JPH07190738A - Interference measuring method - Google Patents

Interference measuring method

Info

Publication number
JPH07190738A
JPH07190738A JP5348014A JP34801493A JPH07190738A JP H07190738 A JPH07190738 A JP H07190738A JP 5348014 A JP5348014 A JP 5348014A JP 34801493 A JP34801493 A JP 34801493A JP H07190738 A JPH07190738 A JP H07190738A
Authority
JP
Japan
Prior art keywords
image receiving
image
receiving surface
interferometer
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5348014A
Other languages
Japanese (ja)
Other versions
JP3349235B2 (en
Inventor
Susumu Ariga
進 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP34801493A priority Critical patent/JP3349235B2/en
Publication of JPH07190738A publication Critical patent/JPH07190738A/en
Application granted granted Critical
Publication of JP3349235B2 publication Critical patent/JP3349235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To accurately measure the surface profile of an optical element by correcting the distorsion of an interference fringe based on a mapping relation between the images of marking points over a detected surface, which are projected to an image receiving surface, and ideal imaging points which have been linearized using a projection-magnifying power. CONSTITUTION:A master lens 2 on which coordinates forming a reference surface are marked as a reference, is installed in stead of a lens having a detected surface, and when the aforesaid master lens is illuminated by light from the light source 5 of an interferometer 1, marking point images a' are projected over an image receiving surface 4. These images are then photographed 10, are forwarded to a computer 11, and the polar coordinate positions of each image a' is determined, so that mapping relation over a circumference between each ideal imaging point b over the image receiving surface 4, which has been linearized using a magnifying power of a measuring optical system 3, and each aforesaid polar coordinate position, is thereby determined. After that, the lens 2 is replaced with the detected surface, and a reference surface 12 is installed, so that an interference fringe is thereby formed over the image receiving surface 4. At this time, the reference surface 12 is moved by a piezo 13, the profile of the detected surface is determined based on a moving relation between the reference surface 12 and the interference fringe, and profile data is rearranged based on a mapping relation between each point image a' and each ideal imaging point b, so that a distortion is thereby corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光学素子の面形状を高
精度に測定する干渉測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an interference measuring method for measuring the surface shape of an optical element with high accuracy.

【0002】[0002]

【従来の技術】従来、被検面の形状を測定する手段とし
て干渉計を用いた方法が知られている。その方法とし
て、例えば特開平4−48201号公報に記載される干
渉測定装置がある。上記発明は、干渉計により精度の良
い(設計形状に近く、鏡面である)被検面と参照面との
干渉縞を出し、被検面を傾けて平行直線上の干渉縞にす
る。ディストーションが無いときは、干渉縞は平行で等
間隔になるが、ディストーションがあるときは干渉縞に
歪みがでる。この時、被検面の傾きと、この干渉縞の歪
みとからディストーション量を求め、求められたディス
トーション量を補正値として被検面測定データの補正を
行うものである。
2. Description of the Related Art Conventionally, a method using an interferometer is known as a means for measuring the shape of a surface to be inspected. As the method, for example, there is an interference measuring device described in JP-A-4-48201. In the above invention, an interferometer produces an interference fringe between a surface to be inspected and a reference surface with high accuracy (which is close to the designed shape and is a mirror surface) and tilts the surface to be inspected to form an interference fringe on parallel straight lines. When there is no distortion, the interference fringes are parallel and evenly spaced, but when there is distortion, the interference fringes are distorted. At this time, the distortion amount is obtained from the inclination of the surface to be inspected and the distortion of this interference fringe, and the measured surface measurement data is corrected using the obtained distortion amount as a correction value.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記従
来技術においては以下のような問題点があり、被検面の
測定手段としては満足できるものではなかった。すなわ
ち、被検面が非球面の場合、被検面を傾けるとコマ収差
を発生するため、縞の歪みにディストーション以外の干
渉縞の変化が生じる。このため、被検面の測定データに
おいて、歪みを補正できなくなるという問題点があっ
た。
However, the above-mentioned conventional techniques have the following problems and are not satisfactory as the measuring means of the surface to be inspected. That is, when the surface to be inspected is an aspherical surface, coma aberration is generated when the surface to be inspected is tilted, so that the distortion of the fringes changes interference fringes other than distortion. Therefore, there is a problem that the distortion cannot be corrected in the measurement data of the surface to be inspected.

