JPS6154669A - Mos type field-effect transistor and manufacture thereof - Google Patents

Mos type field-effect transistor and manufacture thereof

Info

Publication number
JPS6154669A
JPS6154669A JP17664184A JP17664184A JPS6154669A JP S6154669 A JPS6154669 A JP S6154669A JP 17664184 A JP17664184 A JP 17664184A JP 17664184 A JP17664184 A JP 17664184A JP S6154669 A JPS6154669 A JP S6154669A
Authority
JP
Japan
Prior art keywords
gate electrode
insulating film
layers
conductivity type
impurity region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17664184A
Other languages
Japanese (ja)
Inventor
Takashi Azuma
吾妻 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17664184A priority Critical patent/JPS6154669A/en
Publication of JPS6154669A publication Critical patent/JPS6154669A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent a hot carrier effect while inhibiting the lowering of mutual conductance by extending a conductor layer up to sections on low-concentration impurity layers constituting source-drain regions on a boundary section with a gate electrode. CONSTITUTION:A gate insulating film 12 and a gate electrode 13 are formed onto a P type Si substrate 1. N<-> layers 14 are shaped in regions as source-drain through the implantation of ions in low concentration. Side wall SiO2 films 21 having width d1 are formed on both side surfaces of the electrode 13. N<+> layers 16 are shaped in the source-drain regions except regions coated with the films 21 through the implantation of ions in high concentration. The films 21 are removed, and side wall SiO2 films 22 having width d2 narrower than width d1 are shaped on both side surfaces of the electrode 13. Lastly, the surfaces of the layers 16, the surfaces of layers 14A not coated with the films 22 and the surface of the electrode 13 are coated with dielectric layers 23. Accordingly, when a transistor is turned ON, currents flow on the surfaces of the layers 14A coated with the layers 23, thus obtaining a MOSFET having sufficiently low ON-resistance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、MOS形電界効果トランジスタ、特に高集積
度のLSIを構成するためにLDD構造を導入したMO
S形電界効果トランジスタおよびその製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a MOS field effect transistor, particularly a MOS field effect transistor incorporating an LDD structure for constructing a highly integrated LSI.
The present invention relates to an S-type field effect transistor and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

高集積度化MOSLSIを構成するサブミクロンMOS
電界効果トランジスタ(MOS FET)は、高ホット
キャリア耐量化のために、いわゆるLDD(Light
ly doped Drain)構造と水っている。
Submicron MOS that composes highly integrated MOSLSI
Field effect transistors (MOS FETs) are so-called LDD (Light
ly doped drain) structure and water.

これは、第1図に示すように、第1導電形の半導体基板
、例えばP形シリコン基板1の表面に形成する第2導電
形のソース・ドレイン領域I、JTを高濃度不純物領域
N 層2と低濃度不純物領域N一層3とによって構成し
、ゲート絶縁膜4およびゲート電極5からなるゲート領
域■と接する側にN層3を配置したものである。N層3
は、P形シリコン基板1とPN−接合をつくり、 ドレ
イン自ソース間に印加された電圧による空乏層をP層の
みならずN一層3にも拡げることに↓つて、ゲート電極
直下のPN−接合の電界強度を弱める働きをする。その
結果、強電界によるホットキャリアのゲート絶縁膜への
注入によるしきい値電圧vthの劣化、いわゆるホット
キャリア効果を低減できる。
As shown in FIG. 1, this means that source/drain regions I and JT of a second conductivity type formed on the surface of a semiconductor substrate of a first conductivity type, for example, a P-type silicon substrate 1, are connected to a high concentration impurity region N layer 2. and a low-concentration impurity region N layer 3, with the N layer 3 disposed on the side in contact with a gate region (2) consisting of a gate insulating film 4 and a gate electrode 5. N layer 3
creates a PN-junction with the P-type silicon substrate 1, and expands the depletion layer due to the voltage applied between the drain and source not only to the P layer but also to the N layer 3. acts to weaken the electric field strength. As a result, it is possible to reduce the so-called hot carrier effect, which is the deterioration of the threshold voltage vth due to the injection of hot carriers into the gate insulating film due to a strong electric field.

