more preferably 6% by mass or more and 12% by mass or less, and still more preferably 7% by mass or more and 11% by mass or less.
By setting the content ratio of Si to 3% by mass or more, the film specific resistance of the transparent conductive film obtained by sputtering the oxide sintered body and the sputtering target material using the same can be increased. It can be used as a transparent conductive film for resistive touch panels that are attached to
By setting the Si content ratio to 15% by mass or less, as described below, the area ratio of the SiO 2 phase in the oxide sintered body and the sputtering target material using the same, that is, the sintered body and The area ratio in the target material can be 3% or less, and abnormal discharge can be effectively suppressed when the target material is sputtered. In addition, it is possible to suppress an increase in specific resistance, facilitate DC sputtering, and enjoy advantages such as high-speed film formation by DC sputtering.
 更に、本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、残部がIn、O及び不可避不純物からなる。
 スパッタリングターゲット材におけるInの含有比率は、In換算で15質量%以上47質量%以下が好ましく、更に好ましくは19質量%以上44質量%以下であり、一層好ましくは23質量%以上39質量%以下であり、更に一層好ましくは26質量%以上36質量%以下である。
 不可避不純物は、例えばFe、Cr、Ni、W及びZr等を挙げることができ、その含有量は各々通常100ppm以下である。
Furthermore, the oxide sintered body of the present invention and the sputtering target material using the same are composed of In, O and unavoidable impurities.
The content ratio of In in the sputtering target material is preferably 15% by mass or more and 47% by mass or less in terms of In 2 O 3 , more preferably 19% by mass or more and 44% by mass or less, and still more preferably 23% by mass or more and 39% by mass. % or less, and more preferably 26 mass % or more and 36 mass % or less.
Examples of unavoidable impurities include Fe, Cr, Ni, W and Zr, and the content of each is usually 100 ppm or less.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、好適には、In及びSiの複合酸化物相、In及びSnの複合酸化物相、Snの酸化物相、及びSiの酸化物相を含んでいることが、該ターゲット材をスパッタリングしたときの異常放電を効果的に抑制することができる点から好ましい。この利点を一層顕著なものとする観点から、In及びSiの複合酸化物相としてInSi相を含むことが好ましい。In及びSnの複合酸化物相としてはInSn12相を含むことが好ましい。Snの酸化物相としてはSnO相を含むことが好ましい。Siの酸化物相としてはSiO相を含むことが好ましい。 The oxide sintered body of the present invention and the sputtering target material using the same are preferably a composite oxide phase of In and Si, a composite oxide phase of In and Sn, an oxide phase of Sn, and a Si Containing an oxide phase is preferable from the point of being able to effectively suppress abnormal discharge when the target material is sputtered. From the viewpoint of making this advantage more remarkable, it is preferable to include an In 2 Si 2 O 7 phase as the composite oxide phase of In and Si. The composite oxide phase of In and Sn preferably contains an In 4 Sn 3 O 12 phase. The Sn oxide phase preferably includes a SnO 2 phase. The oxide phase of Si preferably includes a SiO 2 phase.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、該酸化物焼結体の断面に観察されるSiO相の面積率が好ましくは3%以下であり、より好ましくは0.1%以上2.8%以下であり、更に好ましくは0.5%以上2.5%以下であり、特に好ましくは0.6%以上2.4%以下である。SiO相の面積率は小さいほど好ましいが、前記好ましい範囲における下限値は、酸化物焼結体等が前記範囲のSiを含むことに起因して決定されるものである。 In the oxide sintered body of the present invention and the sputtering target material using the same, the area ratio of the SiO 2 phase observed in the cross section of the oxide sintered body is preferably 3% or less, more preferably 0. 0.1% or more and 2.8% or less, more preferably 0.5% or more and 2.5% or less, and particularly preferably 0.6% or more and 2.4% or less. The smaller the area ratio of the SiO 2 phase, the better, but the lower limit of the preferred range is determined because the oxide sintered body or the like contains Si within the range.
 前記面積率を3%以下とすることにより、前記スパッタリングターゲット材をDCスパッタリングした際の異常放電を効果的に抑制することができる。この理由は、SiO相は絶縁層であるので、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材の抵抗率が10-1Ωcm程度と低い場合でも、SiO相の面積率が3%を超えると放電安定性が悪化し、異常放電が発生しやすくなるためである。 By setting the area ratio to 3% or less, abnormal discharge can be effectively suppressed when the sputtering target material is DC-sputtered. The reason for this is that the SiO 2 phase is an insulating layer, so even when the oxide sintered body and the sputtering target material using the same have a low resistivity of about 10 −1 Ωcm, the area ratio of the SiO 2 phase is 3. %, the discharge stability deteriorates and abnormal discharge tends to occur.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、相対密度が100%以上であることが好ましく、更には100.5%以上であることが好ましく、特に101.0%以上であることが好ましい。相対密度を100%以上とすることにより、前記スパッタリングターゲット材をDCスパッタリングした際の異常放電を効果的に抑制することができる。この理由は、相対密度が向上することによって、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材の体積抵抗値が低下することで、DCスパッタリング時の電荷集中が抑制されるからである。これによって、DCスパッタリング時の電荷集中による高電位箇所と電荷非集中による低電位箇所との形成が抑えられ、高電位箇所から低電位箇所への放電が生じにくくなることにより、異常放電が抑制されると考えられるからである。 The oxide sintered body of the present invention and the sputtering target material using the same preferably have a relative density of 100% or more, more preferably 100.5% or more, particularly 101.0% or more. is preferred. By setting the relative density to 100% or more, it is possible to effectively suppress abnormal discharge when the sputtering target material is subjected to DC sputtering. This is because the increase in relative density reduces the volume resistance of the oxide sintered body and the sputtering target material using the same, thereby suppressing charge concentration during DC sputtering. This suppresses the formation of high-potential areas due to charge concentration and low-potential areas due to non-concentration of charges during DC sputtering, and makes it difficult for discharge to occur from high-potential areas to low-potential areas, thereby suppressing abnormal discharge. This is because it is thought that
 相対密度は、アルキメデス法によって測定される。具体的には、ターゲット材の空中質量を体積(ターゲット材の水中質量/計測温度における水比重)で除し、下記式(X)に基づく理論密度ρ(g/cm)に対する百分率の値を相対密度(単位:%)とした。 Relative density is measured by the Archimedes method. Specifically, the air mass of the target material is divided by the volume (the mass of the target material in water/the specific gravity of water at the measurement temperature), and the percentage value for the theoretical density ρ (g/cm 3 ) based on the following formula (X) is calculated. Relative density (unit: %) was used.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
(式中C~Cはそれぞれターゲット材の構成物質の含有量(質量%)を示し、ρ~ρはC~Cに対応する各構成物質の密度(g/cm)を示す。) (In the formula, C 1 to C i each indicate the content (% by mass) of the constituent material of the target material, and ρ 1 to ρ i are the density (g/cm 3 ) of each constituent material corresponding to C 1 to C i . indicates.)