【0004】因って、本発明は上記従来技術の問題点に
鑑みてなされたもので、上記の影響を無くし、被検面の
測定データの歪みを補正することができる干渉測定方法
の提供を目的とする。
Therefore, the present invention has been made in view of the above-mentioned problems of the prior art, and provides an interferometric measuring method capable of eliminating the above influence and correcting the distortion of the measured data of the surface to be inspected. To aim.

【0005】[0005]

【課題を解決するための手段および作用】本発明は、光
源から射出された光束を2分し、一方の分割光束を参照
面に、他方の分割光束を被検面にそれぞれ入射させ、各
々の反射光を干渉させて得られた干渉縞から被検面の形
状を測定する干渉計を用い、マーキングされた被検面を
前記干渉計の受像面に投影し、その投影されたマーキン
グポイント像と干渉計の光学系の投影倍率により線型変
換された受像面上の理想結像点との写像関係から、前記
干渉縞の歪みを補正する方法である。
According to the present invention, a light beam emitted from a light source is divided into two, one divided light beam is made incident on a reference surface, and the other divided light beam is made incident on a surface to be inspected. Using an interferometer that measures the shape of the surface to be inspected from the interference fringes obtained by interfering the reflected light, project the marked surface to be inspected on the image receiving surface of the interferometer, and the projected marking point image This is a method of correcting the distortion of the interference fringes from the mapping relationship with the ideal image forming point on the image receiving surface which is linearly converted by the projection magnification of the optical system of the interferometer.

【0006】図1〜図3は本発明の干渉測定方法の概略
を示し、図1a,b,cは使用されるマスターレンズを
説明するもので、aは斜視図、bは平面図、cはX軸上
での断面図、図2は干渉計の受像面の正面図、図3はマ
スターレンズと受像面との関係の説明図である。
FIGS. 1 to 3 show the outline of the interference measuring method according to the present invention, and FIGS. 1a, 1b, 1c show the master lens used, in which a is a perspective view, b is a plan view, and c is a plan view. FIG. 2 is a front view of the image receiving surface of the interferometer, and FIG. 3 is an explanatory view of the relationship between the master lens and the image receiving surface.

【0007】本発明の干渉測定方法は一般的な干渉計に
適用される。図1a〜cに示す様に、マスターレンズの
基準面は被検面の中心を原点とした被検面上の座標に対
して同一となるものであり、予め座標位置の知られたマ
ーキングが多数の点および線として付与されている(図
1bでは同一円周上に点aとして、および円として図
示)。ここでは、被検面と同様な設計形状を持つマスタ
ーレンズの座標関係(x軸,y軸は被検面の周長上であ
り、z軸は被検面の原点の接平面に垂直である)とマー
キングポイントaを示している。図2には、干渉計の受
像面における座標上のマスターレンズのマーキングポイ
ントaのマーキングポイント像a′を点として、マーキ
ングポイントaに対する計算上の理想結像点bを×で示
している。
The interferometric method of the present invention is applied to a general interferometer. As shown in FIGS. 1a to 1c, the reference surface of the master lens is the same with respect to the coordinates on the surface to be measured with the center of the surface to be the origin, and there are many markings whose coordinate positions are known in advance. Are given as points and lines (in FIG. 1b, they are shown as points a and circles on the same circumference). Here, the coordinate relationship of the master lens having the same design shape as the test surface (x axis and y axis are on the circumference of the test surface, and z axis is perpendicular to the tangent plane of the origin of the test surface). ) And marking point a. In FIG. 2, the calculated ideal image formation point b with respect to the marking point a is shown by x, with the marking point image a ′ of the marking point a of the master lens on the coordinates on the image receiving surface of the interferometer as a point.

