JPH0719618B2 - Method for manufacturing lithium secondary battery - Google Patents

Method for manufacturing lithium secondary battery

Info

Publication number
JPH0719618B2
JPH0719618B2 JP60264494A JP26449485A JPH0719618B2 JP H0719618 B2 JPH0719618 B2 JP H0719618B2 JP 60264494 A JP60264494 A JP 60264494A JP 26449485 A JP26449485 A JP 26449485A JP H0719618 B2 JPH0719618 B2 JP H0719618B2
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
battery
aluminum
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60264494A
Other languages
Japanese (ja)
Other versions
JPS62123664A (en
Inventor
康義 谷口
茂 池成
佐藤  淳
賢一 横山
一三 由光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP60264494A priority Critical patent/JPH0719618B2/en
Publication of JPS62123664A publication Critical patent/JPS62123664A/en
Publication of JPH0719618B2 publication Critical patent/JPH0719618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム二次電池の製造方法に係わり、さらに
詳しくはその電池組立にあたって負極缶に挿入する負極
材料の径方向寸法と負極缶の寸法との関係を規定するこ
とに関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a lithium secondary battery, and more specifically, to the radial dimension of the negative electrode material and the dimensions of the negative electrode can that are inserted into the negative electrode can during battery assembly. Relating to defining relationships with.

〔従来の技術〕 リチウム二次電池では、リチウムの単独使用による負極
の劣化を防止するため、リチウム−アルミニウム合金を
負極に用いることが行われているが、そのような負極の
劣化防止に対する配慮にもかかわらず、充放電の繰り返
しによって負極にリチウムが徐々に消耗して負極が劣化
していくため、充放電サイクル寿命を長くするためには
負極の電気容量を正極の電気容量に比べてできるだけ大
きくしておくことが好ましい。そのような理由から、従
来は負極の電気容量を高めることが重視され、第3図に
示すように、負極が収容される負極缶1の内径とほぼ同
寸法のリチウム板3aとアルミニウム板3bとを負極缶1に
挿入して電池内で電解液の存在下にリチウムとアルミニ
ウムとを電気化学的に合金化させ、リチウム−アルミニ
ウム合金からなる負極を形成していた。
[Prior Art] In a lithium secondary battery, a lithium-aluminum alloy is used for the negative electrode in order to prevent the deterioration of the negative electrode due to the sole use of lithium. Nevertheless, lithium is gradually consumed in the negative electrode due to repeated charge and discharge, and the negative electrode deteriorates.Therefore, in order to extend the charge and discharge cycle life, the electric capacity of the negative electrode should be as large as possible compared to the electric capacity of the positive electrode. Preferably. For that reason, conventionally, it has been important to increase the electric capacity of the negative electrode, and as shown in FIG. 3, a lithium plate 3a and an aluminum plate 3b having substantially the same size as the inner diameter of the negative electrode can 1 in which the negative electrode is housed are provided. Was inserted into the negative electrode can 1 and lithium and aluminum were electrochemically alloyed in the battery in the presence of an electrolytic solution to form a negative electrode made of a lithium-aluminum alloy.

しかるに、リチウムとアルミニウムとが電池内で合金化
するとき径方向に膨張するが前述した理由により負極缶
1に挿入されるリチウム板3aやアルミニウム板3bは負極
缶1の内径とほぼ同寸法のものが使用されているため、
径方向に膨張した部分の逃げ場がなく、そのため、負極
が最も変形を受けやすいセパレータ4の中央部に向けて
膨張し、それによってセパレータ4の中央部や正極缶7
の中央部が部分的に押圧され、電池ふくれが生じたり、
あるいは内部短絡が生じて電圧不良が発生するなど電池
特性の低下を来すという問題があった。
However, when lithium and aluminum alloy in the battery, they expand in the radial direction, but for the reasons described above, the lithium plate 3a and the aluminum plate 3b inserted into the negative electrode can 1 have approximately the same inner diameter as the negative electrode can 1. Is used,
Since there is no escape area for the radially expanded portion, the negative electrode expands toward the central portion of the separator 4 that is most susceptible to deformation, and thus the central portion of the separator 4 and the positive electrode can 7
The central part of the battery is partially pressed, causing battery swelling,
Alternatively, there has been a problem that battery characteristics are deteriorated such as an internal short circuit and a voltage defect.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この発明は従来のリチウム二次電池が有していた電池内
での合金化時の負極の膨張に基づく電池ふくれや内部短
絡の発生を防止し、電池ふくれがなく、しかも電池特性
が良好なリチウム二次電池を提供することを目的とす
る。
This invention prevents the occurrence of battery swelling and internal short circuit due to the expansion of the negative electrode during alloying in the conventional lithium secondary battery, which prevents the battery from swelling and has good battery characteristics. It is intended to provide a secondary battery.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、電池組立にあたって負極缶内に挿入するリチ
ウム板とアルミニウム板の直径を負極缶の内径より小さ
くすることによって、合金化により負極が径方向に膨張
しても、負極缶に突きあたらないようにして電池ふくれ
や内部短絡の発生を防止したものである。
According to the present invention, the diameters of the lithium plate and the aluminum plate to be inserted into the negative electrode can during battery assembly are smaller than the inner diameter of the negative electrode can, so that even if the negative electrode expands radially due to alloying, it does not hit the negative electrode can. In this way, the occurrence of battery blister and internal short circuit is prevented.