しかし、反面このN一層3は低濃度不純物領域であるた
めに、トランジスタをオンして電流を流した場合に、高
抵抗の電流通路となる、つまシMOSPETのgmが低
下するという欠点がある。
However, since the N layer 3 is a low concentration impurity region, there is a drawback that when the transistor is turned on and a current flows, the gm of the stub MOSPET, which serves as a high resistance current path, decreases.

このようなLDD構造のMOS FETは、従来第2図
に示すような方法で形成されている。
A MOS FET having such an LDD structure has conventionally been formed by a method as shown in FIG.

すなわち、まず通常の方法で素子間分離用酸化膜(t、
acos膜)11を形成し、次に酸化膜(SIO2膜)
およびポリシリコンとりマスクトリー(refract
ory)メタルシリサイドから成るポリサイド積層構造
またはりマスクトリーメタルからなる導電体層を形成し
、エツチング加工を行なうことによってゲート酸化膜1
2およびゲート電極13を形成する。その後、ソース−
ドレインとすべき領域にN形不純物、例えばリンをイオ
ン注入により導入し、低濃度N形不純物領域のN一層1
4を形成する(第2図(a))。
That is, first, an oxide film (t,
acos film) 11 is formed, and then an oxide film (SIO2 film) is formed.
and polysilicon mask tree (refract)
ory) A polycide laminated structure made of metal silicide or a conductive layer made of mask tree metal is formed, and the gate oxide film 1 is formed by etching.
2 and a gate electrode 13 are formed. Then the sauce-
An N-type impurity, for example, phosphorus, is introduced into the region to be a drain by ion implantation, and the N layer 1 of the low concentration N-type impurity region is
4 (Fig. 2(a)).

続いて、LPCVD(減圧CVD)法などにより5to
2層を堆積しRIEエツチング(Reaetive  
tonetching)を施してゲート電極両側面にサ
イドウオールS10.膜15を形成する。その後、N形
不純物、例えばAsを高濃度にイオン注入してサイドウ
オール5tO2膜15に覆われていないソース拳ドレイ
ン領域にN 層16を形成する(第2図(b))。
Next, 5to by LPCVD (low pressure CVD) method etc.
Two layers are deposited and RIE etched.
sidewalls S10.tonetching) are applied to both sides of the gate electrode. A film 15 is formed. Thereafter, an N-type impurity, for example, As, is ion-implanted at a high concentration to form an N layer 16 in the source and drain regions not covered by the sidewall 5tO2 film 15 (FIG. 2(b)).

最後に、リフラクトリ−メタルを選択的に付着すること
により、酸化膜によって覆われていないソース・ドレイ
ン領域の表面およびゲート電極13の表面をリフラクト
リ−メタルからなる導電体層17で覆う(第2図(C)
)。
Finally, by selectively depositing refractory metal, the surfaces of the source/drain regions and the gate electrode 13 that are not covered with the oxide film are covered with a conductor layer 17 made of refractory metal (see Fig. 2). (C)
).

ここで、N 層16形成後のN一層14Aの幅は、ホッ
トキャリア発生防止の面からは充分大きい(0,2〜0
.4μm程度)ことが望ましいが、当該N一層14Aの
表面には導電体層1Tが形成されていないため、その比
抵抗と幅とで決まる抵抗そのものがMOS FETのオ
ン抵抗として働き、幅が大きいほどその抵抗は大きくな
ってgtf、を低下させる。
Here, the width of the N layer 14A after forming the N layer 16 is sufficiently large (0.2 to 0.0
.. 4 μm), but since the conductor layer 1T is not formed on the surface of the N single layer 14A, the resistance itself determined by its specific resistance and width acts as the on-resistance of the MOS FET, and the larger the width, the more the conductor layer 1T is formed. Its resistance increases and reduces gtf.