 酸化物焼結体及びこれを用いてなるスパッタリングターゲット材の構成物質は、以下に説明するように、In、SnO、SiOと考え、例えば
:ターゲット材のInの質量%
ρ:Inの密度(7.18g/cm
:ターゲット材のSnOの質量%
ρ:SnOの密度(6.95g/cm
:ターゲット材のSiOの質量%
ρ:SiOの密度(2.20g/cm
を式(X)に適用することで理論密度ρを算出することができる。
 ターゲット材のInの質量%、SnOの質量%及びSiOの質量%は、ICP発光分光測定等によるターゲット材の各元素の分析結果から求めてもよい。
The constituent substances of the oxide sintered body and the sputtering target material using the same are considered to be In 2 O 3 , SnO 2 and SiO 2 as described below, for example C 1 : In 2 O 3 of the target material mass % of
ρ 1 : Density of In 2 O 3 (7.18 g/cm 3 )
C2 : Mass % of SnO2 in the target material
ρ 2 : Density of SnO 2 (6.95 g/cm 3 )
C 3 : % by mass of SiO 2 in target material
ρ 3 : Density of SiO 2 (2.20 g/cm 3 )
is applied to the formula (X), the theoretical density ρ can be calculated.
The % by mass of In 2 O 3 , % by mass of SnO 2 and % by mass of SiO 2 in the target material may be obtained from the analysis result of each element of the target material by ICP emission spectrometry or the like.
 相対密度の上限は特に限定されるものではないが、例えば104.0%である。相対密度をこれ以上高めても上述した作用効果を効果的に向上させにくく、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材の製造コストが増大する傾向にある。 Although the upper limit of the relative density is not particularly limited, it is, for example, 104.0%. Even if the relative density is increased further, it is difficult to effectively improve the effects described above, and the manufacturing cost of the oxide sintered body and the sputtering target material using the same tends to increase.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、酸化物焼結体の相対密度をρとし、酸化物焼結体を複数の測定片に分割したとき、該測定片の相対密度のうち、前記相対密度ρから最も値が乖離している相対密度をρとしたとき、以下の式(1)で定義される相対密度の差が±1%以下であることが好ましく、更には±0.5%以下であることが好ましく、特に±0.3%以下であることが好ましい。
  ρ-ρ  (1)
 前記相対密度の差が減少することによって、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材の電荷集中が抑制され、電荷集中による高電位箇所と電荷非集中による低電位箇所との形成が抑えられ、高電位箇所から低電位箇所への放電が生じにくくなることにより、異常放電が抑制される。
In the oxide sintered body of the present invention and the sputtering target material using the same, the relative density of the oxide sintered body is ρ T , and when the oxide sintered body is divided into a plurality of measurement pieces, the measurement pieces Of the relative densities, when the relative density that deviates most from the relative density ρ T is ρ P , the difference in the relative density defined by the following formula (1) is ± 1% or less is preferable, more preferably ±0.5% or less, and particularly preferably ±0.3% or less.
ρ T −ρ P (1)
By reducing the difference in relative density, the charge concentration of the oxide sintered body and the sputtering target material using the same is suppressed, and the formation of high potential points due to charge concentration and low potential points due to charge non-concentration is prevented. Abnormal discharge is suppressed by suppressing and making it difficult for discharge to occur from a high-potential location to a low-potential location.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は、その表面における複数の箇所で測定されたバルク抵抗値のうち、最大のバルク抵抗値をRmaxとし、最小の抵抗値をRminとしたとき、Rmax/Rminの値が1.0以上2.0以下であることが好ましく、更には1.1以上1.8以下であることが好ましく、特に1.2以上1.6以下であることが好ましい。Rmax/Rminの値を前記範囲とすることにより、前記スパッタリングターゲット材をDCスパッタリングした際の異常放電を効果的に抑制することができる。
 この理由は、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材のバルク抵抗値のばらつきが増大すると、高抵抗箇所での電位が高くなり、低電位箇所での電位が低くなるので、高電位箇所から低電位箇所への放電が生じやすくなる一方、当該バルク抵抗値のばらつきが減少すると、前記放電が生じにくくなり、これによって異常放電が抑制されると考えられるからである。
In the oxide sintered body of the present invention and the sputtering target material using the same, among the bulk resistance values measured at a plurality of points on the surface, Rmax is the maximum bulk resistance value, and Rmin is the minimum resistance value. , the value of Rmax / Rmin is preferably 1.0 or more and 2.0 or less, more preferably 1.1 or more and 1.8 or less, particularly 1.2 or more and 1.6 or less Preferably. By setting the value of Rmax/Rmin within the above range, abnormal discharge can be effectively suppressed when the sputtering target material is DC-sputtered.
The reason for this is that when the variation in the bulk resistance value of the oxide sintered body and the sputtering target material using the same increases, the potential at the high-resistance portion increases and the potential at the low-potential portion decreases. This is because discharge from a potential point to a low potential point is more likely to occur, and when the variation in the bulk resistance value is reduced, the discharge is less likely to occur, thereby suppressing abnormal discharge.
 更に、本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材の表面のビッカース硬度が900HV1以上であることが好ましく、更には950HV1以上であることが好ましく、特に1000HV1以上であることが好ましい。酸化物焼結体及びこれを用いてなるスパッタリングターゲット材のビッカース硬度を900HV1以上とすることにより、スパッタ時のスパッタリングターゲット材の割れを防止することになるので好ましい。 Furthermore, the Vickers hardness of the surface of the oxide sintered body of the present invention and the sputtering target material using the same is preferably 900 HV1 or more, more preferably 950 HV1 or more, particularly 1000 HV1 or more. preferable. By setting the Vickers hardness of the oxide sintered body and the sputtering target material using the same to 900 HV1 or more, the sputtering target material is prevented from cracking during sputtering, which is preferable.
 酸化物焼結体及びこれを用いてなるスパッタリングターゲット材のビッカース硬度の上限は特に限定されないが、例えば1100HV1である。これ以上、表面硬度を向上させても上述した作用効果を効果的に向上させにくく、酸化物焼結体及びこれを用いてなるスパッタリングターゲット材の製造コストが増大する傾向にある。 Although the upper limit of the Vickers hardness of the oxide sintered body and the sputtering target material using the same is not particularly limited, it is, for example, 1100HV1. Even if the surface hardness is further improved, it is difficult to effectively improve the effects described above, and the manufacturing costs of the oxide sintered body and the sputtering target material using the same tend to increase.
 本発明のスパッタリングターゲット材のスパッタ面の面積は70000mm以上であることが好ましく、更に120000mm以上であることが好ましく、更に157500mm以上であることが好ましく、特に200000mm以上であることが好ましい。これによって、当該スパッタリングターゲット材を複数枚用いて大面積の分割スパッタリングターゲットを作製した場合に、隣り合うターゲット材の間隙の数を減らすことができ、スパッタリング時における当該隣り合うターゲット材の間隙から発生するパーティクルを抑制することができる。
 スパッタ面の面積の上限は特に限定されるものではないが、通常500000mmである。
The area of the sputtering surface of the sputtering target material of the present invention is preferably 70,000 mm 2 or more, more preferably 120,000 mm 2 or more, further preferably 157,500 mm 2 or more, particularly preferably 200,000 mm 2 or more. . As a result, when a large-area divided sputtering target is produced using a plurality of the sputtering target materials, the number of gaps between adjacent target materials can be reduced, and the gaps between the adjacent target materials during sputtering You can suppress particles that
Although the upper limit of the area of the sputtering surface is not particularly limited, it is usually 500000 mm 2 .
