JPH07193234A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH07193234A
JPH07193234A JP33020393A JP33020393A JPH07193234A JP H07193234 A JPH07193234 A JP H07193234A JP 33020393 A JP33020393 A JP 33020393A JP 33020393 A JP33020393 A JP 33020393A JP H07193234 A JPH07193234 A JP H07193234A
Authority
JP
Japan
Prior art keywords
source
concentration
region
drain region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33020393A
Other languages
Japanese (ja)
Inventor
Toyoji Yamamoto
豊二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33020393A priority Critical patent/JPH07193234A/en
Publication of JPH07193234A publication Critical patent/JPH07193234A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simultaneously perform the reduction in the manufacturing process number of an insulation gate field effect type transistor of a buried channel structure insulating gate and a short channel effect suppression. CONSTITUTION:The previous buried channel and source - drain regions, or a buried channel region and an LDD region are replaced with one impurity region 4 or 9. It can be realized by shallowing the depth of a buried region and heightening concentration. This manufacturing method is characterized by integrally forming the buried channel and the source - drain regions (a) or the buried channel and LDD regions (b) formed separately before are integrally formed at the time of forming the buried channel so that the process number reduction can be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁ゲート電界効果型ト
ランジスタとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate field effect transistor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】ゲート絶縁膜直下にソース・ドレイン領
域と同伝導型の不純物層(以下、埋め込み層という)を
有する埋め込みチャネル構造絶縁ゲート電界効果型トラ
ンジスタにおける、埋め込み層の不純物分布と、ソース
・ドレイン領域の不純物分布の関係が本発明に関わるの
で、これについて説明する。
2. Description of the Related Art In a buried channel structure insulated gate field effect transistor having an impurity layer of the same conductivity type as a source / drain region (hereinafter referred to as a buried layer) immediately below a gate insulating film, the impurity distribution of the buried layer and the source / drain region The relationship of the impurity distribution of the drain region is related to the present invention, which will be described.

【0003】従来、埋め込み層の不純物分布と、ソース
・ドレイン領域の不純物分布は独立に設計されていた。
この理由は埋め込み層はトランジスタのしきい値電圧を
所望の値にするため、また、ソース・ドレイン領域はト
ランジスタの外部接続用電極を形成するためにトランジ
スタに導入されたので、それぞれの領域の使用目的がそ
もそも異なるからである。通常、ソース・ドレイン領域
の濃度は寄生抵抗を下げるために、短チャネル効果等で
決まる許容範囲内の最も濃い濃度を用いる。従って、ソ
ース・ドレイン領域の濃度は埋め込み層よりも濃い。
Conventionally, the impurity distribution in the buried layer and the impurity distribution in the source / drain regions have been designed independently.
The reason for this is that the buried layer is introduced into the transistor in order to set the threshold voltage of the transistor to a desired value and the source / drain regions are formed in the transistor to form electrodes for external connection of the transistor. This is because the purpose is different in the first place. Usually, the concentration of the source / drain region is set to the highest concentration within an allowable range determined by the short channel effect or the like in order to reduce the parasitic resistance. Therefore, the concentration of the source / drain region is higher than that of the buried layer.

【0004】一方、トランジスタの微細化が進んで微細
化に伴うしきい値電圧の低下、信頼性劣化等の、いわゆ
る短チャネル効果が顕著になると、これを解決するため
にソース・ドレイン領域をオフセット構造の高濃度部
と、これに続く低濃度部とで構成するLDD構造絶縁ゲ
ート電界効果型トランジスタが発明された。LDD構造
トランジスタの低濃度ソース・ドレイン領域濃度は従来
の高濃度部よりも薄くなるように設計されているが、ま
だ埋め込み層の濃度に比べて濃くなっている。
On the other hand, when the so-called short channel effect such as the decrease of the threshold voltage and the deterioration of reliability due to the miniaturization of the transistor becomes remarkable, the source / drain regions are offset to solve the problem. An LDD structure insulated gate field effect transistor has been invented which is composed of a high concentration part of the structure and a low concentration part following it. The low concentration source / drain region concentration of the LDD structure transistor is designed to be thinner than the conventional high concentration region, but is still higher than the concentration of the buried layer.