本発明において、リチウム板やアルミニウム板などの直
径を負極缶の内径より小さくする程度は、それらリチウ
ム板やアルミニウム板の直径が負極缶の内径より2〜7
%、特に3〜5%小さくすることが好ましい。これは下
記の理由に基づく。
In the present invention, the extent to which the diameter of a lithium plate or an aluminum plate is smaller than the inner diameter of the negative electrode can is such that the diameter of the lithium plate or the aluminum plate is 2 to 7 from the inner diameter of the negative electrode can.
%, Particularly preferably 3 to 5%. This is based on the following reasons.

合金化時の負極の径方向の膨張は、負極のリチウム−ア
ルミニウム合金中のリチム量と密接な関係を有してお
り、リチウム量が少ないと合金化時の径方向への膨張が
少なく、リチウム量が多くなると合金化時の径方向への
膨張が多くなる。
The radial expansion of the negative electrode during alloying has a close relationship with the lithium amount in the lithium-aluminum alloy of the negative electrode, and when the lithium content is small, the radial expansion during alloying is small, and the lithium If the amount increases, the radial expansion during alloying increases.

そして、電池特性上からは、負極のリチウム−アルミニ
ウム合金中のリチウム量は30〜50原子%(atomic%)、
特に35〜45原子%の範囲が好ましいことが見出されてい
る。これはリチウム−アルミニウム合金中のリチウム量
が上記範囲より少ない場合は、単位重量当たりの電気容
量が少なくなって高エネルギー密度電池としてのリチウ
ム電池の特長が発揮できなくなるし、また合金化しても
リチウムが少ないためにアルミニウムが合金化せずにそ
のまま残って放電反応を阻害するおそれがあり一方、リ
チウム−アルミニウム合金中のリチウム量が上記範囲よ
り多くなると、充放電の繰り返しによって負極が粉末化
するおそれがあるからである。そして、後記の実施例の
項で示すように、リチウム−アルミニウム合金中のリチ
ウムが30原子%のときは合金化により負極が径方向に2
%膨張し、リチウムが35原子%のとき合金化により負極
が径方向に3%膨張し、リチウムが45原子%のとき合金
化により負極が径方向に5%膨張し、リチウムが50原子
%のとき合金化により負極が径方向に7%膨張する。し
たがって、本発明は、負極のリチウム−アルミニウム合
金中のリチウム量を30〜50原子%とする場合において、
負極缶内に挿入するリチウム板とアルミニウム板の直径
を負極缶の内径より2〜7%小さくすることによって、
合金化により負極が径方向に膨張しても、負極缶に突き
あたらないようにして、電池ふくれや内部短絡の発生を
防止できるようにしたのである。
From the viewpoint of battery characteristics, the amount of lithium in the negative electrode lithium-aluminum alloy is 30 to 50 atomic% (atomic%),
In particular, it has been found that a range of 35 to 45 atom% is preferred. This is because when the amount of lithium in the lithium-aluminum alloy is less than the above range, the electric capacity per unit weight becomes small, and the features of the lithium battery as a high energy density battery cannot be exhibited. Since there is a small amount of aluminum, it may remain as it is without being alloyed and hinder the discharge reaction.On the other hand, if the amount of lithium in the lithium-aluminum alloy exceeds the above range, the negative electrode may become powdered due to repeated charging and discharging. Because there is. Then, as will be described later in the section of Examples, when the lithium in the lithium-aluminum alloy is 30 atomic%, the negative electrode becomes 2 in the radial direction due to alloying.
% Expansion, when lithium is 35 atomic%, the negative electrode expands 3% in the radial direction due to alloying, and when lithium is 45 atomic%, the negative electrode expands 5% in the radial direction due to alloying and lithium contains 50 atomic% At that time, the negative electrode expands by 7% in the radial direction due to alloying. Therefore, the present invention, when the amount of lithium in the lithium-aluminum alloy of the negative electrode is 30 to 50 atomic%,
By making the diameters of the lithium plate and the aluminum plate to be inserted into the negative electrode can smaller than the inner diameter of the negative electrode can by 2 to 7%,
Even if the negative electrode expands in the radial direction by alloying, it is prevented from hitting the negative electrode can so as to prevent the occurrence of battery swelling and internal short circuit.