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材が、上述のような特性を有することによって、異常放電の発生が一層抑制されたスパッタリングターゲット材を提供することができ、そのようなターゲット材に適した酸化物焼結体の提供が可能となる。 Since the oxide sintered body of the present invention and the sputtering target material using the same have the properties as described above, it is possible to provide a sputtering target material in which the occurrence of abnormal discharge is further suppressed. It is possible to provide an oxide sintered body suitable for a variety of target materials.
 本発明の酸化物焼結体及びこれを用いてなるスパッタリングターゲット材は以下の方法によって好適に製造することができる。
 最初に、インジウム(In)元素源、スズ(Sn)元素源及びケイ素(Si)元素源を準備する。一般に、インジウム(In)元素源、スズ(Sn)元素源及びケイ素(Si)元素源は、In粉末、SnO粉末及びSiO粉末であり得る。In粉末、SnO粉末及びSiO粉末は、得られる焼結体におけるIn、Sn及びSiの含有量がそれぞれ前記範囲内になるように混合して原料組成物を調製する。原料組成物中における、インジウム(In)元素源、スズ(Sn)元素源及びケイ素(Si)元素源は、酸化物焼結体におけるIn換算のIn含有比、SnO換算のSn含有比、及びSiO換算のSi含有比とそれぞれ一致することが確認されている。
The oxide sintered body of the present invention and the sputtering target material using the same can be suitably produced by the following method.
First, an indium (In) element source, a tin (Sn) element source, and a silicon (Si) element source are prepared. In general, the indium (In) element source, tin (Sn) element source and silicon (Si) element source can be In2O3 powder, SnO2 powder and SiO2 powder. The In 2 O 3 powder, the SnO 2 powder and the SiO 2 powder are mixed so that the contents of In, Sn and Si in the obtained sintered body are within the ranges described above, respectively, to prepare a raw material composition. The indium (In) element source, the tin (Sn) element source, and the silicon (Si) element source in the raw material composition are the In content ratio in terms of In 2 O 3 and the Sn content in terms of SnO 2 in the oxide sintered body. and the Si content ratio in terms of SiO2 , respectively.
 各原料粉末は、通常は粒子が凝集しているため、事前に粉砕して混合するか、あるいは混合しながら粉砕を行うことが好ましい。 Since the particles of each raw material powder are usually agglomerated, it is preferable to grind and mix in advance, or to grind while mixing.
 原料粉末の粉砕方法や原料組成物を得る際の混合方法には特に制限はなく、例えば原料粉末をポットに入れて、ボールミルにより粉砕又は混合を行うことができる。 There are no particular restrictions on the method of pulverizing the raw material powder or the method of mixing when obtaining the raw material composition. For example, the raw material powder can be put in a pot and pulverized or mixed with a ball mill.
 前記の原料組成物を調製する際には、インジウム(In)元素源、スズ(Sn)元素源及びケイ素(Si)元素源、例えばIn粉末、SnO粉末及びSiO粉末に対して脂肪酸、好ましくは炭素原子数10以上22以下の飽和脂肪酸を添加することが好ましい。脂肪酸を添加することにより、各元素源の表面滑性が増大するので、原料組成物中に各元素源が均一且つ密な状態で含まれ、原料組成物の均一性及び密度が向上する。したがって、原料組成物の焼成むらを抑制することができ、上述した酸化物焼結体等の相対密度差やRmax/Rminを、上述したような好ましい範囲に簡易に収めることができるようになり、更には抗折強度が向上することになる。 When preparing the raw material composition, an indium (In) element source, a tin (Sn) element source and a silicon (Si) element source, such as In 2 O 3 powder, SnO 2 powder and SiO 2 powder It is preferred to add fatty acids, preferably saturated fatty acids having from 10 to 22 carbon atoms. By adding fatty acids, the surface lubricity of each element source is increased, so each element source is contained in the raw material composition in a uniform and dense state, and the uniformity and density of the raw material composition are improved. Therefore, it is possible to suppress uneven firing of the raw material composition, and the relative density difference and Rmax/Rmin of the oxide sintered body described above can be easily kept within the preferable ranges described above. Furthermore, the bending strength is improved.
 飽和脂肪酸としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキジン酸、ベヘン酸等を挙げることができる。これらの飽和脂肪酸は、一種を単独で使用することができ、あるいは二種以上を組み合わせて使用することができる。また、飽和脂肪酸の他、パルミトオレイン酸、オレイン酸、エライジン酸、バクセン酸、エルカ酸、リノール酸、リノレン酸、アラキドン酸等の不飽和脂肪酸等を使用することもできる。特に、入手の容易さの観点からステアリン酸、更には工業用ステアリン酸(ステアリン酸+パルミチン酸)を好ましく用いることができる。これらの不飽和脂肪酸は、一種を単独で使用することができ、あるいは二種以上を組み合わせて使用することができる。飽和脂肪酸と不飽和脂肪酸は、両者をそれぞれ一種以上組み合わせて使用することもできる。 Examples of saturated fatty acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, and behenic acid. These saturated fatty acids can be used individually by 1 type, or can be used in combination of 2 or more types. In addition to saturated fatty acids, unsaturated fatty acids such as palmitoleic acid, oleic acid, elaidic acid, vaccenic acid, erucic acid, linoleic acid, linolenic acid and arachidonic acid can also be used. In particular, stearic acid, and industrial stearic acid (stearic acid + palmitic acid) can be preferably used from the viewpoint of easy availability. These unsaturated fatty acids can be used singly or in combination of two or more. Saturated fatty acids and unsaturated fatty acids can also be used in combination of one or more of each.
 得られた原料組成物は、そのまま成形して成形体とし、これを焼結することもできるが、必要により原料組成物にバインダーを加えて成形して成形体としてもよい。このバインダーとしては、公知の粉末冶金法において成形体を得るときに使用されるバインダー、例えばポリビニルアルコール及びアクリルエマルジョンバインダー等を一種又は二種以上用いることができる。また、混合粉末に分散媒を加えてスラリーを調製し、このスラリーをスプレードライして顆粒を作製し、この顆粒を成形してもよい。 The obtained raw material composition can be molded as it is to form a molded body, which can be sintered. Alternatively, if necessary, a binder may be added to the raw material composition and molded to form a molded body. As this binder, one or two or more of binders used in obtaining a molded body in a known powder metallurgy method, such as polyvinyl alcohol and acrylic emulsion binders, can be used. Alternatively, a slurry may be prepared by adding a dispersion medium to the mixed powder, the slurry may be spray-dried to prepare granules, and the granules may be molded.
 成形方法は、従来粉末冶金法において採用されている方法、例えばコールドプレスやCIP(冷間等方圧成形)等を用いることができる。 As for the forming method, methods conventionally employed in powder metallurgy, such as cold pressing and CIP (cold isostatic pressing), can be used.
 また、原料組成物を一旦仮プレスして仮成形体を作製し、これを粉砕して得られた粉砕粉末を本プレスすることにより成形体を作製してもよい。なお、スリップキャスト法等の湿式成形法を用いて成形体を作製してもよい。成形体の相対密度は通常50~75%である。 Alternatively, the raw material composition may be temporarily pressed to produce a temporary molded body, and the pulverized powder obtained by pulverizing this may be pressed to produce a molded body. In addition, you may produce a molded object using wet molding methods, such as a slip casting method. The relative density of the compact is usually 50-75%.