【0005】[0005]

【発明が解決しようとする課題】絶縁ゲート電界効果型
トランジスタは微細化により性能向上を実現してきた
が、微細化が進むにつれて短チャネル効果の問題が顕在
化してきた。LDD構造の採用などで短チャネル効果低
減を図ってきたが、その為に製造工程数増大を招いた。
絶縁ゲート電界効果型トランジスタを用いたLSIの製
造工程数の一例を挙げるとNチャネル型トランジスタの
場合約150工程以上、基板内にNチャネル型トランジ
スタとPチャネル型トランジスタを有する相補型トラン
ジスタでは約250工程以上になる。このようにLSI
製造に要する工程数が膨大になると製造期間とコストの
増大をもたらす。それゆえ、工程数を減らせる半導体装
置とその製造方法の提供が望まれる。
Although the performance of the insulated gate field effect transistor has been improved by miniaturization, the problem of short channel effect has become apparent as the miniaturization progresses. Although the short channel effect has been reduced by adopting the LDD structure and the like, this has led to an increase in the number of manufacturing steps.
An example of the number of manufacturing steps of an LSI using insulated gate field effect transistors is about 150 or more for N-channel transistors, and about 250 for complementary transistors having N-channel and P-channel transistors in the substrate. More than a process. In this way LSI
The enormous number of steps required for manufacturing increases the manufacturing period and cost. Therefore, it is desired to provide a semiconductor device and a method of manufacturing the same that can reduce the number of steps.

【0006】本発明の目的は埋め込みチャネル製造絶縁
ゲート電界効果型トランジスタの埋め込み層とソース・
ドレイン領域の不純物分布を改良することで、短チャネ
ル効果に強く、なおかつ容易に製造工程削減を実現でき
る半導体装置およびその製造方法を提供することにあ
る。
It is an object of the present invention to form a buried layer and a source of an insulated gate field effect transistor manufactured in a buried channel.
An object of the present invention is to provide a semiconductor device which is resistant to a short channel effect and which can easily reduce the manufacturing steps by improving the impurity distribution in the drain region, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明による半導体装置は、ゲート絶縁膜直下の半導
体基板領域にソース・ドレイン領域と同伝導型の不純物
層を有する埋め込みチャネル構造絶縁ゲート電界効果型
トランジスタにおいて、ソース・ドレインとゲート絶縁
膜直下の半導体領域の不純物分布が同一にする、あるい
は、ソース・ドレイン領域はオフセット構造の高濃度部
と、これに続く低濃度部とで構成し、低濃度ソース・ド
レイン部とゲート絶縁膜直下の不純物分布が同一にする
ものである。
In order to solve the above problems, a semiconductor device according to the present invention has a buried channel structure insulated gate having an impurity layer of the same conductivity type as a source / drain region in a semiconductor substrate region immediately below a gate insulating film. In the field-effect transistor, the source / drain and the semiconductor region directly under the gate insulating film have the same impurity distribution, or the source / drain region is composed of a high-concentration part of an offset structure and a low-concentration part following it. The low-concentration source / drain portion and the impurity distribution directly under the gate insulating film are made the same.

【0008】また、本発明による半導体装置の製造方法
においては、イオン打ち込みや選択エピタキシャル成長
等を用いて、後に埋め込みチャネルとソース・ドレイン
領域になる半導体基板と逆伝導型の不純物層を形成する
工程を有するが、その後、高濃度ソース・ドレイン領
域、あるいは低濃度ソース・ドレイン領域の形成工程を
有しないものである。
Further, in the method of manufacturing a semiconductor device according to the present invention, a step of forming an impurity layer of a reverse conductivity type with a semiconductor substrate to be a buried channel and source / drain regions later by using ion implantation, selective epitaxial growth, or the like. However, it does not have a step of forming a high concentration source / drain region or a low concentration source / drain region thereafter.

【0009】[0009]

