JPH0371510A - Transparent conductive film - Google Patents

Transparent conductive film

Info

Publication number
JPH0371510A
JPH0371510A JP20719789A JP20719789A JPH0371510A JP H0371510 A JPH0371510 A JP H0371510A JP 20719789 A JP20719789 A JP 20719789A JP 20719789 A JP20719789 A JP 20719789A JP H0371510 A JPH0371510 A JP H0371510A
Authority
JP
Japan
Prior art keywords
oxide
conductive film
transparent conductive
film
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20719789A
Other languages
Japanese (ja)
Inventor
Nobuhiko Obara
小原 進彦
Hirosumi Izawa
伊沢 広純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP20719789A priority Critical patent/JPH0371510A/en
Publication of JPH0371510A publication Critical patent/JPH0371510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Non-Insulated Conductors (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To make a conductive film thinner, to cut time for etching, to improve yield, and to maintain good light transmittance for a transparent conductive film whose matrix is indium oxide by including one kind of nickel oxide or of phosphorus oxide therein. CONSTITUTION:To a transparent conductive film whose matrix is indium oxide, one kind of nickel oxide or of phosphorus oxide is added. The amount to be added is defined as 2-25mol% for nickel oxide, and 1-10mol% for phosphorus oxide. For the preparation of the transparent conductive film, sputtering, electron beam deposition, ion-plating, chemical evaporation, or application are employed.

Description

【発明の詳細な説明】 〔産業上の利用分野1 本発明は透明導電膜に関し、特に液晶デイスプレィ、エ
レクトロルミネセンス、エレクトロクロミックデイスプ
レィ等の透明電極に用いるのに好適な透明導電膜に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to a transparent conductive film, and particularly to a transparent conductive film suitable for use in transparent electrodes of liquid crystal displays, electroluminescent displays, electrochromic displays, and the like.

〔従来の技術] 透明導電膜としては金、白金等の金属あるいは酸化錫、
酸化インジウム等の酸化物を基板上に成膜したものが知
られている。このなかで液晶表示等に用いられるのは酸
化インジウムに酸化錫を添加したI T O(Indi
umu−Tin 0xide )が主流である。それは
ITOの高透明性、低抵抗性の他、エツチング性、化学
的安定性、基板への付着性等が良好なためである。
[Prior art] As a transparent conductive film, metals such as gold and platinum, tin oxide,
A device in which a film of an oxide such as indium oxide is formed on a substrate is known. Among these, ITO (Indi O), which is made by adding tin oxide to indium oxide, is used for liquid crystal displays.
umu-Tin Oxide) is the mainstream. This is because ITO has good etching properties, chemical stability, adhesion to substrates, etc. as well as high transparency and low resistance.

原子価制御に基づく半導体化機構による透明導電膜の低
抵抗化技術はITOのほか、次の様な例がある。
In addition to ITO, there are the following examples of techniques for reducing the resistance of transparent conductive films using a semiconductor mechanism based on valence control.

特開昭59−163707ではITOに酸化ルテニウム
、酸化鉛、酸化銅を添加し、最も良い値として、比抵抗
0.7X 10−’Ω”ClR5lR5光透過電88%
を得ている。特開昭59−71205ではITOに酸化
りんを1.01〜3 wt%添加し最も良い値として、
1000大厚さにて抵抗0.3Ω/口(比抵抗3 X 
10−’Ω・C■)、光透過率90%の特性を得ている
。特開昭61−294703では酸化インジウムにフッ
化アルミニウムを添加し最も良い値として、600大厚
さにて抵抗220Ω/口(13X 10−’Ω・C11
)、光透過率85%の特性を得ている。特開昭63−7
8404ではITOにフッ化アルミニウムを添加し最も
良い値として、 tsooX厚さにて5Ω/口(0,7
5X 10−’Ω・C■)、光透過率84%の特性を得
ている。
In JP-A-59-163707, ruthenium oxide, lead oxide, and copper oxide are added to ITO, and the best value is specific resistance 0.7X 10-'Ω"ClR5lR5 light transmission power 88%.
I am getting . In JP-A-59-71205, 1.01 to 3 wt% of phosphorus oxide was added to ITO and the best value was determined.
1000 thick, resistance 0.3Ω/mouth (specific resistance 3
10-'Ω·C■) and a light transmittance of 90%. In JP-A No. 61-294703, aluminum fluoride is added to indium oxide, and the resistance is 220Ω/hole (13X 10-'Ω・C11
), it has a light transmittance of 85%. Unexamined Japanese Patent Publication 1986-7
In 8404, aluminum fluoride is added to ITO, and the best value is 5Ω/hole (0,7
5X 10-'Ω·C■) and a light transmittance of 84%.