 上述のようにして得た成形体を焼成することで焼結体を得ることができる。焼成に使用する焼成炉としては、焼成時及び冷却時に昇温速度及び降温速度をコントロールすることができれば特に制限はなく、粉末冶金に一般的に使用される焼成炉で差し支えない。焼成雰囲気としては酸素含有雰囲気が適している。 A sintered body can be obtained by firing the molded body obtained as described above. The firing furnace used for firing is not particularly limited as long as the heating rate and cooling rate can be controlled during firing and cooling, and a firing furnace generally used for powder metallurgy may be used. An oxygen-containing atmosphere is suitable as the firing atmosphere.
 高密度化及び割れ防止の観点から、昇温速度は通常50~400℃/hであり、降温速度は通常300℃/h以下、好ましくは100℃/h以下である。 From the viewpoint of increasing the density and preventing cracking, the heating rate is usually 50 to 400°C/h, and the cooling rate is usually 300°C/h or less, preferably 100°C/h or less.
 焼成温度は、1450℃以上1500℃以下であり、好ましくは1460℃以上1490℃以下である。また、焼成時間は4時間以上20時間以内であり、好ましくは8時間以上18時間以内である。焼成温度及び焼成時間を前記範囲内に設定することで、InSi相のSiO相への遷移が抑制され、上述したように、酸化物焼結体の断面に観察されるSiO相の面積率を3%以下とすることができる。 The firing temperature is 1450°C or higher and 1500°C or lower, preferably 1460°C or higher and 1490°C or lower. The firing time is 4 hours or more and 20 hours or less, preferably 8 hours or more and 18 hours or less. By setting the firing temperature and firing time within the above ranges, the transition of the In 2 Si 2 O 7 phase to the SiO 2 phase is suppressed, and as described above, the SiO observed in the cross section of the oxide sintered body The two- phase area ratio can be 3% or less.
 スパッタリングターゲット材は、上述のようにして得られた焼結体を、必要に応じて所望の形状に切り出し、研削等することにより得ることができる。
 スパッタリングターゲット材の形状は、平板形及び円筒形など特に制限はない。
The sputtering target material can be obtained by cutting out the sintered body obtained as described above into a desired shape and grinding the sintered body, if necessary.
The shape of the sputtering target material is not particularly limited, and may be flat, cylindrical, or the like.
 スパッタリングターゲット材は、通常基材にボンディングして使用される。基材は、通常Cu、Al、Ti又はステンレス製である。ボンディング材は、従来のITOターゲット材のボンディングに使用されるボンディング材、例えばInメタルを用いることができる。ボンディング方法も、従来のITOターゲット材のボンディング方法と同様である。 The sputtering target material is usually used by bonding to the base material. The substrate is usually made of Cu, Al, Ti or stainless steel. As the bonding material, a bonding material used for bonding conventional ITO target materials, such as In metal, can be used. The bonding method is also the same as the conventional ITO target material bonding method.
 前記のスパッタリングターゲット材は、比抵抗が低いので、DCスパッタリングを行うことが可能であり、高速成膜を可能とするものである。また、上述した特性を満足するので、異常放電の発生が一層抑制されるものである。 Since the sputtering target material has a low specific resistance, DC sputtering can be performed, enabling high-speed film formation. Moreover, since the characteristics described above are satisfied, the occurrence of abnormal discharge is further suppressed.
[スパッタリングターゲット材の評価]
1.スパッタリングターゲット材の元素分析
 スパッタリングターゲット材中の元素分析は、測定機器(名称、型番):ICP発光分光分析装置 720 ICP-OES(機器メーカー:Agilent Technologies社)を用い、JIS規格:ICP-OES法(JIS K 0116-2014)に準じて行った。
[Evaluation of sputtering target material]
1. Elemental analysis of sputtering target material Elemental analysis in the sputtering target material is performed using a measuring instrument (name, model number): ICP emission spectrometer 720 ICP-OES (equipment manufacturer: Agilent Technologies), JIS standard: ICP-OES method. (JIS K 0116-2014).
2.スパッタリングターゲット材の結晶相
 スパッタリングターゲット材の結晶相は、株式会社リガクのSmartLab(登録商標)を用いて下記条件にて測定した。
・線源:CuKα線
・管電圧:40kV
・管電流:30mA
・スキャン速度:5deg/min
・ステップ:0.02deg
・スキャン範囲:2θ=20度~80度
2. Crystal Phase of Sputtering Target Material The crystal phase of the sputtering target material was measured using SmartLab (registered trademark) manufactured by Rigaku Corporation under the following conditions.
・Radiation source: CuKα ray ・Tube voltage: 40 kV
・Tube current: 30mA
・Scanning speed: 5deg/min
・Step: 0.02deg
・Scan range: 2θ = 20 degrees to 80 degrees
3.スパッタリングターゲット材のSiO相面積率
 スパッタリングターゲット材を切断して得られた切断面を、エメリー紙#180、#400、#800、#1000、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げた。
 そして、現れた面を走査型電子顕微鏡(SU3500、(株)日立ハイテクノロジーズ製)を用いて、倍率3000倍、41.6μm×59.2μmの範囲のBSE-COMP像を無作為に10視野撮影しSEM画像を得た。次に、SiO相が占める範囲を、Pictbear(フェンリル社製)を用いて異なる色で描画・色塗りつぶしをした。次に、粒子解析ソフトウェア(粒子解析Version3.0、住友金属テクノロジー株式会社製)を用い、前記SiO相を塗りつぶした画像を認識させ、この画像を二値化した。この際、1画素がμm単位で表示されるように換算値を設定した。その後、粒子解析ソフトでSiO相と全体の面積をそれぞれ算出し、全体に対するSiO相の百分率を面積率として求めた。10視野において得られた面積率の平均値を焼結体におけるSiO相の面積率とした。
3. SiO 2 phase area ratio of sputtering target material The cut surface obtained by cutting the sputtering target material was polished in stages using #180, #400, #800, #1000, and #2000 emery papers, and finally It was buffed to a mirror finish.
Then, using a scanning electron microscope (SU3500, manufactured by Hitachi High-Technologies Co., Ltd.), BSE-COMP images of 41.6 μm × 59.2 μm in a range of 10 fields of view were randomly photographed at a magnification of 3000 times. SEM images were obtained. Next, the area occupied by the SiO 2 phase was drawn and filled in with different colors using Pictbear (manufactured by Fenrir). Next, using particle analysis software (Particle Analysis Version 3.0, manufactured by Sumitomo Metal Technology Co., Ltd.), the image in which the SiO 2 phase was painted over was recognized, and this image was binarized. At this time, the conversion value was set so that one pixel was displayed in units of μm. After that, the areas of the SiO 2 phase and the whole were calculated using particle analysis software, and the percentage of the SiO 2 phase to the whole was obtained as the area ratio. The average value of the area ratios obtained in 10 fields of view was taken as the area ratio of the SiO2 phase in the sintered body.