【作用】図4(a),(b)にゲート絶縁膜界面におけ
るソースからドレイン方向にそった不純物と分布と、チ
ャネル領域におけるゲート絶縁膜界面からの深さ方向に
向かった不純物分布の一例を示す。点線が従来のLDD
構造の不純物分布で、図4(a)からわかるようにチャ
ネル領域の埋め込み層の不純物濃度は低濃度ソース・ド
レイン領域(LDD領域)に比べて薄くなっている。一
方、実線が本発明の不純物分布で、埋め込み層と低濃度
ソース・ドレイン領域の濃度をほぼ同一にすることが特
徴である。しかし、単純に埋め込み層の不純物濃度を上
げて図4(a)の分布を形成すると、しきい値電圧が変
動し、さらには、トランジスタのオンオフ制御も困難に
なる。そこで、図4(b)に示すようにチャネル領域の
深さ方向不純物分布を変更する。埋め込み深さはトラン
ジスタのオンオフ制御が可能な範囲内で最も深くする。
トランジスタ制御の観点からは埋め込み層深さを浅くす
るのが望ましいが、本発明の構造では埋め込み層深さと
ソース・ドレイン深さを同じにするので、浅くいすぎる
とソース・ドレイン抵抗が増大してトランジスタの電流
駆動能力低下をもたらすからである。しきい値電圧の制
御は、埋め込み層直下のウェル濃度を変えることで行
う。しきい値電圧を一定に保つためにはウェル濃度を濃
くする。ウェル濃度を濃くすると必然的に短チャネル効
果改善をもたらすので、本発明の構造は微細化に適す
る。
4 (a) and 4 (b) show an example of the distribution of impurities along the direction from the source to the drain in the interface of the gate insulating film and the distribution of impurities in the direction of the depth from the interface of the gate insulating film in the channel region. Show. The dotted line is the conventional LDD
As can be seen from FIG. 4A, the impurity concentration of the buried layer in the channel region is lower than that of the low-concentration source / drain region (LDD region) in the impurity distribution of the structure. On the other hand, the solid line represents the impurity distribution of the present invention, which is characterized in that the buried layer and the low-concentration source / drain regions have substantially the same concentration. However, if the impurity concentration of the buried layer is simply increased to form the distribution shown in FIG. 4A, the threshold voltage fluctuates, and the on / off control of the transistor becomes difficult. Therefore, as shown in FIG. 4B, the impurity distribution in the depth direction of the channel region is changed. The embedding depth is set to be the deepest within the range where the on / off control of the transistor can be performed.
From the viewpoint of transistor control, it is desirable to make the buried layer depth shallow, but since the buried layer depth and the source / drain depth are made the same in the structure of the present invention, if it is too shallow, the source / drain resistance increases. This is because the current driving capability of the transistor is reduced. The threshold voltage is controlled by changing the well concentration immediately below the buried layer. The well concentration is increased to keep the threshold voltage constant. The structure of the present invention is suitable for miniaturization, since increasing the well concentration inevitably brings about improvement in the short channel effect.

【0010】本発明の構造に関して埋め込みチャネルが
ゲートで変調されるならばLDD領域が空乏化して高抵
抗になるのではないか、あるいはLDD領域を低抵抗に
するために濃度を上げると埋め込みチャネルが変調され
なくなるのではないかという疑問があるかもしれない。
LDD領域の空乏化を防ぐには、埋め込み層深さをLD
D領域の表面近傍でバンドがフラットになるようにし、
なおかつ、チャネル領域ではゲートとの仕事関数差で表
面近傍が空乏化されるように設定すればよい。濃度に関
しては、薄すぎるとLDD領域の抵抗が高くなって実用
上使用できなくなり、また、濃すぎる(〜1020cm-3
以上)と、縮退が起きてフェルミレベルがピン止めされ
るのでチャネルを変調できなくなる。しかし、範囲は狭
いかもしれないが本発明の条件を満たす埋め込み層深さ
と濃度は存在する。図5(a),(b)にその時のLD
D領域とチャネル領域における深さ方向バンド図を示
す。LDD領域の表面でバンドはフラットになり、しか
もLDD濃度は〜1018cm-3以上なので低濃度ソース
・ドレインとして充分に機能する。チャネル領域では、
ゲートとチャネルの仕事関数差によってチャネル表面は
空乏化して、トランンジスタはオフになる。
With respect to the structure of the present invention, if the buried channel is modulated by the gate, the LDD region may be depleted to have a high resistance, or if the concentration is increased to make the LDD region have a low resistance, the buried channel becomes. There may be doubts that it will not be modulated.
In order to prevent the LDD region from being depleted, the buried layer depth is set to LD.
Make the band flat near the surface of the D area,
In addition, in the channel region, it may be set so that the vicinity of the surface is depleted due to the work function difference with the gate. Regarding the concentration, if it is too thin, the resistance in the LDD region becomes too high to make it practically unusable, and if it is too thick (-10 20 cm -3
Above), degeneration occurs and the Fermi level is pinned, so the channel cannot be modulated. However, although the range may be narrow, there are buried layer depths and concentrations that satisfy the conditions of the present invention. The LD at that time is shown in FIGS.
The band diagram in the depth direction in the D region and the channel region is shown. The band becomes flat on the surface of the LDD region, and since the LDD concentration is -10 18 cm -3 or more, it functions sufficiently as a low concentration source / drain. In the channel area,
The gate and channel work function differences deplete the channel surface, turning off the transistor.