特開昭63−178414にはITOに酸化テルルを添
加し、最も良い値として1. I X 10−’Ω・C
11+ノ抵抗の膜、特開昭64−10507にはITO
に酸化ケイ素を0.1〜5 wt%添加し、最も良い値
として、1.96x io−’Ω・Cl11の抵抗の膜
の記載が見られる。
In JP-A-63-178414, tellurium oxide is added to ITO, and the best value is 1. I X 10-'Ω・C
11+ resistance film, ITO in JP-A-64-10507
0.1 to 5 wt% of silicon oxide is added to the film, and a film with a resistance of 1.96x io-'Ω·Cl11 is found as the best value.

一方、還元に基づく半導体化により透明導電膜の低抵抗
を計る例としては、U S P 4,399.194が
ある。
On the other hand, an example of reducing the resistance of a transparent conductive film by converting it into a semiconductor based on reduction is USP 4,399.194.

U S P 4.399.194では酸化インジウムに
酸化ジルコニウムを40〜60 w t、%添加し、比
抵抗4.4×in−’Ω・can、光透過率80%の特
性を得ている。
According to USP 4.399.194, zirconium oxide is added to indium oxide in an amount of 40 to 60 wt% to obtain characteristics of specific resistance of 4.4 x in-'Ω·can and light transmittance of 80%.

透明導電膜の成膜方法としては真空蒸着、イオンブレー
ティング、スパッタリング等の物理蒸着法、熱分解等の
化学反応で成膜する化学蒸着法、スプレー、デイツプ等
による塗布法等がある。このなかで膜の緻密性が良く低
抵抗膜が容易に得られることから物理蒸着法、そのなか
でもスパッタリング法が主流となっている。
Methods for forming the transparent conductive film include physical vapor deposition methods such as vacuum evaporation, ion blasting, and sputtering, chemical vapor deposition methods that use chemical reactions such as thermal decomposition, and coating methods such as spraying and dipping. Among these methods, the physical vapor deposition method, especially the sputtering method, has become mainstream because it has good film density and can easily produce a low resistance film.

[発明が解決しようとする課題1 ここ数年、ワープロ、テレビ用等に液晶表示が多用され
、その液晶画面の大型化が進んできた結果、従来の透1
111導電膜の比抵抗値を悪(することなく、光透過率
を向上させる必要が生じてきたにの際に、比抵抗値を低
抵抗で維持することは、電極の膜厚を薄くすることがで
き、そのため良好なエツチング性も可能となるのである
。透明導電膜の膜厚が200ロスを越えるとエツチング
時間が長くなり、パターンの断線、膜表面状態の悪化に
よる抵抗不均一性等を起こし歩留りの低下をきたす。
[Problem to be solved by the invention 1 In recent years, liquid crystal displays have been widely used for word processors, televisions, etc., and as a result of the increasing size of the liquid crystal screens, the conventional transparent 1
111 When it becomes necessary to improve the light transmittance without reducing the specific resistance value of the conductive film, maintaining the specific resistance value at a low resistance requires reducing the film thickness of the electrode. Therefore, good etching performance is also possible.If the film thickness of the transparent conductive film exceeds 200 mm, the etching time becomes longer, causing pattern breakage and resistance non-uniformity due to deterioration of the film surface condition. This causes a decrease in yield.

本発明は、従来使用されている透明導電膜の比抵抗2 
X 10−’Ω・cmは維持することは勿論、更により
低い比抵抗値のものを目指し、導電膜をより3くし、エ
ツチング時間を短縮するとともに歩留りを向上し、更に
光透過率として90%程度を確保することを本発明の剛
的とし、先願にない元素の添加につき検討した。
The present invention improves the specific resistance of the conventionally used transparent conductive film.
In addition to maintaining the specific resistance of X 10-' Ω・cm, we aimed for an even lower specific resistance value, made the conductive film more thick, shortened the etching time, improved the yield, and achieved a light transmittance of 90%. The objective of the present invention is to ensure the same level of performance, and we have investigated the addition of elements not found in the prior application.