【0008】以下、本発明の作用を説明する。干渉計を
用いて被検面の形状を測定する際、被検面の代わりに図
1bに示す様なマーキングされたマスターレンズを取り
付ける。マスターレンズのマーキングポイントaは、干
渉計の光学系により干渉計の受像面に投影される。この
時、マスターレンズのマーキングポイントaは、図2に
示す様に、干渉計の受像面においてマーキングポイント
像a′の位置に写り、受像面においての座標位置がX,
Yで求められる。この時、マスターレンズのマーキング
ポイントaの原点Oの投影像を受像面の座標の原点O′
とする。また、マスターレンズのマーキングポイントa
の受像面における理想結像は、干渉計の光学系の倍率β
により、以下の
The operation of the present invention will be described below. When measuring the shape of the surface to be inspected using an interferometer, a marked master lens as shown in FIG. 1b is attached instead of the surface to be inspected. The marking point a of the master lens is projected on the image receiving surface of the interferometer by the optical system of the interferometer. At this time, as shown in FIG. 2, the marking point a of the master lens appears at the position of the marking point image a'on the image receiving surface of the interferometer, and the coordinate position on the image receiving surface is X,
Required by Y. At this time, the projection image of the origin O of the marking point a of the master lens is set to the origin O ′ of the coordinates of the image receiving surface.
And In addition, the marking point a of the master lens
The ideal image formation on the image receiving surface of is the magnification β of the optical system of the interferometer.
The following

【数1】 に線型変換される。[Equation 1] Is linearly converted to.

【0009】[0009]

【数1】[Equation 1]

【0010】また、a′は極座標で、a′(ρ′,
θ′)と表わされる。この時、マスターレンズのマーキ
ングポイントをa(ρi,θi)としてそれに対する受
像面のマーキングポイント像をa′(ρ′i,θ′i)
とする。また、a(ρi,θi)に対する受像面におけ
る計算上の理想結像点をb(ρ″i,θ″i)とする。
ここで、a′(ρ′i,θ′i)から(ρ″i,θ″
i)への写像関係を求めると、干渉計の光学系による歪
を受けたマーキングポイント位置から、歪を受けない計
算上の理想的な結像位置を求めることができる。このた
め、被検面を測定するとき、干渉計の光学系により得ら
れた受像面上の干渉縞の位置を、この写像関係、すなわ
ちa′(ρ′,θ′)からb(ρ″,θ″)に補正する
ことにより、干渉縞の歪みを補正することになる。
Further, a'is polar coordinates, and a '(ρ',
θ ′). At this time, the marking point of the master lens is a (ρi, θi), and the marking point image on the image receiving surface is a ′ (ρ′i, θ′i).
And Further, the calculated ideal image forming point on the image receiving surface for a (ρi, θi) is b (ρ ″ i, θ ″ i).
Here, from a '(ρ'i, θ'i) to (ρ ″ i, θ ″
When the mapping relationship to i) is obtained, it is possible to obtain a calculated ideal imaging position that is not distorted from the marking point position that is distorted by the optical system of the interferometer. Therefore, when the surface to be inspected is measured, the position of the interference fringes on the image receiving surface obtained by the optical system of the interferometer is determined by this mapping relationship, that is, from a '(ρ', θ ') to b (ρ ", By correcting to θ ″), the distortion of the interference fringes is corrected.

【0011】[0011]

【実施例1】図4〜図6は本実施例を示し、図4は本実
施例で用いる干渉測定計の概略構成図、図5a,b,c
は使用されるマスターレンズを説明するもので、aは断
面図、bは平面図、cは斜視図、図6は受像面の正面図
である。
Embodiment 1 FIGS. 4 to 6 show this embodiment, and FIG. 4 is a schematic configuration diagram of an interferometer used in this embodiment, FIGS.
Is a cross-sectional view, b is a plan view, c is a perspective view, and FIG. 6 is a front view of an image receiving surface.