【0011】次に、本発明の構造の絶縁ゲート電界効果
型トランジスタとその製造方法が製造工程数削減に対し
てどのように作用するかを、従来の埋め込みチャネル構
造相補型トランジスタの製造方法を用いて説明する。図
6(a)はP型シリコン基板1にPウェル2とNウェル
12、素子分離用酸化膜3を形成した段階である。次に
マスク工程を用いてPウェル2の領域だけに窓を開け、
フッ化ボロンのイオン打ち込みでパンチスルーストッパ
ー、ヒ素のイオン打ち込みでしきい値電圧調整用のN型
埋め込み層13の形成を行う(図6(b))。さらにマ
スク工程を用いて今度はNウェル12の領域だけに窓を
開け、ヒ素とフッ化ボロンとイオン打ち込みでPチャネ
ル型トランジスタ用のパンチスルーストッパーと、しき
い値電圧調整用のP型埋め込み層14の形成を行う(図
6(c))。続いて、ゲート酸化膜6の形成、ゲート電
極材料の堆積とパターニングによりゲート電極7を形成
する(図6(d))。次にPウェル2の領域だけに窓を
開け、ヒ素のイオン打ち込みでNチャネル型トランジス
タ用のN型低濃度ソース・ドレイン領域(LDD領域)
15を形成する(図6(e))。次にマスク工程により
Nウェル12の領域だけに窓を開け、フッ化ボロンのイ
オン打ち込みでPチャネル型トランジスタ用のP型低濃
度ソース・ドレイン領域(LDD領域)16を形成する
(図6(f))。次に、HTO(High Tewpe
rfture Oxidftion)膜を堆積した後、
異方性エッチングによりサイドウォール11を形成す
る。その後、LDD領域形成と同様の方法用いて、2回
のマスク工程とイオン打ち込みでNチャネル型トランジ
スタとPチャネル型トランジスタ用の高濃度ソース・ド
レイン領域となる高濃度N型不純物領域5と高濃度P型
不純物領域17を形成する(図6(g))。次に層間絶
縁膜8を全面に堆積し、マスク工程とエッチングにてコ
ンタクト孔を形成する。そして、配線用アルミを全面に
スパッタした後にマスク工程とエッチングでアルミ配線
9を形成して、最終的なデバイス構造(図6(h))を
得る。
Next, the insulated gate field effect transistor having the structure of the present invention and how the manufacturing method thereof works to reduce the number of manufacturing steps will be described by using a conventional buried channel structure complementary transistor manufacturing method. Explain. FIG. 6A shows a stage in which the P well 2, the N well 12, and the element isolation oxide film 3 are formed on the P type silicon substrate 1. Next, a window is opened only in the region of the P well 2 by using a mask process,
A punch-through stopper is formed by ion implantation of boron fluoride, and an N-type buried layer 13 for adjusting the threshold voltage is formed by ion implantation of arsenic (FIG. 6B). Further, a window is opened only in the region of the N well 12 by using a mask process, and a punch-through stopper for the P-channel type transistor and a P-type buried layer for adjusting the threshold voltage are formed by ion implantation with arsenic and boron fluoride. 14 is formed (FIG. 6C). Subsequently, the gate electrode 7 is formed by forming the gate oxide film 6, depositing and patterning the gate electrode material (FIG. 6D). Next, a window is opened only in the P well 2 region, and arsenic is ion-implanted to form an N-type low-concentration source / drain region (LDD region) for an N-channel transistor.
15 is formed (FIG. 6E). Next, a window is opened only in the region of the N well 12 by a mask process, and boron fluoride ion implantation is performed to form a P-type low-concentration source / drain region (LDD region) 16 for the P-channel transistor (FIG. 6 (f). )). Next, HTO (High Tewpe
After depositing the rfture oxide film,
The sidewall 11 is formed by anisotropic etching. After that, by using the same method as that for forming the LDD region, a high-concentration N-type impurity region 5 and a high-concentration N-type impurity region 5 to be high-concentration source / drain regions for the N-channel transistor and the P-channel transistor are formed by two masking steps and ion implantation. A P-type impurity region 17 is formed (FIG. 6G). Next, the interlayer insulating film 8 is deposited on the entire surface, and contact holes are formed by a mask process and etching. Then, after aluminum for wiring is sputtered on the entire surface, an aluminum wiring 9 is formed by a mask process and etching to obtain a final device structure (FIG. 6H).

【0012】従来構造ではチャネル部の埋め込み層と低
濃度ソース・ドレイン領域の不純物分布は異なっている
ので、前述したようにそれぞれ個別に形成する必要があ
った。一方、本発明の構造では埋め込み層と低濃度ソー
ス・ドレイン領域の不純物を同一にして埋め込み層形成
時に低濃度ソース・ドレイン領域を一括形成するので、
低濃度ソース・ドレイン形成用のマスク工程が2回省略
できて、製造工程数削減を実現できる。
In the conventional structure, the buried layer in the channel portion and the low-concentration source / drain regions have different impurity distributions, so that it is necessary to form them individually as described above. On the other hand, in the structure of the present invention, since the impurities in the buried layer and the low-concentration source / drain regions are made the same, the low-concentration source / drain regions are collectively formed when the buried layer is formed.
The mask process for forming the low concentration source / drain can be omitted twice, and the number of manufacturing processes can be reduced.