〔実施例〕〔Example〕

まず、第1図に示すような構造で設定寸法が直径11.6m
m、高さ2.0mmの偏平形リチウム電池を負極材料としての
リチウムとアルミニウムとの割合を種々に変えて組立
て、電池内で上記リチウムとアルミニウムとを電解液の
存在下で合金化させて、第2図に示すようにリチウム−
アルミニウム合金からなる負極を形成し、合金化による
負極の径方向の膨張率を調べた。
First, in the structure shown in Fig. 1, the set dimension is 11.6m in diameter.
Assemble a flat lithium battery having a height of 2.0 mm and a height of 2.0 mm by changing the ratio of lithium and aluminum as a negative electrode material in various ways, alloying the lithium and aluminum in the battery in the presence of an electrolytic solution, and As shown in Fig. 2, lithium-
A negative electrode made of an aluminum alloy was formed, and the expansion coefficient in the radial direction of the negative electrode due to alloying was examined.

図中、1はステンレス鋼製で表面にニッケルメッキを施
した負極缶で、2は負極缶1の内面にスポット溶接した
ステンレス鋼網よりなる負極集電体である。3は負極
で、この負極3は第1図に示すように一方のリチウム板
3a、アルミニウム缶3bおよび他方のリチウム板3aを上記
負極缶1中に配置して、電解液の存在下で合金化するこ
とにより形成したものであり、使用されたアルミニウム
板3bはH材の略称で市販されている硬質アルミニウム板
である。4は微孔性ポリプロピレンフィルムとポリプロ
ピレン不織布からなるセパレータ群であり、5は二硫化
チタンを活物質とし、ポリテトラフルオロエチレンをバ
インダーとして加圧成形した正極で、厚さ0.5mm、直径
7.0mmの円板状をしており、その一方の面にはステンレ
ス鋼網からなる正極集電体6が配置されている。7はス
テンレス鋼製で表面にニッケルメッキを施した正極缶
で、8はポリプロピレン製のガスケットである。そし
て、この電池には、4−メチル−1,3−ジオキソランと
1,2−ジメトキシエタンとの混合溶媒にLiPF6を1.0mol/
溶解した有機電解液が注入されている。
In the figure, 1 is a negative electrode can made of stainless steel and having a surface plated with nickel, and 2 is a negative electrode current collector made of stainless steel net spot-welded to the inner surface of the negative electrode can 1. 3 is a negative electrode, and this negative electrode 3 is one lithium plate as shown in FIG.
3a, an aluminum can 3b and the other lithium plate 3a are arranged in the negative electrode can 1 and alloyed in the presence of an electrolytic solution, and the aluminum plate 3b used is an abbreviation for H material. Is a hard aluminum plate marketed by. 4 is a separator group consisting of a microporous polypropylene film and polypropylene non-woven fabric, and 5 is a positive electrode positively formed by using titanium disulfide as an active material and polytetrafluoroethylene as a binder, and having a thickness of 0.5 mm and a diameter.
It has a disk shape of 7.0 mm, and the positive electrode current collector 6 made of stainless steel mesh is arranged on one surface thereof. Reference numeral 7 is a positive electrode can made of stainless steel and having a surface plated with nickel, and 8 is a polypropylene gasket. And, in this battery, 4-methyl-1,3-dioxolane
LiPF 6 in a mixed solvent with 1,2-dimethoxyethane 1.0 mol /
The dissolved organic electrolyte is injected.

上記のごとくリチウムとアルミニウムとの割合を種々に
変えて合金化させたときのリチウム−アルミニウム合金
中のリチウム量と合金化による負極の径方向の膨張率と
の関係を第4図に示す。
FIG. 4 shows the relationship between the amount of lithium in the lithium-aluminum alloy and the expansion coefficient in the radial direction of the negative electrode due to the alloying when the alloying is performed by changing the ratio of lithium and aluminum in various ways as described above.