[課題を解決するための手段] 本発明者はある金属酸化物にその金属と異なる価数の元
素を添加すると原子価制御により半導体化することに着
目し、酸化インジウム(In20a )を主成分とする
透明導電膜において、3価以外の元素を添加して低抵抗
化する際、3価のインジウムイオン半径より小さい元素
イオンで格子間イオンとして存在でき、格子の歪が大き
くならない様な元素の添加につき種々検討した結果、本
発明に到った。
[Means for Solving the Problems] The present inventor focused on the fact that when a certain metal oxide is added with an element having a valence different from that of the metal, it becomes a semiconductor by controlling the valence, and developed a method using indium oxide (In20a) as the main component. When lowering the resistance of a transparent conductive film by adding an element other than trivalent, it is necessary to add an element that is smaller than the trivalent indium ion radius and can exist as an interstitial ion, so that lattice distortion does not become large. As a result of various studies, we have arrived at the present invention.

すなわち、酸化インジウム(In2O3)を主成分とす
る透明導電膜において、酸化ニッケル(Nip)または
酸化リン(paos)の一種を含有することを特徴とす
る透明導電膜を見出した。
That is, we have found a transparent conductive film whose main component is indium oxide (In2O3), which is characterized by containing one type of nickel oxide (Nip) or phosphorus oxide (paos).

In□O8にNiOあるいはP2O5を添加すると、抵
抗が下がる。特にNiOを2〜25 mo1%添加した
ときあるいはPJSを1−11−1O%添加したとき比
抵抗は2 X 10−’Ω・Cl1l以下となり好まし
い。
Adding NiO or P2O5 to In□O8 lowers the resistance. In particular, when NiO is added in an amount of 2 to 25 mo1% or PJS is added in an amount of 1-11-10%, the specific resistance becomes less than 2 x 10-'Ω·Cl1l, which is preferable.

また従来のITOで添加されているSnO□の一部をP
2O,によって置換えても同様の良好な効果が得られる
In addition, some of the SnO□ added in conventional ITO is replaced with P.
A similar good effect can be obtained by replacing it with 2O.

この場合、ITOに含有されるSnugは20 mo1
%以下のものにつき効果がある。
In this case, Snug contained in ITO is 20 mo1
% or less is effective.

透明導電膜の成膜法としては、スパッタリング法、電子
ビーム蒸着法が一般的であるが、他にイオンブレーティ
ング法、化学蒸着法、塗布法等があり、各成膜方法に適
した原料により適宜その方法が選ばれる。
Sputtering and electron beam evaporation are commonly used to form transparent conductive films, but there are other methods such as ion blating, chemical vapor deposition, and coating. The method is selected as appropriate.

スパッタリング法、電子ビーム蒸着法では、蒸着材とし
て、インジウムと添加元素の酸化物の焼結体またはこれ
らの合金が用いられる。
In the sputtering method and the electron beam evaporation method, a sintered body of indium and an oxide of an additive element or an alloy thereof is used as the evaporation material.

蒸着材としての酸化物焼結体は、その原料として酸化物
、金属、水酸化物、塩化物、硝酸塩、硫酸塩等が用いら
れ、これらのインジウムおよび添加元素を含む化合物を
ボールミル等により混合し、  NiOを添加したもの
は400〜1400’Cで、P2O,。
Oxide sintered bodies as vapor deposition materials use oxides, metals, hydroxides, chlorides, nitrates, sulfates, etc. as raw materials, and compounds containing these indium and additional elements are mixed in a ball mill or the like. , NiO added at 400-1400'C, P2O,.

を添加したものは400〜700℃で粉末状態で仮焼後
、PVA、PVB等のバインダーを加え、スプレードラ
イ等で造粒し、 500〜2.000 kg/ c d
程度で成形して焼結して造られる。
After calcining in powder form at 400 to 700°C, binders such as PVA and PVB are added and granulated by spray drying, etc. to produce 500 to 2,000 kg/c d.
It is made by molding and sintering.

焼結温度はNiOを添加したものは800〜1600℃
、P2O5を添加したものは400〜700℃である。
The sintering temperature is 800 to 1600℃ for those with NiO added.
, the one with P2O5 added is 400-700°C.