4.スパッタリングターゲット材の相対密度及びそのばらつき
 アルキメデス法によって測定した。具体的には、ターゲット材の空中質量を体積(ターゲット材の水中質量/計測温度における水比重)で除し、以下の式(X1)に基づく理論密度ρ(g/cm)に対する百分率の値を相対密度(単位:%)とした。
4. Relative Density of Sputtering Target Material and Its Variation Measured by the Archimedes method. Specifically, the air mass of the target material is divided by the volume (the mass of the target material in water/the specific gravity of water at the measurement temperature), and the theoretical density ρ (g/cm 3 ) based on the following formula (X1). was defined as the relative density (unit: %).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 本発明の場合、ターゲット材の構成物質は、In、SnO、SiOであると考え、例えば
  C:ターゲット材のInの質量%
  ρ:Inの密度(7.18g/cm
  C:ターゲット材のSnOの質量%
  ρ:SnOの密度(6.95g/cm
  C:ターゲット材のSiOの質量%
  ρ:SiOの密度(2.20g/cm
を、式(X1)に適用することで理論密度ρを算出する。
 なお、Inの質量%、SnOの質量%、SiOの質量%は、ICP-OES分析によるターゲット材の各元素の分析結果から求めることができる。
 相対密度のばらつきは、矩形のターゲット材を、縦3×横5マス目に分割し、分割された各測定片について上述の方法で相対密度を測定する。測定された15の相対密度のうち、分割前のターゲット材の相対密度ρの値から最も値が乖離した測定片の相対密度ρを決定し、ρ-ρの算出式から相対密度のばらつきを算出した。
In the present invention, the constituent substances of the target material are considered to be In 2 O 3 , SnO 2 and SiO 2 , for example C 1 : mass % of In 2 O 3 in the target material
ρ 1 : Density of In 2 O 3 (7.18 g/cm 3 )
C2 : Mass % of SnO2 in the target material
ρ 2 : Density of SnO 2 (6.95 g/cm 3 )
C 3 : % by mass of SiO 2 in target material
ρ 3 : Density of SiO 2 (2.20 g/cm 3 )
is applied to the formula (X1) to calculate the theoretical density ρ.
The mass % of In 2 O 3 , the mass % of SnO 2 , and the mass % of SiO 2 can be determined from the analysis results of each element of the target material by ICP-OES analysis.
Variation in relative density is determined by dividing a rectangular target material into 3 squares in length and 5 squares in width, and measuring the relative density of each of the divided measurement pieces by the method described above. Of the 15 measured relative densities, the relative density ρ P of the measurement piece that deviates most from the value of the relative density ρ T of the target material before division is determined, and the relative density is calculated from the calculation formula of ρ T - ρ P. was calculated.
5.スパッタリングターゲット材のバルク抵抗及びRmax/Rmin
 スパッタリングターゲット材のバルク抵抗は、MITSUBISHI CHEMICAL ANALYTECH社製、LORESTA(登録商標)-GX MSP-T700(直列4探針プローブ TYPE ESP)を用いて、加工後の焼結体表面にプローブを当接させ、AUTO RANGEモードで測定した。測定箇所は酸化物焼結体の表面にほぼ均等に15箇所(図1参照)とし、各測定値の算術平均値をその焼結体のバルク抵抗値とした。
 スパッタリングターゲット材のRmax/Rminは、上述した15箇所で測定されたバルク抵抗値のうち、最大のバルク抵抗値をRmaxとし、最小の抵抗値をRminとして算出した。
5. Bulk resistance and Rmax/Rmin of sputtering target materials
The bulk resistance of the sputtering target material is measured by using LORESTA (registered trademark)-GX MSP-T700 (series 4 probe probe TYPE ESP) manufactured by MITSUBISHI CHEMICAL ANALYTECH. , was measured in AUTO RANGE mode. 15 points were measured evenly on the surface of the oxide sintered body (see FIG. 1), and the arithmetic mean value of each measured value was taken as the bulk resistance value of the sintered body.
Rmax/Rmin of the sputtering target material was calculated by setting the maximum bulk resistance value as Rmax and the minimum resistance value as Rmin among the bulk resistance values measured at the 15 locations described above.
6.スパッタリングターゲット材のビッカース硬度
 ビッカース硬度計 MHT-1(機器メーカー:MATSUZAWA SEIKI)を用い、JIS規格:JIS-R-1610:2003 (ファインセラミックスの硬さ試験方法)に準拠して測定した。
 具体的には、酸化物焼結体を切断して得られた切断面を、エメリー紙#180、#400、#800、#1000、#2000を用いて段階的に研磨し、最後にバフ研磨して鏡面に仕上げて測定面とした。また、測定面から見て反対の面は、測定面と平行になるように、前記エメリー紙#180を用いて研磨した。前記試験片を用いJIS-R-1610:2003(ファインセラミックスの硬さ試験方法)の硬さ測定方法に従い、荷重1kgfで測定した。
6. Vickers Hardness of Sputtering Target Material Vickers hardness tester MHT-1 (manufacturer: MATSUZAWA SEIKI) was used and measured according to JIS standard: JIS-R-1610:2003 (hardness test method for fine ceramics).
Specifically, the cut surface obtained by cutting the oxide sintered body is polished in stages using #180, #400, #800, #1000, and #2000 emery papers, and finally buffed. It was then polished to a mirror surface and used as the measurement surface. In addition, the surface opposite to the measurement surface was polished using the emery paper #180 so as to be parallel to the measurement surface. Using the test piece, the hardness was measured under a load of 1 kgf according to the hardness measurement method of JIS-R-1610:2003 (hardness test method for fine ceramics).
7.スパッタリングターゲット材の抗折強度
 オートグラフ(登録商標) AGS-500B(機器メーカー:島津製作所)を用い、JIS規格:JIS-R-1601(ファインセラミックスの曲げ強度試験方法)に準拠して測定した。具体的には、酸化物焼結体から切り出した試料片(全長36mm以上、幅4.0mm、厚さ3.0mm)を用い、JIS-R-1601(ファインセラミックスの曲げ強度試験方法)の3点曲げ強さの測定方法に従って測定した。
7. Bending Strength of Sputtering Target Material Autograph (registered trademark) AGS-500B (equipment manufacturer: Shimadzu Corporation) was used, and measured according to JIS standard: JIS-R-1601 (testing method for bending strength of fine ceramics). Specifically, using a sample piece (length 36 mm or more, width 4.0 mm, thickness 3.0 mm) cut from an oxide sintered body, JIS-R-1601 (fine ceramics bending strength test method) 3 It was measured according to the measurement method of point bending strength.
8.スパッタリングターゲット材の異常放電の評価
 DCマグネトロンスパッタ装置(真空器械工業株式会社製 ハイレートスパッタ装置)、排気系クライオポンプ及びロータリーポンプを用い、以下の条件でDCスパッタリングを行った。
 到達真空度:3×10-6[Pa]
 スパッタ圧力:0.65[Pa]
 アルゴンガス流量:50[cc]
 酸素ガス流量:2.0[cc]
 投入電力:0.72[kW]
 時間:24時間
 異常放電の発生回数は、アーキングカウンター(型式:μArc Moniter MAM Genesis MAM データコレクター Ver.2.02(LANDMARK TECHNOLOGY社製))を用い、以下のように評価した。
  A:少ない
  B:やや多い
  C:多い
8. Evaluation of Abnormal Discharge of Sputtering Target Material DC sputtering was performed under the following conditions using a DC magnetron sputtering device (high rate sputtering device manufactured by Shinku Kikai Kogyo Co., Ltd.), an exhaust system cryopump and a rotary pump.