【0012】図4において、1は非球面形状をもつ被検
面14(以下、被検面を有するレンズを被検面という)
を測定する干渉計で、被検面14の中心を原点とした被
検面14上の座標に対して、図5a〜cに示す様に、極
座標ρ1 ,ρ2 ,ρ3 上で多数の点aおよびρ2 上に線
となるように予め座標位置の知られたマーキングがされ
た被検面14と設計上同一な形状を有するマスターレン
ズ2と、被検面14と同様な設計形状を持つ参照面12
と、光源5と、照明用光学系6と、照明用光学系6によ
り被検面14および参照面12への照射された光の反射
光を受像面4に投影するための測定光学系3と、参照面
12と被検面14より形成された干渉縞を画像として取
り込む測定用カメラ10と、測定用カメラ10の受像面
4と、参照面12を微小量移動させるためのピエゾ13
と、ピエゾ13の移動を制御し、測定用カメラ10によ
りとらえられた干渉縞のデータを解析するためのコンピ
ュータ11とよりなる。
In FIG. 4, reference numeral 1 denotes an aspherical surface to be inspected 14 (hereinafter, a lens having an inspected surface is referred to as an inspected surface).
With an interferometer for measuring, as shown in FIGS. 5a to 5c, a large number of polar coordinates ρ 1 , ρ 2 , and ρ 3 are plotted with respect to the coordinates on the test surface 14 with the center of the test surface 14 as the origin. A master lens 2 having the same design as the test surface 14 in which the coordinate position is marked in advance so as to form a line on the points a and ρ 2 and a design shape similar to the test surface 14 are formed. Reference plane 12 to have
A light source 5, an illuminating optical system 6, and a measuring optical system 3 for projecting reflected light of the light irradiated onto the test surface 14 and the reference surface 12 by the illuminating optical system 6 onto the image receiving surface 4. , A measurement camera 10 that captures the interference fringes formed by the reference surface 12 and the test surface 14 as an image, an image receiving surface 4 of the measurement camera 10, and a piezo 13 for moving the reference surface 12 by a small amount.
And a computer 11 for controlling the movement of the piezo 13 and analyzing the data of the interference fringes captured by the measuring camera 10.

【0013】測定用光学系3は照明光を被検面14側と
参照面12側とに分け、それぞれの反射光を合わせるた
めのビームスプリッタ8と、被検面14と参照面12と
に対して照明および投影するための対物レンズ7と、ビ
ームスプリッタ8により合わされた照明光を受像面4に
投影するとともに参照面12および被検面14と結像関
係にするためのフォーカスレンズ系9とよりなる。
The measuring optical system 3 divides the illumination light into the test surface 14 side and the reference surface 12 side, and a beam splitter 8 for combining the respective reflected lights, and the test surface 14 and the reference surface 12 are provided. The objective lens 7 for illuminating and projecting the light and the focus lens system 9 for projecting the illumination light combined by the beam splitter 8 onto the image receiving surface 4 and for forming an image-forming relationship with the reference surface 12 and the test surface 14 Become.

【0014】図5a〜cに示すマスターレンズ2は、そ
のマーキングをマスターレンズ2の基準面を形成してい
る座標を基準とて行ったものである。マーキング方法
は、マスターレンズ2にスケールを当てて拡大投影器で
位置を計りながら行う。この時、図5aに示すごとく、
座標はマスターレンズ2の原点より直交座標x′,
y′,zをとる。マスターレンズ2の基準面は設計上、
x′方向に断面形状を表わす関数、z=f(x′)の関
係があるとし、マスターレンズ2上のマーキングポイン
トaは
The master lens 2 shown in FIGS. 5A to 5C is one in which the marking is performed with reference to the coordinates forming the reference surface of the master lens 2. The marking method is performed by applying a scale to the master lens 2 and measuring the position with a magnifying projector. At this time, as shown in FIG.
The coordinates are orthogonal coordinates x ′ from the origin of the master lens 2,
Take y'and z. The reference surface of the master lens 2 is designed,
Assuming that there is a relation of z = f (x '), which is a function expressing the cross-sectional shape in the x'direction, the marking point a on the master lens 2 is

【数2】 の関係がある。[Equation 2] Have a relationship.