すなわち、上述した構成ないし製造方法をとる限シ、ホ
ットキャリア効果の低減とgm低下防止とは相反する関
係にある。
That is, as long as the above-described configuration or manufacturing method is adopted, the reduction of the hot carrier effect and the prevention of gm reduction are in a contradictory relationship.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に鑑みてなされたもので、その
目的は、gmの低下を抑制しながら、しかもホットキャ
リア効果を防止することが可能なMOS形電界効果トラ
ンジスタおよびその製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a MOS type field effect transistor and a method for manufacturing the same, which can prevent the hot carrier effect while suppressing a decrease in gm. There is a particular thing.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために、本発明のMOS形電
界効果トランジスタは、ゲート電極との境界部分のソー
ス・ドレイン領域を構成する低濃度不純物層上にまで導
電体層を延在させたものである0 また、本発明による製造方法は、このような構造を得る
ために、ゲート電極側面に形成した第1のサイドウオー
ル絶縁膜をマスクとして高濃度不純物領域を形成した後
、第4のサイドウオール絶縁膜に代えてより幅の狭い第
2のサイドウオール絶縁膜を形成し、この第2のサイド
ウオール絶縁膜によって覆われない不純物領域上に導電
体層を形成するものである。
In order to achieve such an object, the MOS type field effect transistor of the present invention has a conductive layer extending over the lightly doped impurity layer constituting the source/drain region at the boundary with the gate electrode. In addition, in the manufacturing method according to the present invention, in order to obtain such a structure, after forming a high concentration impurity region using the first sidewall insulating film formed on the side surface of the gate electrode as a mask, A second narrower sidewall insulating film is formed in place of the wall insulating film, and a conductor layer is formed on the impurity region not covered by the second sidewall insulating film.

〔発明の実施例〕[Embodiments of the invention]

第3図は、本発明の一実施例を示す工程断面図である。 FIG. 3 is a process sectional view showing an embodiment of the present invention.

同図において、まず、第1図と同様に通常の方法による
P形シリコン基板1上に素子間分離用酸化膜11を形成
し、5io2膜およびポリシリコンとりフラクトリーメ
タルシリサイドから成るポリサイド積層構造またはりフ
ラクトリーメタルからなる導電体層を形成しエツチング
加工を行なってゲート絶縁膜12およびゲート電極13
を形成する。次いでリンの低濃度イオン注入によりソー
ス・ドレインとすべき領域にN一層14を形成する(第
3図(a))。
In the figure, first, an oxide film 11 for element isolation is formed on a P-type silicon substrate 1 by the usual method as in FIG. A conductive layer made of a factory metal is formed and etched to form a gate insulating film 12 and a gate electrode 13.
form. Next, a N layer 14 is formed in the regions to be used as sources and drains by ion implantation of phosphorus at a low concentration (FIG. 3(a)).

続いてLPCVD法などによ、り5lo2層を堆積しR
IEエツチングを行なってゲート電極両側面に幅d1を
有する第1のサイドウオール5lot膜21を形成する
。次にAs高濃度にイオン注入すると、上記第1のサイ
ドウオールs t O2膜21  で覆われた領域以外
のソース・ドレイン領域のみにN 層16が形成される
(第3図(b))。したがって、サイドウオールSin
、膜21の幅d、を大きくとれば、N層16形成後のN
一層14Aの幅を大きくすることができる。
Next, a 5lo2 layer is deposited by LPCVD method etc.
IE etching is performed to form a first sidewall 5lot film 21 having a width d1 on both sides of the gate electrode. Next, when ions are implanted at a high concentration of As, an N layer 16 is formed only in the source/drain regions other than the region covered with the first sidewall s t O2 film 21 (FIG. 3(b)). Therefore, the sidewall Sin
, if the width d of the film 21 is set large, the N after the N layer 16 is formed.
The width of 14A can be further increased.

次に、第1のサイドウオール酸化膜21をエツチングに
より除去した後、再びLPCVD法などによ、り5iO
z層を堆積し、その厚さを制御することによjl、RI
Eによってdlよりも狭い幅d2をもつ第2のサイドウ
オール5i02膜22をゲート電極両側面に形成する。
Next, after removing the first sidewall oxide film 21 by etching, 5iO
jl, RI by depositing the z layer and controlling its thickness
A second sidewall 5i02 film 22 having a width d2 narrower than dl is formed on both sides of the gate electrode using E.

最後に、リフラクトリ−メタルを選択的に付着すること
によfiN層16の表面およびサイドウオール5loz
膜22で覆われていないN層14Aの表面ならびにゲー
ト電極13の表面をリフラクトリ−メタルからなる導電
体層23で覆う(第3図(C))。
Finally, the surface of the fiN layer 16 and the sidewalls 5loz are coated by selectively depositing refractory metal.
The surface of the N layer 14A that is not covered with the film 22 and the surface of the gate electrode 13 are covered with a conductive layer 23 made of refractory metal (FIG. 3(C)).