Ultimate degree of vacuum: 3 × 10 -6 [Pa]
Sputtering pressure: 0.65 [Pa]
Argon gas flow rate: 50 [cc]
Oxygen gas flow rate: 2.0 [cc]
Input power: 0.72 [kW]
Time: 24 hours The number of occurrences of abnormal discharge was evaluated as follows using an arcing counter (model: μArc Monitor MAM Genesis MAM data collector Ver. 2.02 (manufactured by LANDMARK TECHNOLOGY)).
A: little B: somewhat much C: much
  〔実施例1ないし5〕
 In粉末と、SnO粉末と、SiO粉末とを、表1に示した比率で調合し、次いで、樹脂製ポットに投入した後、乾式ボールミルにより21時間混合して、原料組成物を調製した。なお、乾式ボールミルの際、メディアにはジルコニア製ボールを用いた。
[Examples 1 to 5]
In 2 O 3 powder, SnO 2 powder, and SiO 2 powder were mixed at the ratio shown in Table 1, then put into a resin pot and mixed for 21 hours by a dry ball mill to obtain a raw material composition. was prepared. Zirconia balls were used as media in the dry ball mill.
 次いで、篩い分けによりメディアと原料組成物とを分級し、当該原料組成物に、純水で5.5質量%に希釈したポリビニルアルコールを当該原料組成物の総質量に対して8.0質量%添加し、更に、ステアリン酸を0.5質量%添加した。 Next, the media and the raw material composition are classified by sieving, and 8.0% by mass of polyvinyl alcohol diluted with pure water to 5.5% by mass is added to the raw material composition with respect to the total mass of the raw material composition. 0.5% by mass of stearic acid was further added.
 前記の原料組成物を、添加剤がなじむまで乳鉢を用いて混合し、5.5メッシュの篩に通した。得られた原料組成物をコールドプレス法により200kg/cmの条件で仮プレスし、得られた仮成形体を乳鉢にて粉砕した。 The above raw material composition was mixed with a mortar until the additives were blended and passed through a 5.5 mesh sieve. The obtained raw material composition was temporarily pressed under the condition of 200 kg/cm 2 by a cold press method, and the obtained temporary compact was pulverized in a mortar.
 粉砕によって得られた粉をプレス用の型に充填し、コールドプレス法によりプレス圧600kg/cmの条件で60秒間成形して成形体を得た。 The powder obtained by the pulverization was filled in a press mold and molded by a cold press method at a press pressure of 600 kg/cm 2 for 60 seconds to obtain a compact.
 得られた成形体を焼成炉に入れ、炉内に1L/hで酸素をフローさせ、1480℃で16時間焼成した。その後、降温速度50℃/hで冷却した。得られた酸化物焼結体を#170砥石により平面切削加工し、表面Raが1.0μmのスパッタリングターゲット材を製造した。スパッタリングターゲット材は矩形であり、長辺の寸法は490mm、短辺の寸法は370mmであった。 The obtained compact was placed in a firing furnace, and oxygen was allowed to flow into the furnace at 1 L/h, and fired at 1480°C for 16 hours. After that, it was cooled at a cooling rate of 50°C/h. The surface of the obtained oxide sintered body was machined with a #170 whetstone to produce a sputtering target material having a surface Ra of 1.0 μm. The sputtering target material was rectangular with a long side dimension of 490 mm and a short side dimension of 370 mm.
 ターゲット材の割れは目視で確認し、各特性は上述した評価方法に従って評価した。また、ターゲット材からΦ4インチのサンプルを切り出し、異常放電の評価を行った。結果を表1に示す。 Cracks in the target material were visually checked, and each characteristic was evaluated according to the evaluation method described above. Also, a Φ4-inch sample was cut out from the target material, and abnormal discharge was evaluated. Table 1 shows the results.
  〔実施例6〕
 焼成温度を1480℃から1500℃に変更したこと以外、実施例3と同様の製造方法で、490mm×370mmの矩形のスパッタリングターゲット材を製造した。
 ターゲット材の割れは目視で確認し、各特性は上述した評価方法に従って評価した。また、ターゲット材からΦ4インチのサンプルを切り出し、異常放電の評価を行った。結果を表1に示す。
[Example 6]
A rectangular sputtering target material of 490 mm x 370 mm was manufactured in the same manufacturing method as in Example 3, except that the firing temperature was changed from 1480°C to 1500°C.
Cracks in the target material were visually confirmed, and each property was evaluated according to the evaluation method described above. Also, a Φ4-inch sample was cut out from the target material, and abnormal discharge was evaluated. Table 1 shows the results.
  〔実施例7〕
 ステアリン酸を添加しなかったこと以外、実施例3と同様の製造方法で、490mm×370mmの矩形のスパッタリングターゲット材を製造した。
 ターゲット材の割れは目視で確認し、各特性は上述した評価方法に従って評価した。また、ターゲット材からΦ4インチのサンプルを切り出し、異常放電の評価を行った。結果を表1に示す。
[Example 7]
A rectangular sputtering target material of 490 mm×370 mm was manufactured in the same manufacturing method as in Example 3, except that stearic acid was not added.
Cracks in the target material were visually confirmed, and each property was evaluated according to the evaluation method described above. Also, a Φ4-inch sample was cut out from the target material, and abnormal discharge was evaluated. Table 1 shows the results.
  〔比較例1〕
 焼成温度を1480℃から1550℃に変更したこと以外、実施例3と同様の製造方法で、490mm×370mmの矩形のスパッタリングターゲット材を製造した。
 本比較例ではターゲット材に割れが発生したことから、割れていない部分からΦ4インチのサンプルを切り出して異常放電の評価を行った。また、ターゲット材の割れは目視で確認し、各特性は上述した評価方法に従って評価した。結果を表1に示す。
[Comparative Example 1]
A rectangular sputtering target material of 490 mm x 370 mm was manufactured in the same manufacturing method as in Example 3, except that the firing temperature was changed from 1480°C to 1550°C.
In this comparative example, since cracks occurred in the target material, a Φ4-inch sample was cut out from the uncracked portion to evaluate abnormal discharge. Cracks in the target material were visually confirmed, and each characteristic was evaluated according to the evaluation method described above. Table 1 shows the results.
  〔比較例2〕
 焼成温度を1480℃から1550℃に変更したこと以外、実施例4と同様の製造方法で、490mm×370mmの矩形のスパッタリングターゲット材を製造した。
 本比較例ではターゲット材に割れが発生したことから、割れていない部分からΦ4インチのサンプルを切り出して異常放電の評価を行った。また、ターゲット材の割れは目視で確認し、各特性は上述した評価方法に従って評価した。結果を表1に示す。
[Comparative Example 2]
A rectangular sputtering target material of 490 mm x 370 mm was manufactured in the same manufacturing method as in Example 4, except that the firing temperature was changed from 1480°C to 1550°C.