【0013】[0013]

【実施例】以下、図1(a),(b)の構造図と、図2
(a),(b)、図3(a)〜(d)の一連の工程図を
用いて、本発明を用いた絶縁ゲート電界効果型トランジ
スタの構造、及びNチャネル型MOSトランジスタの場
合における製造方法の一実施例について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A structural diagram of FIGS. 1 (a) and 1 (b) and FIG.
3A, 3B, and 3A to 3D, the structure of an insulated gate field effect transistor according to the present invention and the manufacture in the case of an N channel type MOS transistor will be described. An example of the method will be described.

【0014】はじめに、LDDを含まないトランジスタ
の製造方法について説明する。図2(a)はP型シリコ
ン基板1にボロン濃度が5×1016cm-3であるPウェ
ル2と素子分離用酸化膜3を形成した段階である。次に
選択エピタキシャル成長で厚さ20nm、ボロン濃度
1.15×1020cm-3の高濃度Pウェル4を成長す
る。次に、埋め込み層とソース・ドレイン領域になる高
濃度N型不純物領域5を形成する。ソース・ドレイン領
域として使用するためにヒ素濃度は例えば5×1019
-3程度に濃くする。不純物領域の厚さはしきい値電圧
とソース・ドレイン寄生抵抗の設定値に応じて決め、例
えば10nmにする。ここでは高濃度ウェルと埋め込み
層を選択エピタキシャル成長を用いて形成したが、同様
の分布が形成できるならばイオン注入などの他の不純物
導入方法を用いてもかまわない。次に、厚さ5nmのゲ
ート酸化膜6を形成、ゲート電極材料の堆積とパターニ
ングによりゲート電極7の形成を行う(図2(b))。
First, a method of manufacturing a transistor not including LDD will be described. FIG. 2A shows a stage in which a P well 2 having a boron concentration of 5 × 10 16 cm −3 and an element isolation oxide film 3 are formed on a P-type silicon substrate 1. Next, a high concentration P well 4 having a thickness of 20 nm and a boron concentration of 1.15 × 10 20 cm −3 is grown by selective epitaxial growth. Next, a high-concentration N-type impurity region 5 to be a buried layer and a source / drain region is formed. For use as a source / drain region, the arsenic concentration is, for example, 5 × 10 19 c
Thicken to about m -3 . The thickness of the impurity region is determined according to the threshold voltage and the set values of the source / drain parasitic resistance, and is set to 10 nm, for example. Here, the high-concentration well and the buried layer are formed by selective epitaxial growth, but other impurity introduction methods such as ion implantation may be used as long as the same distribution can be formed. Next, a gate oxide film 6 having a thickness of 5 nm is formed, and a gate electrode 7 is formed by depositing and patterning a gate electrode material (FIG. 2B).

【0015】次に層間絶縁膜8を例えば0.5μmの厚
さで全面に堆積、800℃20分の熱処理を加えた後に
マスク工程とエッチングにてコンタクト孔を形成する。
次に、配線用アルミを全面にスパッタした後、パターン
ニングしてアルミ配線9を形成して、最終的なデバイス
構造(図1(a))を得ることができる。本実施例の場
合、トランジスタの重要なパラメータの1つであるしき
い値電圧は約0.3Vになり、埋め込み層濃度を濃くし
ても従来構造と同等のしきい値電圧を設定することがで
きる。
Next, the interlayer insulating film 8 is deposited on the entire surface to a thickness of, for example, 0.5 μm, a heat treatment is performed at 800 ° C. for 20 minutes, and then a contact hole is formed by a mask process and etching.
Next, after aluminum for wiring is sputtered on the entire surface, patterning is performed to form aluminum wiring 9, whereby a final device structure (FIG. 1A) can be obtained. In the case of this embodiment, the threshold voltage, which is one of the important parameters of the transistor, is about 0.3 V, and even if the buried layer concentration is increased, the threshold voltage equivalent to that of the conventional structure can be set. it can.