この場合、N″″層14Aの幅を、前述したようにホッ
トキャリア効果を充分防止できる程度に大きくしても、
トランジスタをオンさせた場合電流は導電体層23で覆
われたN″′″層14Aの表面を流れるため、N一層1
4Aそれ自体の比抵抗と幅の如何にかかわらず、充分に
低いオン抵抗をもつ、つまV)g□の劣化のないMOS
 FETを得ることができる。なお、導電体層23は、
リフラクトリ−メタルに限らず、例えばそのシリサイド
等でもよい。
In this case, even if the width of the N'''' layer 14A is made large enough to sufficiently prevent the hot carrier effect as described above,
When the transistor is turned on, current flows through the surface of the N'''' layer 14A covered with the conductor layer 23, so the N layer 1
4A MOS with sufficiently low on-resistance, regardless of its specific resistance and width, and without deterioration of V)g□
FET can be obtained. Note that the conductor layer 23 is
The material is not limited to refractory metal, and may be made of its silicide, for example.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明のMOS形電界効果トラン
ジスタによれば、ソース・ドレイン領域のゲート領域側
低濃度不純物領域上にも導電体層を設けたことにより、
トランジスタのglの低下を抑制しながらホットキャリ
ア効果を防止することができる。
As explained above, according to the MOS field effect transistor of the present invention, by providing a conductor layer also on the low concentration impurity region on the gate region side of the source/drain region,
Hot carrier effects can be prevented while suppressing a decrease in gl of the transistor.

また、本発明の製造方法によれば、第1のサイドウオー
ル絶縁膜をマスクとして高濃度不純物領域を形成した後
、より幅の狭い第2のサイドウオール絶縁膜をマスクと
して不純物領域上に導電体層を形成することによって、
上述したような構造を容易に実現できる。
Further, according to the manufacturing method of the present invention, after forming a high concentration impurity region using the first sidewall insulating film as a mask, a conductor is formed on the impurity region using the second narrower sidewall insulating film as a mask. By forming layers,
The structure as described above can be easily realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のLDD構造のMOS形電界効果トランジ
スタを示す断面図、第2図はその工程断面図、第3図は
本発明の一実施例を示す工程断面図でおる。 1・・・・P形シリコン基板、120.・、ゲ−トS 
i 02膜、13・・・・ゲート電極、14゜14A 
 ・・・・N一層、16・・・・N+層、21・・−・
第1のサイドウオール81(h膜、22拳・・・第2の
サイドウオール5lo2膜、23・・・・導電体層。 OD
FIG. 1 is a cross-sectional view showing a conventional MOS field effect transistor having an LDD structure, FIG. 2 is a process cross-sectional view thereof, and FIG. 3 is a process cross-sectional view showing an embodiment of the present invention. 1...P-type silicon substrate, 120.・, Gate S
i 02 film, 13...gate electrode, 14° 14A
...N 1 layer, 16...N+ layer, 21...-
First sidewall 81 (h film, 22 fist...second sidewall 5lo2 film, 23...conductor layer. OD

Claims (1)