スパッタリングで成膜する場合には、蒸着材としての焼
結体または合金と被成膜基板とをセットした後lロー’
Torr以下に真空引きした後、酸素とArとをモル比
にて0.5:9.5から4:6の範囲の割合で、特に合
金の場合には4:6程度の強い酸化性雰囲気で、I x
 10−” 〜5 x 10−”Torr程度まで混合
ガスを導入し、基板温度200〜350℃で蒸着速度1
0λ/sec以下で成膜する。
When forming a film by sputtering, after setting the sintered body or alloy as the vapor deposition material and the substrate on which the film is to be formed,
After evacuation to Torr or less, oxygen and Ar are mixed in a molar ratio ranging from 0.5:9.5 to 4:6, especially in the case of alloys in a strongly oxidizing atmosphere of about 4:6. , I x
Introduce the mixed gas to about 10-” to 5 x 10-” Torr, and reduce the deposition rate to 1 at a substrate temperature of 200 to 350°C.
The film is formed at a rate of 0λ/sec or less.

この際、0□分圧がL記の値より低過ぎると、膜の透過
率が低く抵抗値も高い。02分圧が高くなると透過率が
高くなり、抵抗値は低下してくるが、高くなり過ぎると
抵抗値は、逆に増加する。また、基板温度も200℃未
満では透過率、抵抗値が劣り、 350℃を越えるとま
た抵抗値が劣る。蒸着速度が■0ス/secを越えても
膜の透過率、抵抗値が劣る。
At this time, if the 0□ partial pressure is too lower than the value in L, the membrane transmittance will be low and the resistance value will be high. As the 02 partial pressure increases, the transmittance increases and the resistance value decreases, but if it becomes too high, the resistance value increases. Further, if the substrate temperature is less than 200°C, the transmittance and resistance value will be poor, and if it exceeds 350°C, the resistance value will be poor again. Even if the deposition rate exceeds 0 s/sec, the film's transmittance and resistance are poor.

以上のことを考慮しつつ、膜の透過率が90%以上で、
もっとも低い抵抗値をとるスパッタリング条件を選ぶこ
とになる。
Considering the above, if the membrane transmittance is 90% or more,
The sputtering conditions that provide the lowest resistance value are selected.

また、電子ビーム蒸着法で成膜する場合には。Also, when forming a film by electron beam evaporation.

Arガスは導入しないが酸素ガスを導入し、基板加熱す
ることは、スパッタリングと同様で、蒸着速度は電子ビ
ームの電圧、電流、ビーム径で決まる。0□分圧、基板
温度、蒸着速度を適当に選び、透過率90%以上で抵抗
値の最も低い膜を得る。最初の到達真空度としては10
−’TorrLu下とし、その後の0□分圧をO,5X
 10−’〜4 X 10−’Torr、基板温度20
0〜400℃、蒸着速度0.5〜107% / see
が適当な条件である。
The process of not introducing Ar gas but introducing oxygen gas and heating the substrate is similar to sputtering, and the deposition rate is determined by the voltage, current, and beam diameter of the electron beam. By appropriately selecting the 0□ partial pressure, substrate temperature, and deposition rate, a film with a transmittance of 90% or more and the lowest resistance value is obtained. The initial vacuum level is 10
−'TorrLu, and then 0□ partial pressure is O, 5X
10-'~4 x 10-'Torr, substrate temperature 20
0~400℃, deposition rate 0.5~107%/see
is an appropriate condition.

スパッタリング、電子ビーム蒸着法、化学蒸着法、塗面
法等の成膜法のうちではスパッタリングが最も広い添加
量の範囲で低抵抗膜が得られることが知られている。
Among film forming methods such as sputtering, electron beam evaporation, chemical vapor deposition, and surface coating methods, sputtering is known to yield a low-resistance film over the widest range of additive amounts.

被成膜基板としては、ガラス、プラスチックのシートや
フィルム等あるいは、それらに保護膜や機能性膜を施し
たもの等が用いられる。
As the substrate on which the film is formed, glass, plastic sheets, films, etc., or those coated with a protective film or a functional film are used.

〔実施例J 以下1本発明を実施例にて詳しく説明する。[Example J The present invention will be explained in detail below using examples.