第4図に示すように、リチウム−アルミニウム合金中の
リチウムが30原子%のときは合金化による負極の径方向
の膨張率は2%であり、リチウムが35原子%のときは合
金化による負極の径方向の膨張率は3%で、リチウムが
45原子%のときは合金化による負極の径方向の膨張率は
5%、リチウムが50原子%のときは合金化による負極の
径方向の膨張率は7%である。
As shown in FIG. 4, when lithium in the lithium-aluminum alloy is 30 atomic%, the radial expansion coefficient of the negative electrode due to alloying is 2%, and when lithium is 35 atomic%, the negative electrode due to alloying is negative. Has a radial expansion coefficient of 3% and lithium
When it is 45 atomic%, the radial expansion coefficient of the negative electrode due to alloying is 5%, and when the lithium content is 50 atomic%, the radial expansion coefficient of the negative electrode due to alloying is 7%.

つぎに、厚さ0.12mmで直径7.6mmのリチウム板2枚と、
厚さ0.3mmで直径7.6mmのアルミニウム板とを内径8.0mm
の負極缶にリチウム板、アルミニウム板、リチウム板の
順に挿入して電池組立を行い、設定寸法が直径11.6mm、
高さ2.0mmのリチウム二次電池を作製した。使用された
アルミニウム板は前記と同様に硬質アルミニウム板であ
る。
Next, two lithium plates with a thickness of 0.12 mm and a diameter of 7.6 mm,
An aluminum plate with a thickness of 0.3 mm and a diameter of 7.6 mm and an inner diameter of 8.0 mm
Insert the lithium plate, aluminum plate, and lithium plate in this order into the negative electrode can to assemble the battery, and set the size to 11.6 mm in diameter.
A lithium secondary battery having a height of 2.0 mm was produced. The aluminum plate used is a hard aluminum plate as described above.

電池組立は、まず負極缶1の周辺折り返し部にガスケッ
ト8を嵌合し、この負極缶1を第1〜2図に示す状態と
は上下を反転させた状態で配置し、負極缶1内に一方の
リチウム板3aを挿入して負極集電体2に圧着し、電解液
の一部を挿入し、ついでその上にアルミニウム板3bを積
み重ね、さらに電解液の一部を注入し、その上に他方の
リチウム板3aを積み重ね、ついでセパレータ群4を微孔
性ポリプロピレンフィルム側から積み重ね、残りの電解
液を注入して、前記のごとく板状で負極缶1内に挿入し
たリチウムとアルミニウムとを電解液の存在下で電気化
学的に合金化させて負極3が形成されるようにし、つい
でその上に正極5を載置し、その上から正極缶7を嵌合
し、正極缶7の開口縁を内方に締め付けて封口すること
によって行われた。上記リチウム−アルミニウム合金中
のリチウム量は35原子%で、リチウム板、アルミニウム
板などの負極材料の直径は負極缶の内径より5%小さ
い。なお、負極缶の内径とは第1図の寸法Dで示すよう
に負極缶1の底部(完成後の電池を示す第1図では負極
缶1は組立時とは上下を反転した状態を示されているの
で、負極缶1の底部は負極缶の中央で上方に突出した状
態に示される平らな部分である)内面の内径をいう。ま
た、リチウム板3aやアルミニウム板3bの直径とは、リチ
ウムやアルミニウムが合金化する前の状態の第1図にお
いて、符号dで示される寸法である。
To assemble the battery, first, a gasket 8 is fitted around the folded back portion of the negative electrode can 1, and the negative electrode can 1 is arranged in an upside-down state from the state shown in FIGS. One lithium plate 3a is inserted and pressure-bonded to the negative electrode current collector 2, a part of the electrolytic solution is inserted, and then an aluminum plate 3b is stacked on it, and further a part of the electrolytic solution is injected, and then the electrolytic solution is injected on top of it. The other lithium plate 3a is stacked, then the separator group 4 is stacked from the side of the microporous polypropylene film, and the remaining electrolytic solution is injected to electrolyze the lithium and aluminum inserted into the negative electrode can 1 in the plate shape as described above. Electrochemically alloyed in the presence of the liquid so that the negative electrode 3 is formed, then the positive electrode 5 is placed on the positive electrode can 7, and the positive electrode can 7 is fitted over the positive electrode 5 to form the opening edge of the positive electrode can 7. It was done by tightening inward and sealing. The amount of lithium in the lithium-aluminum alloy is 35 atomic%, and the diameter of the negative electrode material such as a lithium plate and an aluminum plate is 5% smaller than the inner diameter of the negative electrode can. It should be noted that the inner diameter of the negative electrode can is the bottom of the negative electrode can 1 as shown by the dimension D in FIG. 1 (in FIG. 1 showing the completed battery, the negative electrode can 1 is shown in an upside down state when assembled). Therefore, the bottom portion of the negative electrode can 1 is a flat portion that is shown as protruding upward in the center of the negative electrode can). The diameters of the lithium plate 3a and the aluminum plate 3b are the dimensions indicated by the symbol d in FIG. 1 in the state before lithium and aluminum are alloyed.