【特許請求の範囲】 1、第1導電形の半導体基板上にゲート絶縁膜を介して
配置されたゲート電極と、ゲート電極を挾んで半導体基
板表面に配置された第1導電形と反対の第2導電形の不
純物領域からなるソース・ドレインとを備えたMOS形
電界効果トランジスタにおいて、第2導電形の不純物領
域は、ゲート電極から所定の距離をおいて配置された高
濃度不純物領域と、この第1の半導体領域とゲート電極
との境界部に配置された低濃度不純物領域とからなり、
かつ、ゲート電極の側面を覆うサイドウォール絶縁膜と
、このサイドウォール絶縁膜によつて覆われない低濃度
不純物領域表面および高濃度不純物領域表面を覆う導電
体層とを有することを特徴とするMOS形電界効果トラ
ンジスタ。 2、第1導電形の半導体基板上にゲート絶縁膜を介して
ゲート電極を形成する工程と、このゲート電極をマスク
として周辺の半導体基板表面に第1導電形と反対の第2
導電形の不純物をイオン注入する工程と、ゲート電極側
面に第1のサイドウォール絶縁膜を形成する工程と、第
1のサイドウォール絶縁膜およびゲート電極をマスクと
して周辺の半導体基板表面に第2導電形の不純物を高濃
度にイオン注入する工程と、ゲート電極の側面に第1の
サイドウォール絶縁膜より幅の狭い第2のサイドウォー
ル絶縁膜を形成する工程と、第2のサイドウォール絶縁
膜によつて覆われない第2導電形の不純物領域上に導電
体層を形成する工程とを含むことを特徴とするMOS形
電界効果トランジスタの製造方法。
[Claims] 1. A gate electrode disposed on a semiconductor substrate of a first conductivity type via a gate insulating film, and a gate electrode of a first conductivity type opposite to the first conductivity type disposed on the surface of the semiconductor substrate with the gate electrode in between. In a MOS field effect transistor having a source and a drain consisting of impurity regions of two conductivity types, the impurity region of the second conductivity type includes a high concentration impurity region disposed at a predetermined distance from the gate electrode, and a high concentration impurity region disposed at a predetermined distance from the gate electrode. consisting of a low concentration impurity region disposed at the boundary between the first semiconductor region and the gate electrode,
and a MOS comprising a sidewall insulating film that covers the side surface of the gate electrode, and a conductor layer that covers the surface of the low concentration impurity region and the surface of the high concentration impurity region that are not covered by the sidewall insulating film. type field effect transistor. 2. A step of forming a gate electrode on a semiconductor substrate of a first conductivity type via a gate insulating film, and using this gate electrode as a mask, forming a gate electrode of a second conductivity type opposite to the first conductivity type on the surface of the peripheral semiconductor substrate.
A step of ion-implanting a conductive type impurity, a step of forming a first sidewall insulating film on the side surface of the gate electrode, and a step of forming a second conductive film on the surface of the surrounding semiconductor substrate using the first sidewall insulating film and the gate electrode as a mask. a step of ion-implanting a shaped impurity at a high concentration; a step of forming a second sidewall insulating film narrower than the first sidewall insulating film on the side surface of the gate electrode; forming a conductor layer on the second conductivity type impurity region that is not covered by the MOS field effect transistor.
JP17664184A 1984-08-27 1984-08-27 Mos type field-effect transistor and manufacture thereof Pending JPS6154669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17664184A JPS6154669A (en) 1984-08-27 1984-08-27 Mos type field-effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17664184A JPS6154669A (en) 1984-08-27 1984-08-27 Mos type field-effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6154669A true JPS6154669A (en) 1986-03-18

Family

ID=16017129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17664184A Pending JPS6154669A (en) 1984-08-27 1984-08-27 Mos type field-effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6154669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500390A (en) * 1986-05-12 1989-02-09 プレッシー セミコンダクターズ リミテッド Improvements in transistors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500390A (en) * 1986-05-12 1989-02-09 プレッシー セミコンダクターズ リミテッド Improvements in transistors

Similar Documents

Publication Publication Date Title
US4935379A (en) Semiconductor device and method of manufacturing the same
US6163053A (en) Semiconductor device having opposite-polarity region under channel
JPH04269873A (en) Transistor provided with inverted silicide t-shaped gate structure
KR0140719B1 (en) Favrication method of mosfet
KR100752194B1 (en) Method for manufacturing semiconductor device
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
JP2001156290A (en) Semiconductor device
JP3057436B2 (en) Semiconductor device and manufacturing method thereof
JPS61160975A (en) Mos field effect transistor
US20020175380A1 (en) Cmos with a fixed charge in the gate dielectric
JPH07153952A (en) Semiconductor device and manufacture thereof
JPH0778977A (en) Semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPS6154669A (en) Mos type field-effect transistor and manufacture thereof
JPH0737991A (en) Semiconductor integrated circuit and its manufacture method
JPS63227059A (en) Semiconductor device and manufacture thereof
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPH02196434A (en) Manufacture of mos transistor
JPH01264265A (en) Semiconductor device and its manufacture
JPH07326739A (en) Insulated-gate field-effect transistor
KR960009991B1 (en) Field effect transistor manufacturing process
JPS61100975A (en) Junction type field-effect transistor
JP2001257346A (en) Semiconductor integrated circuit device
JPH07221301A (en) Insulated gate field-effect transistor and its manufacture