実施例1〜5、比較例1〜2 Inz03に対しNiOを添加するものにつき、表・L
に示す組成になる様に、InzLとNiOとを秤量し、
エタノールを加え50%スラリー濃度にてナイロン製ボ
ールミルで48時時間式混合した。得られたスラリーを
60℃にて乾燥し、1400℃で大気中で10時間仮焼
した。次に、それをナイロン製ボールミルにて24時時
間式粉砕した。この粉砕粉に対し、2,5%PVA水溶
液を20wt%加えて、スプレードライヤにて、平均粒
径20μに造粒した。
Examples 1 to 5, Comparative Examples 1 to 2 Table L for those in which NiO is added to Inz03
Weigh InzL and NiO so that the composition is as shown in
Ethanol was added and mixed for 48 hours in a nylon ball mill at a slurry concentration of 50%. The obtained slurry was dried at 60°C and calcined at 1400°C in the air for 10 hours. Next, it was pulverized 24 hours a day in a nylon ball mill. To this pulverized powder, 20 wt % of a 2.5% PVA aqueous solution was added and granulated to an average particle size of 20 μm using a spray dryer.

この顆粒を1ton/crr1′で加圧成形し、直径7
0nm+mφ、厚さl Ommの成形体を得た。
The granules were press-molded at 1 ton/crr1' and had a diameter of 7
A molded body having a diameter of 0 nm+mφ and a thickness of 1 Omm was obtained.

この成形体を大気中にて1450℃で15時間焼成し、
スパッタリングターゲットを造った。
This molded body was fired in the atmosphere at 1450°C for 15 hours,
I made a sputtering target.

このターゲットを高周波マグネトロンスパッタリング装
置にセットし、I X 1O−5Torrまで真空に引
いた後、酸素とアルゴンガスをn+ol比で1:9の割
合で5 X 10”3Torrまで導入し、スライドグ
ラス(寸法76X 26X 1 mn1)基板を300
℃に加熱し、成膜速度3ス/seeの条件で透明導電膜
を作成した。
This target was set in a high-frequency magnetron sputtering device and evacuated to I 76X 26X 1 mn1) 300 substrates
A transparent conductive film was prepared under the conditions of heating to 0.degree. C. and a film formation rate of 3 s/see.

得られた透明導電膜の膜厚、光透過率、比抵抗の特性を
測定し、それらを表・lに併記した。
The film thickness, light transmittance, and specific resistance characteristics of the obtained transparent conductive film were measured, and these are also listed in Table 1.

膜厚は成膜時にマスキングし膜生成後、膜とマスキング
を除去した基板との段差をランクテーラーボブソン(構
製タリステップによる段差測定で求めた。
The film thickness was determined by masking during film formation, and after film formation, the difference in height between the film and the substrate from which the masking was removed was determined by measuring the difference in height using Rank-Taylor Bobson (Structure Talystep).

光透過率は、東海光学@4製分光器にて550nm光の
透過率である。
The light transmittance is the transmittance of 550 nm light using a spectrometer manufactured by Tokai Kogaku@4.

また、比抵抗は膜とに直線−Lに4ケ所導線を半田付け
し、4端子法により測定した。
Further, the specific resistance was measured by a four-terminal method by soldering conductive wires to the membrane at four locations along a straight line -L.

膜化後の組成は厳密にはスパッタリングターゲット組成
よりずれるが、添加元素の含量のずれは、±0.05 
mo1%程度であることを化学分析により確めた。
Strictly speaking, the composition after film formation deviates from the sputtering target composition, but the deviation in the content of additive elements is ±0.05.
It was confirmed by chemical analysis that the mole content was about 1%.

表・lでわかる様にNiOの添加量が増ずに従い、比抵
抗が次第に減少するが9.5 mo1%程度を越えると
逆に比抵抗は増加した。
As can be seen from Table 1, as the amount of NiO added increases, the resistivity gradually decreases, but when it exceeds about 9.5 mo1%, the resistivity increases.

表・lに示した範囲では光透過率は90%以上であり、
NiOの添加量が2〜25 mo1%の範囲で従来のI
TOの値2 X 10−’Ω・CJより優れた比抵抗を
示した。
In the range shown in Table l, the light transmittance is 90% or more,
When the amount of NiO added is in the range of 2 to 25 mo1%
It showed a specific resistance superior to the value of TO 2 x 10-'Ω·CJ.