【0015】[0015]

【数2】[Equation 2]

【0016】ただし、x′iはxiに対するx′座標の
位置であり、y′iはyiに対するy′座標の位置であ
る。xi,yiはマスターレンズ2面上の座標x,yの
マーキングポイント位置である。この関係は、同様にz
とy′とyiについても
Here, x'i is the position of the x'coordinate with respect to xi, and y'i is the position of the y'coordinate with respect to yi. xi and yi are marking point positions of coordinates x and y on the surface of the master lens 2. This relationship is likewise z
And y'and yi

【数3】 に示す様に成り立つ。[Equation 3] It holds as shown in.

【0017】[0017]

【数3】[Equation 3]

【0018】また、マーキングポイントaは、前述の様
に、極座標ρ1 ,ρ2 ,ρ3 上の多数の点で、またρ2
上の線としてマスターレンズ2の周長上の座標で表わさ
れ、円周上にマーキングされ、各円周上で番号(図5b
1 2 3 にて図示)が付されている。図6は、受像
面4の座標のマーキングポイント像a′(図6中に点で
示す)と理想結像点b(図6中に×で示す)である。こ
の理想結像点bは、計算上で求められるもので、受像面
4には表われないが、理解を容易にするために開示して
ある。
As described above, the marking points a are a large number of points on the polar coordinates ρ 1 , ρ 2 , ρ 3 , and ρ 2
Expressed as coordinates on the circumference of the master lens 2 as the upper line, marked on the circumference and numbered on each circumference (Fig. 5b).
Are shown as 1 , 2 , 3 ). FIG. 6 shows a marking point image a ′ (indicated by a dot in FIG. 6) and an ideal image forming point b (indicated by a cross in FIG. 6) at the coordinates of the image receiving surface 4. This ideal image formation point b is obtained by calculation and does not appear on the image receiving surface 4, but is disclosed for easy understanding.

【0019】以下、上記構成を用いての干渉測定方法を
説明する。干渉計1において、被検面14の形状を測定
するとき、被検面14の代わりにマスターレンズ2を取
り付ける。マスターレンズ2は、図5a〜cの関係より
マーキングされ、干渉計1の光源5と照明用光学系6と
ビームスプリッタ8と対物レンズ7により照明される。
この時、マスターレンズ2のマーキングポイントaは、
測定光学系3により、干渉計1の受像面4に投影され
る。すなわち、対物レンズ7とビームスプリッタ8とフ
ォーンスレンズ系9により受像面4に投影される。この
時、マーキングポイントが受像面4で鮮明に観察される
ように参照面12をはずしておく。
An interference measuring method using the above configuration will be described below. In the interferometer 1, when measuring the shape of the test surface 14, the master lens 2 is attached instead of the test surface 14. The master lens 2 is marked according to the relationship shown in FIGS. 5A to 5C and is illuminated by the light source 5, the illumination optical system 6, the beam splitter 8 and the objective lens 7 of the interferometer 1.
At this time, the marking point a of the master lens 2 is
It is projected onto the image receiving surface 4 of the interferometer 1 by the measurement optical system 3. That is, the image is projected onto the image receiving surface 4 by the objective lens 7, the beam splitter 8 and the forens lens system 9. At this time, the reference surface 12 is removed so that the marking point can be clearly observed on the image receiving surface 4.