【0016】次にLDDを含むMOSトランジスタの製
造方法について説明する。図3(a)はP型シリコン基
板1にボロン濃度が5×1016cm-3であるPウェル2
の素子分離用酸化膜3を形成した段階である。次に選択
エピタキシャル成長で厚さ20nm、ボロン濃度2×1
18cm-3の高濃度Pウェル4を成長する。次に、埋め
込み層と低濃度ソース・ドレイン領域(LDD領域)に
なる低濃度N型不純物領域10を形成する。低濃度ソー
ス・ドレイン領域として使用するためにヒ素濃度は例え
ば2×1018cm-3程度に設定する。不純物領域の厚さ
はしきい値電圧とソース・ドレイン寄生抵抗の設定値に
応じて決め、例えば10nmにする。ここでは高濃度ウ
ェルと埋め込み層を選択エピタキシャル成長を用いて形
成したが、同様の分布が形成できるならばイオン注入な
どの他の不純物導入方法を用いてもかまわない。次に、
厚さ5nmのゲート酸化膜6の形成、ゲート電極材料の
堆積とパターニングによりゲート電極7の形成を行う
(図3(b))。次にHTO膜を全面に堆積し、エッチ
バック工程でゲート電極の脇にサイドウォール11を形
成する(図3(c))。次にヒ素のイオン打ち込みによ
りオフセット高濃度N型不純物領域5を形成する(図3
(d))。次に層間絶縁膜7を例えば0.5μmの厚さ
で全面に堆積し、アスク工程とエッチングにてコンタク
ト孔を形成する。次に、配線用アルミを全面にスパッタ
した後、パターンニングしてアルミ配線9を形成して、
最終的なデバイス構造(図1(b))を得ることができ
る。本実施例の場合、トランジスタの重要なパラメータ
の1つであるしきい値電圧は約0.3Vのなり、埋め込
み層濃度を濃くしても従来構造と同等のしきい値電圧を
設定することができる。
Next, a method of manufacturing a MOS transistor including LDD will be described. FIG. 3A shows a P-type silicon substrate 1 and a P well 2 having a boron concentration of 5 × 10 16 cm −3.
This is the stage of forming the element isolation oxide film 3. Next, by selective epitaxial growth, the thickness is 20 nm and the boron concentration is 2 × 1.
A high concentration P well 4 of 0 18 cm -3 is grown. Next, a low-concentration N-type impurity region 10 to be a buried layer and a low-concentration source / drain region (LDD region) is formed. The arsenic concentration is set to about 2 × 10 18 cm −3 for use as the low concentration source / drain regions. The thickness of the impurity region is determined according to the threshold voltage and the set values of the source / drain parasitic resistance, and is set to 10 nm, for example. Here, the high-concentration well and the buried layer are formed by selective epitaxial growth, but other impurity introduction methods such as ion implantation may be used as long as the same distribution can be formed. next,
A gate oxide film 6 having a thickness of 5 nm is formed, and a gate electrode 7 is formed by depositing and patterning a gate electrode material (FIG. 3B). Next, an HTO film is deposited on the entire surface, and a sidewall 11 is formed beside the gate electrode by an etch back process (FIG. 3C). Next, an offset high-concentration N-type impurity region 5 is formed by arsenic ion implantation (FIG. 3).
(D)). Next, the interlayer insulating film 7 is deposited on the entire surface to a thickness of 0.5 μm, for example, and a contact hole is formed by an asking step and etching. Next, after sputtering aluminum for wiring on the entire surface, patterning is performed to form aluminum wiring 9,
The final device structure (FIG. 1 (b)) can be obtained. In the case of the present embodiment, the threshold voltage, which is one of the important parameters of the transistor, is about 0.3 V, and even if the buried layer concentration is increased, the threshold voltage equivalent to that of the conventional structure can be set. it can.

【0017】本発明の構造の絶縁ゲート電界効果型トラ
ンジスタの実施例を図1(a),(b)に示す。これ
は、本発明の絶縁ゲート電界効果型トランジスタの製造
方法の典型的な実施例である。
An embodiment of an insulated gate field effect transistor having the structure of the present invention is shown in FIGS. 1 (a) and 1 (b). This is an exemplary embodiment of the method of manufacturing an insulated gate field effect transistor of the present invention.

【0018】なお、本実施例ではNチャネル型トランジ
スタ、及びその製造方法を示したが、本発明は明らかに
Nチャネル型トランジスタ特有のものではなく、Pチャ
ネル型トランジスタおよび相補型トランジスタ等の一般
の絶縁ゲート電界効果型トランジスタに適用でき、従っ
て、本発明の原理を用いる全ての絶縁ゲート電界効果型
トランジスタ、およびその製造方法は、本発明の請求範
囲に含まれる。
Although the N-channel type transistor and the manufacturing method thereof are shown in the present embodiment, the present invention is obviously not peculiar to the N-channel type transistor and is generally used for P-channel type transistor and complementary type transistor. All insulated gate field effect transistors applicable to insulated gate field effect transistors, and therefore using the principles of the present invention, and methods of making the same are within the scope of the present invention.