実施例6〜IO1比較例2〜4 In2oiにp2o、を添加するものにつき、表・lに
示す組成に対し、仮焼温度400℃、焼成温度550℃
としたほかは実施例1〜5と同様にスパッタリングター
ゲットを造り、同一条件でスパッタリングし、透明導電
膜を作成した。それらの膜特性も表・lに示した。
Examples 6 to IO1 Comparative Examples 2 to 4 For those in which p2o is added to In2oi, the calcination temperature is 400°C and the firing temperature is 550°C for the composition shown in Table 1.
Except for the above, a sputtering target was prepared in the same manner as in Examples 1 to 5, and sputtering was performed under the same conditions to create a transparent conductive film. Their film properties are also shown in Table 1.

p2o、の添加量が増すに従い、比抵抗はまずは減少し
ていくが、6mo1%を越えると逆に増加した。
As the amount of p2o added increased, the specific resistance initially decreased, but when it exceeded 6 mo1%, it increased.

PzOsの添加311.1〜10 mo1%のaili
囲で比抵抗2X 10−’Ω・Cl11未満の優れた特
性を示した。
Addition of PzOs 311.1-10 mo1% aili
It showed excellent characteristics with a specific resistance of less than 2×10-'Ω·Cl11.

実施例11〜13 InJsにSnugを添加したITOにつきその5nO
zの添加の一部に対し、PzOsを添加したものとして
表・1に示す組成のもので検討した。スパッタリングタ
ーゲットの造り方およびスパッタリング条件は実施例6
〜10と同様にした。その膜特性値も表・lに示した。
Examples 11-13 The 5nO of ITO with Snug added to InJs
The compositions shown in Table 1 were investigated, assuming that PzOs was added to a part of the addition of z. Example 6 shows how to make a sputtering target and sputtering conditions.
- The same procedure as in 10 was carried out. The film characteristic values are also shown in Table 1.

(以下余白) 〔発明の効果1 本発明のNiOまたはP2O,のInzOaに対する添
加による透明導電膜は、従来のITOの膜特性を凌ぐ特
性を有し、膜厚を薄くすることが可能となり、エツチン
グ性の改善、更にはそれに伴う歩留りの向上を来たすも
のである。
(Left below) [Advantageous Effects of the Invention 1] The transparent conductive film obtained by adding NiO or PO to InzOa of the present invention has properties superior to those of conventional ITO, and the film thickness can be made thinner, making it easier to etch. This results in improved properties and an associated improvement in yield.

hand

Claims (1)

【特許請求の範囲】[Claims] 酸化インジウム(In_2O_3)を主成分とする透明
導電膜において、酸化ニッケル(NiO)または酸化リ
ン(P_2O_5)の一種を含有することを特徴とする
透明導電膜。
A transparent conductive film containing indium oxide (In_2O_3) as a main component and containing one type of nickel oxide (NiO) or phosphorus oxide (P_2O_5).
JP20719789A 1989-08-10 1989-08-10 Transparent conductive film Pending JPH0371510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20719789A JPH0371510A (en) 1989-08-10 1989-08-10 Transparent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20719789A JPH0371510A (en) 1989-08-10 1989-08-10 Transparent conductive film

Publications (1)

Publication Number Publication Date
JPH0371510A true JPH0371510A (en) 1991-03-27

Family

ID=16535853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20719789A Pending JPH0371510A (en) 1989-08-10 1989-08-10 Transparent conductive film

Country Status (1)