【0020】マスターレンズ2のマーキングポイントa
は、図6に示す様に、受像面4においてマーキングポイ
ント像a′の位置に写り、測定用カメラ10によりマー
キングポイント像a′をとらえ、画像情報をコンピュー
タ11に送り座標位置(極座標位置)を求める。このと
き、マスターレンズのマーキングポイントaの原点の投
影像を受像面4の座標の原点とするため、各マーキング
ポイント像a′を原点に合わせて、極座標変換する。マ
ーキングポイントの同じ円周上に付された番号(図5b
における1 2 3 )により各位置関係を判断する。ま
た、マスターレンズ2のマーキングポイントaの受像面
4における理想結像点bは、測定光学系3の倍率βによ
り、
Marking point a of the master lens 2
As shown in FIG. 6, the image is captured at the position of the marking point image a ′ on the image receiving surface 4, the marking point image a ′ is captured by the measuring camera 10, and the image information is sent to the computer 11 to determine the coordinate position (polar coordinate position). Ask. At this time, since the projected image of the origin of the marking point a of the master lens is used as the origin of the coordinates of the image receiving surface 4, each marking point image a ′ is adjusted to the origin and polar coordinate conversion is performed. Numbers on the same circumference of the marking points (Fig. 5b
Each positional relationship is judged by 1 , 2 , and 3 ) in. Further, the ideal image formation point b on the image receiving surface 4 of the marking point a of the master lens 2 is determined by the magnification β of the measurement optical system 3.

【数1】の式で線型変換される。Linear conversion is performed using the equation (1).

【0021】a′は極座標で、a′(ρ′,θ′)と表
わされる。この時、マスターレンズ2のマーキングポイ
ントをa(ρi,θi)として、それに対する受像面の
マーキングポイント像をa′(ρ′i,θ′i)とす
る。また、a(ρi,θi)に対する理想結像点をb
(ρ″i,θ″i)とする。ここで、a′(ρ′i,
θ′i)をb(ρ″i,θ″i)に変換する関係、写像
G、(ρ″,θ″)=G(ρ′,θ′)を求める。
A'is a polar coordinate and is represented by a '(ρ', θ '). At this time, the marking point of the master lens 2 is a (ρi, θi), and the marking point image on the image receiving surface for it is a ′ (ρ′i, θ′i). In addition, the ideal image formation point for a (ρi, θi) is b
(Ρ ″ i, θ ″ i). Where a '(ρ'i,
A relation for converting θ′i) into b (ρ ″ i, θ ″ i), mapping G, (ρ ″, θ ″) = G (ρ ′, θ ′) is obtained.

【0022】写像Gをもとめるとき、ρi=一定とした
条件でρ′とθ′の変換ρ′=f(θ′)の関係で、ス
プライン補間法により、円周上に補間する。また、θ″
とθ′の変換θ″=g(θ′)の関係で、スプライン補
間法により、理想結像点bとマーキングポイント像a′
の円周上の写像関係を求める。さらに、同様の方法で、
θi=一定とした条件で、θ′とρ′の変換θ′=f
(ρ′)の関係で、スプライン補間法により、放射線上
に補間する。また、ρ″とθ′の変換ρ″=g(ρ′)
の関係でスプライン補間法により、理想結像点bとマー
キングポイント像aの放射線上の写像関係を求める。
When the mapping G is obtained, interpolation is carried out on the circumference by the spline interpolation method in accordance with the relationship of the transformation ρ '= f (θ') under the condition that ρi = constant. Also, θ ″
And θ ′ conversion θ ″ = g (θ ′), the ideal image forming point b and the marking point image a ′ by the spline interpolation method.
Find the mapping relation on the circumference of. Furthermore, in the same way,
Conversion of θ ′ and ρ ′ under the condition that θi = constant θ ′ = f
With the relation of (ρ ′), interpolation is performed on the radiation by the spline interpolation method. Also, the conversion of ρ ″ and θ ′ ρ ″ = g (ρ ′)
The relationship between the ideal imaging point b and the marking point image a on the radiation is obtained by the spline interpolation method.

【0023】次に、被検面14の形状を測定するため、
マスターレンズ2と被検面14とを交換する。また、参
照面12を取り付け、干渉計1により受像面4上に干渉
縞を形成させる。このとき、コンピュータ11によりピ
エゾ13を制御して参照面12を動かし、フリンジスキ
ャン法により、参照面12と干渉縞の移動関係により、
被検面14の形状を求める。この求められた形状をコン
ピュータ11により、マーキングポイント像と理想結像
点との写像関係より、形状データを並べかえて歪みを補
正する。
Next, in order to measure the shape of the test surface 14,
The master lens 2 and the test surface 14 are exchanged. Further, the reference surface 12 is attached, and the interferometer 1 forms an interference fringe on the image receiving surface 4. At this time, the computer 11 controls the piezo 13 to move the reference surface 12, and by the fringe scan method, the movement relationship between the reference surface 12 and the interference fringes
The shape of the test surface 14 is obtained. The computer 11 corrects the determined shape by rearranging the shape data based on the mapping relationship between the marking point image and the ideal image forming point.