In this comparative example, since cracks occurred in the target material, a Φ4-inch sample was cut out from the uncracked portion to evaluate abnormal discharge. Cracks in the target material were visually confirmed, and each characteristic was evaluated according to the evaluation method described above. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、実施例1-5においては、In、Sn及びSiの含有量が本発明の範囲内であり、ターゲット材を構成する酸化物焼結体の断面に観察されるSiO相の面積率が3%未満であるので、異常放電の発生回数は少なく、良好なDCスパッタリングが可能であることが判明した。尤も、実施例6は、実施例1-5と比較して焼成温度が1500℃と高く、SiO相の面積率が3%と高くなっているので、DCスパッタリングにおいて多少の異常放電が観察された。 As is clear from Table 1, in Example 1-5, the contents of In, Sn and Si are within the scope of the present invention, and the SiO observed in the cross section of the oxide sintered body constituting the target material Since the area ratio of the two phases is less than 3%, it has been found that the number of abnormal discharge occurrences is small and good DC sputtering is possible. However, in Example 6, the firing temperature was as high as 1500° C. and the area ratio of the SiO 2 phase was as high as 3% compared to Example 1-5, so some abnormal discharge was observed in DC sputtering. rice field.
 実施例7は、原料組成物中にステアリン酸を添加していないので、原料組成物中に各元素源が比較的不均一且つ粗な状態で含まれ、原料組成物の均一性及び密度が低下している。したがって、DCスパッタリングにおいて多少の異常放電が観察された。なお、原料組成物の均一性及び密度の低下は、表1において、相対密度差、Rmax/Rmin及び抗折強度が実施例1-5と比較して低下していることから分かる。 In Example 7, stearic acid was not added to the raw material composition, so each element source was contained in the raw material composition in a relatively non-uniform and coarse state, and the uniformity and density of the raw material composition decreased. are doing. Therefore, some abnormal discharge was observed in DC sputtering. The decrease in the uniformity and density of the raw material composition can be seen from Table 1 that the relative density difference, Rmax/Rmin and bending strength are lower than those of Examples 1-5.
 一方、比較例1及び2においては、ターゲット材を構成する酸化物焼結体の断面に観察されるSiO相の面積率が3%を超えているので、異常放電が多発し、良好なDCスパッタリングが不可能であることが判明した。 On the other hand, in Comparative Examples 1 and 2, since the area ratio of the SiO 2 phase observed in the cross section of the oxide sintered body constituting the target material exceeds 3%, abnormal discharge frequently occurs and good DC Sputtering turned out to be impossible.
 なお、実施例1~7、比較例1~2と同様の製造方法にて下記サイズのターゲット材を製造したところ、実施例1~7の製法ではすべてのターゲット材に割れは見られず、比較例1~2の製法ではすべてのターゲット材で割れが見られた。
 ・400mm×500mm=200000mm
 ・350mm×450mm=157500mm
 ・300mm×400mm=120000mm
 ・250mm×350mm=87500mm
 ・200mm×350mm=70000mm
In addition, when target materials of the following sizes were manufactured by the same manufacturing method as in Examples 1 to 7 and Comparative Examples 1 and 2, cracks were not observed in all target materials in the manufacturing methods of Examples 1 to 7, and the comparison In the production methods of Examples 1 and 2, cracks were observed in all target materials.
・400mm×500mm=200000mm 2
・350mm×450mm=157500mm 2
・300mm×400mm=120000mm 2
・250mm×350mm=87500mm 2
・200mm×350mm=70000mm 2
 本発明によれば、異常放電の発生が一層抑制されたスパッタリングターゲット材に適した酸化物焼結体及びその製造方法が提供される。また本発明によれば、異常放電の発生が一層抑制されたスパッタリングターゲット材が提供される。
 本発明に係る酸化物焼結体を用いてスパッタリングを行うと、従来の酸化物焼結体を用いた場合に比較して、スパッタリング時の異常放電を抑制しつつ成膜することが可能であることから、余分な不良品の発生を抑制することができ、延いては廃棄物の発生を低減することができる。つまり、それら廃棄物の処分におけるエネルギーコストを削減することが可能となる。このことは天然資源の持続可能な管理及び効率的な利用、並びに脱炭素(カーボンニュートラル)化を達成することにつながる。
ADVANTAGE OF THE INVENTION According to this invention, the oxide sinter suitable for the sputtering target material by which generation|occurrence|production of abnormal discharge was suppressed further, and its manufacturing method are provided. Moreover, according to the present invention, a sputtering target material in which the occurrence of abnormal discharge is further suppressed is provided.
When sputtering is performed using the oxide sintered body according to the present invention, it is possible to form a film while suppressing abnormal discharge during sputtering compared to the case of using a conventional oxide sintered body. As a result, it is possible to suppress the generation of unnecessary defective products, thereby reducing the generation of waste. That is, it becomes possible to reduce the energy cost in disposing of those wastes. This will lead to sustainable management and efficient use of natural resources, as well as achieving decarbonization (carbon neutrality).

Claims (13)

  1.  インジウム(In)元素、スズ(Sn)元素及びケイ素(Si)元素を含む酸化物焼結体であって、
     Snの含有量がSnO換算で50質量%以上70質量%以下であり、
     Siの含有量がSiO換算で3質量%以上15質量%以下であり、
     残部インジウム、酸素及び不可避不純物からなり、
     前記酸化物焼結体の断面に観察されるSiO相の面積率が3%以下である、酸化物焼結体。
    An oxide sintered body containing an indium (In) element, a tin (Sn) element and a silicon (Si) element,
    Sn content is 50% by mass or more and 70% by mass or less in terms of SnO2 ,
    The Si content is 3% by mass or more and 15% by mass or less in terms of SiO2 ,
    The balance consists of indium, oxygen and unavoidable impurities,
    An oxide sintered body, wherein the area ratio of the SiO 2 phase observed in the cross section of the oxide sintered body is 3% or less.
  2.  相対密度が100%以上である、請求項1に記載の酸化物焼結体。 The oxide sintered body according to claim 1, which has a relative density of 100% or more.
  3.  前記酸化物焼結体の相対密度をρとし、
     前記酸化物焼結体を複数の測定片に分割したとき、該測定片の相対密度のうち、前記相対密度ρから最も値が乖離している相対密度をρとしたとき、
     ρ-ρで定義される相対密度の差が±1%以下である、請求項1又は2に記載の酸化物焼結体。
    Let the relative density of the oxide sintered body be ρ T ,
    When the oxide sintered body is divided into a plurality of measurement pieces, and the relative density of the measurement pieces that deviates most from the relative density ρ T is ρ P ,
    3. The oxide sintered body according to claim 1, wherein the difference in relative density defined by ρ T −ρ P is ±1% or less.
  4.  前記酸化物焼結体の表面における複数の箇所で測定されたバルク抵抗値のうち、最大のバルク抵抗値をRmaxとし、最小の抵抗値をRminとしたとき、Rmax/Rminの値が1.0以上2.0以下である、請求項1又は2に記載の酸化物焼結体。 Among the bulk resistance values measured at a plurality of points on the surface of the oxide sintered body, when the maximum bulk resistance value is Rmax and the minimum resistance value is Rmin, the value of Rmax/Rmin is 1.0. 3. The oxide sintered body according to claim 1 or 2, wherein the ratio is not less than 2.0 and not more than 2.0.
  5.  前記酸化物焼結体の断面に観察されるSiO相の面積率が0.1%以上2.8%以下である、請求項1又は2に記載の酸化物焼結体。 The oxide sintered body according to claim 1 or 2, wherein the area ratio of the SiO2 phase observed in the cross section of the oxide sintered body is 0.1% or more and 2.8% or less.