比較のため、従来法にしたがい、第3図に示すように、
リチウム板3a、アルミニウム板3bの直径を負極缶1の内
径と同様に8.0mmにし、他方は前記と同様にして設定寸
法が直径11.6mm、高さ2.0mmのリチウム二次電池を組立
てた。
For comparison, according to the conventional method, as shown in FIG.
The diameters of the lithium plate 3a and the aluminum plate 3b were set to 8.0 mm in the same manner as the inner diameter of the negative electrode can 1, and the other was assembled in the same manner as above to construct a lithium secondary battery having a set dimension of 11.6 mm and a height of 2.0 mm.

〔発明の効果〕〔The invention's effect〕

以上のような本発明の方法と従来法とにより、電池をそ
れぞれ50個ずつ製造したときの電池ふくれと、得られた
電池の初期の電圧不良を調べた結果を第1表に示す。な
お、電池ふくれとは電池総高が2.01mmより大きくなった
ものをいい、また電圧不良は内部短絡により開路電圧が
出なくなったものである。第1表中の数値の分母は総電
池個数を示し、分子は電池ふくれのあった電池個数と初
期の電圧不良があった電池個数とを示している。
Table 1 shows the results of examining the battery blister when 50 batteries were manufactured by the method of the present invention and the conventional method as described above, and the initial voltage defect of the obtained battery. The battery blister means that the total height of the battery is larger than 2.01 mm, and the defective voltage is that the open circuit voltage is not output due to an internal short circuit. The denominator of the numerical values in Table 1 indicates the total number of batteries, and the numerator indicates the number of batteries with blister and the number of batteries with initial voltage failure.

第1表に示すように、本発明によりリチウム板やアルミ
ニウム板などの負極材料の直径を負極缶の内径より5%
小さくして電池組立を行った場合は電池ふくれや初期の
電圧不良はまったく発生しなかったが、従来法によりリ
チウム板やアルミニウム板の直径を負極缶の内径と同寸
法にして電池組立を行った場合には多数の電池ふくれや
初期の電圧不良が発生した。
As shown in Table 1, according to the present invention, the diameter of the negative electrode material such as a lithium plate or an aluminum plate is 5% of the inner diameter of the negative electrode can.
When the battery was assembled with a small size, no battery blistering or initial voltage failure occurred, but the battery was assembled by the conventional method with the diameter of the lithium plate or aluminum plate being the same as the inner diameter of the negative electrode can. In some cases, numerous battery blister and initial voltage failure occurred.

以上説明したように、本発明ではリチウム板やアルミニ
ウム板の直径を負極缶の内径より小さくすることによっ
て、合金化による膨張に基づく電池ふくれや内部短絡の
発生を防止することができた。
As described above, in the present invention, by making the diameter of the lithium plate or the aluminum plate smaller than the inner diameter of the negative electrode can, it is possible to prevent the occurrence of battery swelling or internal short circuit due to expansion due to alloying.

【図面の簡単な説明】[Brief description of drawings]