【0024】本実施例によれば、マーキングポイント像
a′と理想結像点bの写像関係を求めるとき、スプライ
ン補間法を用いることにより、マーキングされていない
ところでも写像関係が求められるため、補正精度をあげ
ることができ、より測定精度をあげることができる。
According to the present embodiment, when the mapping relationship between the marking point image a'and the ideal image forming point b is obtained, the mapping relationship is obtained even in the unmarked area by using the spline interpolation method. The accuracy can be improved and the measurement accuracy can be further improved.

【0025】尚、本実施例では非球面レンズの干渉測定
方法について述べたが、これに限らず、球面レンズにつ
いても適用可能である。
Although the interference measuring method for the aspherical lens has been described in the present embodiment, the present invention is not limited to this and can be applied to a spherical lens.

【0026】[0026]

【実施例2】本実施例では、前記実施例1におけるθ′
をθ′≒θ″として、ρ′とρ″の関係を求めるとき、
ディストーションの式、ρ′=C3 (ρ″)3 +C
5 (ρ″)5 に最小二乗法により近似をして、ディスト
ーションの3次および5次の係数(C3 およびC5 )を
求め、この式を用いρ″とρ′の写像関係をもとめて補
正を行う。その他の構成および作用は前記実施例1と同
一であり、その説明を省略する。
[Embodiment 2] In this embodiment, θ ′ in the above Embodiment 1 is used.
When θ ′ ≈ θ ″ is set and the relationship between ρ ′ and ρ ″ is obtained,
Distortion formula, ρ ′ = C 3 (ρ ″) 3 + C
5 (ρ ″) 5 is approximated by the least-squares method to obtain the third and fifth-order coefficients (C 3 and C 5 ) of the distortion, and using this equation, find the mapping relation between ρ ″ and ρ ′. Make a correction. Other configurations and operations are the same as those in the first embodiment, and the description thereof will be omitted.

【0027】本実施例において、ρ′とρ″の関係を求
めるとき、ディストーションの式ρ′=C3 (ρ″)3
+C5 (ρ″)5 に、最小二乗法により近似をするが、
このときρ″iに対するρ′iに対して、ディストーシ
ョンの係数C3 およびC5 を求める。補正を行うとき
は、ディストーションの式を用い、ρ″に対するρ′の
解を求め、形状データを並びかえる。
In the present embodiment, when obtaining the relationship between ρ'and ρ ", the distortion equation ρ '= C 3 (ρ") 3
Approximate to + C 5 (ρ ″) 5 by the method of least squares,
At this time, distortion coefficients C 3 and C 5 are obtained for ρ′i with respect to ρ ″ i. When performing correction, a distortion equation is used to obtain a solution of ρ ′ with respect to ρ ″, and the shape data are arranged. Frog.

【0028】本実施例によれば、干渉縞の歪み具合を光
学的収差のディストーションとして、歪みの大きさを定
量的に評価でき、また、コマ収差等の非対称な収差によ
り受像面上のマーキングポイントの形状が変形して、座
標位置を求めるときに誤差が出るときでも、補正精度を
上げることができる。
According to the present embodiment, the degree of distortion can be quantitatively evaluated by using the degree of distortion of the interference fringes as the distortion of optical aberrations, and the marking point on the image receiving surface due to asymmetrical aberrations such as coma. Even when the shape is deformed and an error occurs when the coordinate position is obtained, the correction accuracy can be improved.