【0019】[0019]

【発明の効果】以上説明したように、本発明のトランジ
スタ構造およびその製造方法を用いれば、短チャネル効
果に強いトランジスタを従来よりも少ない工程数で製造
できるので、製造期間とコストの低減を実現できる。特
に本発明を相補型トランジスタに適用すると、マスク工
程を2回減少できるので効果的である。
As described above, by using the transistor structure and the manufacturing method thereof according to the present invention, a transistor having a strong short-channel effect can be manufactured in a smaller number of steps than in the past, so that the manufacturing period and cost can be reduced. it can. In particular, when the present invention is applied to a complementary transistor, the mask process can be reduced twice, which is effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の構造の模式的断面図であ
る。
FIG. 1 is a schematic cross-sectional view of the structure of a semiconductor device of the present invention.

【図2】本発明の製造方法を説明するための模式的断面
図である。
FIG. 2 is a schematic cross-sectional view for explaining the manufacturing method of the present invention.

【図3】本発明の製造方法を示す模式的断面図である。FIG. 3 is a schematic cross-sectional view showing the manufacturing method of the present invention.

【図4】従来の埋め込みチャネル構造と本発明の構造の
不純物分布の一例の図である。
FIG. 4 is a diagram showing an example of impurity distribution in a conventional buried channel structure and the structure of the present invention.

【図5】本発明の構造におけるLDD領域とチャネル領
域における深さ方向のバンド図である。
FIG. 5 is a band diagram in the depth direction in the LDD region and the channel region in the structure of the present invention.

【図6】従来の埋め込みチャネル構造半導体装置の製造
手順の一例を示す図である。
FIG. 6 is a diagram showing an example of a manufacturing procedure of a conventional buried channel structure semiconductor device.

【符号の説明】[Explanation of symbols]

1 P型シリコン基板 2 Pウェル 3 素子分離用酸化膜 4 高濃度Pウェル 5 高濃度N型不純物領域 6 ゲート酸化膜 7 ゲート電極 8 層間絶縁膜 9 アルミ配線 10 低濃度N型不純物 11 サイドウォール 12 Nウェル 13 N型埋め込み層 14 P型埋め込み層 15 N型低濃度ソース・ドレイン領域 16 P型低濃度ソース・ドレイン領域 17 高濃度P型不純物領域 18 フォトレジスト 1 P-type silicon substrate 2 P-well 3 Element isolation oxide film 4 High-concentration P-well 5 High-concentration N-type impurity region 6 Gate oxide film 7 Gate electrode 8 Interlayer insulating film 9 Aluminum wiring 10 Low-concentration N-type impurity 11 Sidewall 12 N well 13 N type buried layer 14 P type buried layer 15 N type low concentration source / drain region 16 P type low concentration source / drain region 17 High concentration P type impurity region 18 Photoresist

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ゲート絶縁膜直下の半導体基板領域にソ
ース・ドレイン領域と同伝導型の不純物層を有する埋め
込みチャネル構造絶縁ゲート電界効果型トランジスタに
おいて、ソース・ドレインとゲート絶縁膜直下の半導体
領域の不純物分布が同一であることを特徴とする半導体
装置。
1. A buried channel structure insulated gate field effect transistor having an impurity layer of the same conductivity type as a source / drain region in a semiconductor substrate region immediately below a gate insulating film, wherein a source / drain and a semiconductor region directly below the gate insulating film are formed. A semiconductor device having the same impurity distribution.
【請求項2】 ソース・ドレイン領域はオフセット構造
の高濃度部と、これに続く低濃度部とで構成し、低濃度
ソース・ドレイン部とゲート絶縁膜直下の不純物分布が
同一である請求項1に記載の半導体装置。
2. The source / drain region is composed of a high-concentration portion of the offset structure and a low-concentration portion following the offset structure, and the low-concentration source / drain portion has the same impurity distribution immediately below the gate insulating film. The semiconductor device according to.
【請求項3】 埋め込み深さは、トランジスタのオンオ
フ制御が可能な範囲で深くする請求項1または2に記載
の半導体装置。
3. The semiconductor device according to claim 1, wherein the embedding depth is deep within a range where ON / OFF control of the transistor can be performed.
【請求項4】 埋め込み層直下の、埋め込み層と反対導
電型の層の濃度を高くすることでしきい値電圧を制御す
る請求項3に記載の半導体装置。
4. The semiconductor device according to claim 3, wherein the threshold voltage is controlled by increasing the concentration of a layer having a conductivity type opposite to that of the buried layer, which is directly below the buried layer.
【請求項5】 半導体基板に素子分離領域を形成後、イ
オン打ち込みや選択エピタキシャル成長等を用いて、後
に埋め込みチャネルとソース・ドレイン領域になる半導
体基板と逆伝導型の不純物層を形成する工程を有し、そ
の後にソース・ドレイン領域形成工程は行わないことを
特徴とする半導体装置の製造方法。
5. A step of forming an element isolation region in a semiconductor substrate and then forming a buried channel and an impurity layer of a reverse conductivity type with a semiconductor substrate to be a source / drain region later by ion implantation or selective epitaxial growth. The method for manufacturing a semiconductor device is characterized in that the source / drain region forming step is not performed thereafter.
【請求項6】 低濃度ソース・ドレイン領域を含む電界
効果型トランジスタにおいて、半導体基板に素子分離領
域を形成後、イオン打ち込み選択エピタキシャル成長等
を用いて、後に埋め込みチャネルと低濃度ソース・ドレ
イン領域になる半導体基板と逆伝導型の不純物層を形成
する工程を有し、その後に低濃度ソース・ドレイン領域
形成工程は行わず、続いてサイドウォールを利用てオフ
セット構造高濃度ソース・ドレイン領域形成工程、コン
タクトと配線形成を行うことを特徴とする半導体装置の
製造方法。
6. In a field effect transistor including a low concentration source / drain region, after forming an element isolation region on a semiconductor substrate, ion implantation selective epitaxial growth or the like is used to form a buried channel and a low concentration source / drain region later. It has a step of forming a reverse-conductivity type impurity layer with the semiconductor substrate, and then does not carry out a low-concentration source / drain region forming step, and subsequently uses a sidewall to form an offset structure high-concentration source / drain region forming step A method for manufacturing a semiconductor device, comprising:
JP33020393A 1993-12-27 1993-12-27 Semiconductor device and its manufacture Pending JPH07193234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33020393A JPH07193234A (en) 1993-12-27 1993-12-27 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33020393A JPH07193234A (en) 1993-12-27 1993-12-27 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH07193234A true JPH07193234A (en) 1995-07-28