  6.  Snの含有量がSnO換算で55質量%以上65質量%以下であり、
     Siの含有量がSiO換算で6質量%以上12質量%以下である、請求項1又は2に記載の酸化物焼結体。
    Sn content is 55% by mass or more and 65% by mass or less in terms of SnO2 ,
    The oxide sintered body according to claim 1 or 2 , wherein the content of Si is 6% by mass or more and 12% by mass or less in terms of SiO2.
  7.  ビッカース硬度が900HV1以上である、請求項1又は2に記載の酸化物焼結体。 The oxide sintered body according to claim 1 or 2, which has a Vickers hardness of 900HV1 or more.
  8.  請求項1又は2に記載の酸化物焼結体からなるスパッタリングターゲット材。 A sputtering target material comprising the oxide sintered body according to claim 1 or 2.
  9.  スパッタ面の面積が70000mm以上である、請求項8に記載のスパッタリングターゲット材。 The sputtering target material according to claim 8, wherein the area of the sputtering surface is 70000 mm2 or more.
  10.  インジウム(In)元素源、スズ(Sn)元素源及びケイ素(Si)元素源を含む原料組成物を調製し、
     前記原料組成物を成形して成形体を得、
     前記成形体を焼成する工程を含む、酸化物焼結体の製造方法であって、
     前記成形体の焼成を、1450℃以上1500℃以下で、4時間以上20時間以下行う、酸化物焼結体の製造方法。
    preparing a raw material composition containing an indium (In) element source, a tin (Sn) element source and a silicon (Si) element source;
    Molding the raw material composition to obtain a molded body,
    A method for producing an oxide sintered body, comprising the step of firing the molded body,
    A method for producing an oxide sintered body, wherein the compact is sintered at 1450° C. or higher and 1500° C. or lower for 4 hours or longer and 20 hours or shorter.
  11.  前記成形体の焼成を、1460℃以上1490℃以下で行う、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the molding is sintered at 1460°C or higher and 1490°C or lower.
  12.  前記原料組成物が脂肪酸を含む、請求項10又は11に記載の製造方法。 The production method according to claim 10 or 11, wherein the raw material composition contains a fatty acid.
  13.  前記脂肪酸が、炭素原子数10以上22以下の飽和脂肪酸である、請求項12に記載の製造方法。 The production method according to claim 12, wherein the fatty acid is a saturated fatty acid having 10 or more and 22 or less carbon atoms.
PCT/JP2022/031765 2021-12-28 2022-08-23 Oxide sintered body, method for producing same, and sputtering target material WO2023127195A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280020083.3A CN117043122A (en) 2021-12-28 2022-08-23 Oxide sintered body, method for producing same, and sputtering target
JP2022562442A JP7214063B1 (en) 2021-12-28 2022-08-23 Oxide sintered body, manufacturing method thereof, and sputtering target material
KR1020237032630A KR102620041B1 (en) 2021-12-28 2022-08-23 Oxide sintered body, manufacturing method thereof, and sputtering target material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021213823 2021-12-28
JP2021-213823 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127195A1 true WO2023127195A1 (en) 2023-07-06

Family

ID=86998534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031765 WO2023127195A1 (en) 2021-12-28 2022-08-23 Oxide sintered body, method for producing same, and sputtering target material

Country Status (2)

Country Link
TW (1) TWI814561B (en)
WO (1) WO2023127195A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196365A (en) * 1993-12-28 1995-08-01 Showa Denko Kk Sintered ito, ito clear conductive layer and formation thereof
JPH10237632A (en) * 1997-02-26 1998-09-08 Oputoron:Kk Ito sintered body, its production and formation of ito coating using the ito sintered compact
JP2003105532A (en) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2007138266A (en) * 2005-11-21 2007-06-07 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
WO2018211792A1 (en) * 2017-05-15 2018-11-22 三井金属鉱業株式会社 Sputtering target for transparent conductive film
JP2019038735A (en) * 2017-08-28 2019-03-14 住友金属鉱山株式会社 Oxide sintered compact, method for producing oxide sintered compact, target for sputtering, and amorphous oxide semiconductor thin film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07196365A (en) * 1993-12-28 1995-08-01 Showa Denko Kk Sintered ito, ito clear conductive layer and formation thereof
JPH10237632A (en) * 1997-02-26 1998-09-08 Oputoron:Kk Ito sintered body, its production and formation of ito coating using the ito sintered compact
JP2003105532A (en) * 2001-06-26 2003-04-09 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
JP2007138266A (en) * 2005-11-21 2007-06-07 Mitsui Mining & Smelting Co Ltd Sputtering target for highly resistant transparent conductive film, and highly resistant transparent conductive film, and manufacturing method of highly resistant transparent conductive film
WO2018211792A1 (en) * 2017-05-15 2018-11-22 三井金属鉱業株式会社 Sputtering target for transparent conductive film
JP2019038735A (en) * 2017-08-28 2019-03-14 住友金属鉱山株式会社 Oxide sintered compact, method for producing oxide sintered compact, target for sputtering, and amorphous oxide semiconductor thin film

Also Published As

Publication number Publication date
TWI814561B (en) 2023-09-01
TW202325683A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
JP5158355B2 (en) Sputtering target made of sintered oxide
JP6291593B2 (en) ITO sputtering target, manufacturing method thereof, and manufacturing method of ITO transparent conductive film
KR100814321B1 (en) Oxide sintered body and preparation process thereof, sputtering target and transparent electroconductive films
JP5960287B2 (en) Sintered sputtering target
WO2017110909A1 (en) Oxide-sintered-body sputtering target and manufacturing method therefor
WO2014148189A1 (en) Zinc oxide-based sintered object, process for producing same, sputtering target, and transparent conductive film
JP7214063B1 (en) Oxide sintered body, manufacturing method thereof, and sputtering target material
WO2023127195A1 (en) Oxide sintered body, method for producing same, and sputtering target material
JP7158102B2 (en) ITO sputtering target, manufacturing method thereof, ITO transparent conductive film, and manufacturing method of ITO transparent conductive film
WO2010021274A1 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target, and method for producing thin film
JP6144858B1 (en) Oxide sintered body, sputtering target, and production method thereof
TWI683018B (en) IZO target material and its manufacturing method
JP4075361B2 (en) Method for producing Mg-containing ITO sputtering target
JP6520523B2 (en) Oxide sintered body, method for producing the same, and sputtering target
JP6728094B2 (en) Ferromagnetic material sputtering target
JP7203088B2 (en) Oxide sintered body, sputtering target and transparent conductive film
CN111183244B (en) Ferromagnetic material sputtering target
JP2005330158A (en) Method for manufacturing complex oxide sintered body, and sputtering target composed of its sintered body
JP7480439B2 (en) Oxide sintered body, its manufacturing method, and sputtering target material
JP3715504B2 (en) High-density ITO sintered sputtering target and method for producing the same
JP7178707B2 (en) Method for manufacturing MgO-TiO-based sputtering target
TWI710650B (en) Spattering target for transparent conductive film
JP2018193598A (en) Sputtering target

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022562442

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280020083.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237032630

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032630

Country of ref document: KR