第1〜2図は本発明に係るリチウム二次電池の一例を示
す断面図で、第1図はリチウムとアルミニウムとが合金
化する前の状態を示し、第2図はリチウムとアルミニウ
ムとが合金化した状態を示す。第3図は従来のリチウム
二次電池を示す断面図で、リチウムとアルミニウムとが
合金化する前の状態を示す。第4図は設定寸法が直径1
1.6mm、高さ2.0mmのリチウム二次電池を製造したときの
負極のリチウム−アルミニウム合金中のリチウム量と合
金化による負極の径方向膨張率との関係を示す図であ
る。 1……負極缶、3……負極、3a……リチウム板 3b……アルミニウム板、D……負極缶の内径、 d……リチウム板やアルミニウム板の直径
1 and 2 are cross-sectional views showing an example of a lithium secondary battery according to the present invention, FIG. 1 shows a state before lithium and aluminum are alloyed, and FIG. 2 is an alloy of lithium and aluminum. Shows the converted state. FIG. 3 is a sectional view showing a conventional lithium secondary battery, showing a state before lithium and aluminum are alloyed. In Fig. 4, the set dimension is the diameter 1
FIG. 3 is a diagram showing the relationship between the amount of lithium in the lithium-aluminum alloy of the negative electrode and the radial expansion coefficient of the negative electrode due to alloying when a lithium secondary battery of 1.6 mm and a height of 2.0 mm was manufactured. 1 ... Negative electrode can, 3 ... Negative electrode, 3a ... Lithium plate 3b ... Aluminum plate, D ... Negative electrode can inner diameter, d ... Lithium plate or aluminum plate diameter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 賢一 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (72)発明者 由光 一三 大阪府茨木市丑寅1丁目1番88号 日立マ クセル株式会社内 (56)参考文献 特開 昭60−41761(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kenichi Yokoyama, 1-88, Tora, Ibaraki-shi, Osaka Prefecture Hitachi Maxell Co., Ltd. (72) Kozo Yumi, 1-88, Tora, Ibaraki-shi, Osaka Issue within Hitachi Maxell Co., Ltd. (56) Reference JP-A-60-41761 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】リチウムと、アルミニウムとを電池内で電
解液の存在下に電気化学的に合金化させて負極を形成す
るリチウム二次電池の製造にあたり、負極のリチウム−
アルミニウム合金中のリチウム量を30〜50原子%とし、
かつ電池組立時に負極缶に挿入するリチウム板とアルミ
ニウム板の直径を負極缶の内径より2〜7%小さくする
ことを特徴とするリチウム二次電池の製造方法。
1. When manufacturing a lithium secondary battery in which lithium and aluminum are electrochemically alloyed in the battery in the presence of an electrolytic solution to form a negative electrode, lithium-
The amount of lithium in the aluminum alloy is 30 to 50 atom%,
A method for producing a lithium secondary battery, characterized in that the diameters of the lithium plate and the aluminum plate inserted into the negative electrode can during battery assembly are smaller than the inner diameter of the negative electrode can by 2 to 7%.
JP60264494A 1985-11-25 1985-11-25 Method for manufacturing lithium secondary battery Expired - Lifetime JPH0719618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264494A JPH0719618B2 (en) 1985-11-25 1985-11-25 Method for manufacturing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264494A JPH0719618B2 (en) 1985-11-25 1985-11-25 Method for manufacturing lithium secondary battery

Publications (2)

Publication Number Publication Date
JPS62123664A JPS62123664A (en) 1987-06-04
JPH0719618B2 true JPH0719618B2 (en) 1995-03-06

Family

ID=17404015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264494A Expired - Lifetime JPH0719618B2 (en) 1985-11-25 1985-11-25 Method for manufacturing lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0719618B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041761A (en) * 1983-08-17 1985-03-05 Hitachi Maxell Ltd Lithium organic secondary battery

Also Published As

Publication number Publication date
JPS62123664A (en) 1987-06-04

Similar Documents

Publication Publication Date Title
US7767344B2 (en) Lithium secondary battery
US5434019A (en) Nickel-hydride battery used for battery-operated vehicles
JP3324372B2 (en) Cylindrical battery
JPH0665044B2 (en) Lithium organic primary battery
JP3056521B2 (en) Alkaline storage battery
JPH0719618B2 (en) Method for manufacturing lithium secondary battery
JPH11185767A (en) Manufacture of nickel-hydrogen secondary battery and electrode
JP3902330B2 (en) Cylindrical battery
JP3478030B2 (en) Alkaline storage battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPS61208748A (en) Lithium organic secondary battery
JPH1173973A (en) Lithium ion battery
JPS6065479A (en) Lithium secondary battery
JPH07320723A (en) Lithium secondary battery and manufacture thereof
JPH05283071A (en) Activation of metal hydride storage battery
JP3504303B2 (en) Cylindrical alkaline secondary battery
JPS62123651A (en) Lithium secondary battery
JPH0552028B2 (en)
JPS62123660A (en) Lithium secondary cell
JP2003323914A (en) Nickel - hydrogen battery
JPH07254416A (en) Coiled lithium battery
JP2002280057A (en) Alkaline secondary battery
JP2001068145A (en) Rectangular alkaline secondary battery
JPS60175366A (en) Production of lithium-aluminum alloy electrode
JPH0272564A (en) Alkaline storage battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term