Family

ID=18229997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33020393A Pending JPH07193234A (en) 1993-12-27 1993-12-27 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH07193234A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525239B2 (en) 2010-05-27 2013-09-03 Panasonic Corporation Semiconductor device and method for driving same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984475A (en) * 1982-11-05 1984-05-16 Hitachi Ltd Field effect device
JPS61292963A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Semiconductor device and manufacture thereof
JPH02138749A (en) * 1988-11-18 1990-05-28 Fujitsu Ltd Manufacture of mis semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984475A (en) * 1982-11-05 1984-05-16 Hitachi Ltd Field effect device
JPS61292963A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Semiconductor device and manufacture thereof
JPH02138749A (en) * 1988-11-18 1990-05-28 Fujitsu Ltd Manufacture of mis semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525239B2 (en) 2010-05-27 2013-09-03 Panasonic Corporation Semiconductor device and method for driving same

Similar Documents

Publication Publication Date Title
US7214629B1 (en) Strain-silicon CMOS with dual-stressed film
US7288470B2 (en) Semiconductor device comprising buried channel region and method for manufacturing the same
US5827747A (en) Method for forming LDD CMOS using double spacers and large-tilt-angle ion implantation
JP2697392B2 (en) Method of manufacturing complementary semiconductor device
US5214295A (en) Thin film field effect transistor, CMOS inverter, and methods of forming thin film field effect transistors and CMOS inverters
JPH10335480A (en) Semiconductor device and its manufacture
JP2701762B2 (en) Semiconductor device and manufacturing method thereof
US5705439A (en) Method to make an asymmetrical LDD structure for deep sub-micron MOSFETS
US5399508A (en) Method for self-aligned punchthrough implant using an etch-back gate
US6696334B1 (en) Method for formation of a differential offset spacer
US6815284B2 (en) Manufacturing method of semiconductor device
US6495406B1 (en) Method of forming lightly doped drain MOS transistor including forming spacers on gate electrode pattern before exposing gate insulator
JPH08186250A (en) Manufacture of semiconductor device
JP4804666B2 (en) Manufacturing method of semiconductor device
US6656780B2 (en) Method of manufacturing a semiconductor device having nitrogen ions by twice RTA processes
JPH11354785A (en) Field effect transistor, semiconductor integrated circuit device comprising the same, and its manufacture
JPH07193234A (en) Semiconductor device and its manufacture
JP2917301B2 (en) Semiconductor device and manufacturing method thereof
JPH02196434A (en) Manufacture of mos transistor
JPH0766296A (en) Mis semiconductor device and manufacture thereof
KR100308783B1 (en) Semiconductor device manufacturing method
US6638806B2 (en) Semiconductor device and method of fabricating the same
KR20040058832A (en) Soi semiconductor device and method for manufacturing the same
JP2000114393A (en) Manufacture of semiconductor device
JPS6154669A (en) Mos type field-effect transistor and manufacture thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970708