Country Link
JP (1) JPH0371510A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780755A (en) * 1994-12-23 1998-07-14 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
JP2005292768A (en) * 2004-03-09 2005-10-20 Idemitsu Kosan Co Ltd Tft substrate, sputtering target, liquid crystal display device, pixel electrode, transparent electrode, and manufacturing method for tft substrate
WO2009138774A1 (en) * 2008-05-12 2009-11-19 Bizesp Limited A process for the manufacture of a high density ito sputtering target
WO2010035716A1 (en) 2008-09-25 2010-04-01 日鉱金属株式会社 Oxide sintered compact for producing transparent conductive film
TWI404810B (en) * 2002-08-02 2013-08-11 Idemitsu Kosan Co A sputtering target and a sintered body, and a conductive film produced by using the same, and an organic EL element and a substrate for the same
TWI426146B (en) * 2009-05-07 2014-02-11 Sinito Shenzhen Optoelectrical Advanced Materials Company Ltd A method of forming ito slip
US9028726B2 (en) 2008-09-25 2015-05-12 Jx Nippon Mining & Metals Corporation Oxide sintered compact for producing transparent conductive film
CN107327758A (en) * 2016-04-11 2017-11-07 美蓓亚三美株式会社 Angular adjustment apparatus and lighting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5809393A (en) * 1994-12-23 1998-09-15 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
US5780755A (en) * 1994-12-23 1998-07-14 Johnson Matthey Electronics, Inc. Sputtering target with ultra-fine, oriented grains and method of making same
TWI404810B (en) * 2002-08-02 2013-08-11 Idemitsu Kosan Co A sputtering target and a sintered body, and a conductive film produced by using the same, and an organic EL element and a substrate for the same
JP4660667B2 (en) * 2004-03-09 2011-03-30 出光興産株式会社 TFT substrate, sputtering target, liquid crystal display device, pixel electrode, transparent electrode, and manufacturing method of TFT substrate
JP2005292768A (en) * 2004-03-09 2005-10-20 Idemitsu Kosan Co Ltd Tft substrate, sputtering target, liquid crystal display device, pixel electrode, transparent electrode, and manufacturing method for tft substrate
WO2009138774A1 (en) * 2008-05-12 2009-11-19 Bizesp Limited A process for the manufacture of a high density ito sputtering target
US20110127162A1 (en) * 2008-05-12 2011-06-02 Charles Edmund King Process for the Manufacture of a High Density ITO Sputtering Target
JP2011519817A (en) * 2008-05-12 2011-07-14 ビズエスプ リミテッド Method for producing high-density ITO sputtering target
US8778234B2 (en) 2008-05-12 2014-07-15 Bizesp Limited Process for the manufacture of a high density ITO sputtering target
JP4823386B2 (en) * 2008-09-25 2011-11-24 Jx日鉱日石金属株式会社 Oxide sintered body for manufacturing transparent conductive film
WO2010035716A1 (en) 2008-09-25 2010-04-01 日鉱金属株式会社 Oxide sintered compact for producing transparent conductive film
US9028726B2 (en) 2008-09-25 2015-05-12 Jx Nippon Mining & Metals Corporation Oxide sintered compact for producing transparent conductive film
TWI426146B (en) * 2009-05-07 2014-02-11 Sinito Shenzhen Optoelectrical Advanced Materials Company Ltd A method of forming ito slip
CN107327758A (en) * 2016-04-11 2017-11-07 美蓓亚三美株式会社 Angular adjustment apparatus and lighting device
CN107327758B (en) * 2016-04-11 2021-04-06 美蓓亚三美株式会社 Angle adjusting device and lighting device

Similar Documents

Publication Publication Date Title
JPH02309511A (en) Transparent conductive film
US20160070033A1 (en) Light-absorbing layer and layer system containing the layer, method for producing the layer system and a sputter target suited therefor
JP4560149B2 (en) Transparent conductive material, transparent conductive glass and transparent conductive film
JP3806521B2 (en) Transparent conductive film, sputtering target, and substrate with transparent conductive film
TWI402365B (en) Indium tin oxide target, method for manufacturing the same, transparent conductive film of indium tin oxide, and method for manufacturing transparent conductive film of indium tin oxide
JP3864425B2 (en) Aluminum-doped zinc oxide sintered body, method for producing the same, and use thereof
JP2008088544A5 (en)
JP4233641B2 (en) Target for transparent conductive film, transparent conductive glass and transparent conductive film
JPH06318406A (en) Conductive transparent base member and manufacture thereof
JPH0371510A (en) Transparent conductive film
JPH06128743A (en) Transparent electrically conductive film, production and target used therefor
JP5082927B2 (en) Method for producing ZnO vapor deposition material
JPWO2003106732A1 (en) Article coated with titanium compound film, method for producing the article, and sputtering target used for coating the film
WO2000068456A1 (en) Sputtering target and production method therefor
WO2007055231A1 (en) SnO2 SPUTTERING TARGET AND PROCESS FOR PRODUCING SAME
KR100203671B1 (en) Ito sintered body ito transparent conductive film and method of forming the film
JPH0343911A (en) Transparent electricity conductive film
JPS6359999B2 (en)
JP5532093B2 (en) ZnO vapor deposition material and method of forming ZnO film using the same
JP4575035B2 (en) Single crystal magnesium oxide sintered body, method for producing the same, and protective film for plasma display panel
JP5018553B2 (en) ZnO vapor deposition material, method for producing the same, and ZnO film formed thereby
JP2013533378A (en) Transparent conductive film, target for transparent conductive film, and method for producing target for transparent conductive film
JPH04341707A (en) Transparent conductive film
JPH10237632A (en) Ito sintered body, its production and formation of ito coating using the ito sintered compact
JPH0315107A (en) Conductive metal oxide sintered body and its application