【0029】[0029]

【発明の効果】以上説明した様に、本発明に係る干渉測
定方法によれば、被検面の形状が非球面の場合でも、被
検面の形状および干渉計の測定光学系による干渉縞の歪
みを補正することができ、面形状測定の測定精度の向上
を図ることができる。
As described above, according to the interference measuring method of the present invention, even if the shape of the surface to be inspected is aspherical, the shape of the surface to be inspected and the interference fringes due to the measuring optical system of the interferometer The distortion can be corrected and the measurement accuracy of the surface shape measurement can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】a,b,cはそれぞれ本発明を示し、aは斜視
図、bは平面図、cは断面図である。
1A, 1B and 1C show the present invention, where a is a perspective view, b is a plan view, and c is a sectional view.

【図2】本発明を示す正面図である。FIG. 2 is a front view showing the present invention.

【図3】本発明を示す説明図である。FIG. 3 is an explanatory diagram showing the present invention.

【図4】実施例1を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing a first embodiment.

【図5】a,b,cはそれぞれ本実施例1を示し、aは
断面図、bは平面図、cは斜視図である。
5A, 5B and 5C show the first embodiment, a is a sectional view, b is a plan view, and c is a perspective view.

【図6】実施例1を示す正面図である。FIG. 6 is a front view showing the first embodiment.

【符号の説明】[Explanation of symbols]

1 干渉計 2 マスターレンズ 3 測定用光学系 4 受像面 5 光源 6 照明光学系 7 対物レンズ 8 ビームスプリッタ 9 フォーカスレンズ系 10 測定用カメラ 11 コンピュータ 12 参照面 13 ピエゾ 14 被検面 DESCRIPTION OF SYMBOLS 1 Interferometer 2 Master lens 3 Measurement optical system 4 Image receiving surface 5 Light source 6 Illumination optical system 7 Objective lens 8 Beam splitter 9 Focus lens system 10 Measurement camera 11 Computer 12 Reference surface 13 Piezo 14 Test surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源から射出された光束を2分し、一方
の分割光束を参照面に、他方の分割光束を被検面にそれ
ぞれ入射させ、各々の反射光を干渉させて得られた干渉
縞から被検面の形状を測定する干渉計を用い、マーキン
グされた被検面を前記干渉計の受像面に投影し、その投
影されたマーキングポイント像と干渉計の光学系の投影
倍率により線型変換された受像面上の理想結像点との写
像関係から、前記干渉縞の歪みを補正することを特徴と
する干渉測定方法。
1. Interference obtained by dividing a light beam emitted from a light source into two, making one divided light beam incident on a reference surface, and making the other divided light beam incident on a surface to be inspected, and interfering each reflected light beam. Using an interferometer that measures the shape of the surface to be inspected from the stripes, the marked surface to be inspected is projected onto the image receiving surface of the interferometer, and a linear type is created depending on the projected marking point image and the projection magnification of the optical system of the interferometer. An interference measuring method, characterized in that distortion of the interference fringes is corrected based on a mapping relationship with the converted ideal image forming point on the image receiving surface.
JP34801493A 1993-12-24 1993-12-24 Interference measurement method Expired - Fee Related JP3349235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34801493A JP3349235B2 (en) 1993-12-24 1993-12-24 Interference measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34801493A JP3349235B2 (en) 1993-12-24 1993-12-24 Interference measurement method

Publications (2)

Publication Number Publication Date
JPH07190738A true JPH07190738A (en) 1995-07-28
JP3349235B2 JP3349235B2 (en) 2002-11-20

Family

ID=18394159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34801493A Expired - Fee Related JP3349235B2 (en) 1993-12-24 1993-12-24 Interference measurement method

Country Status (1)

Country Link
JP (1) JP3349235B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071312A (en) * 2000-08-25 2002-03-08 Topcon Corp Irradiation location measuring device
JP2006317199A (en) * 2005-05-11 2006-11-24 Canon Inc Surface measuring method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002071312A (en) * 2000-08-25 2002-03-08 Topcon Corp Irradiation location measuring device
JP2006317199A (en) * 2005-05-11 2006-11-24 Canon Inc Surface measuring method and device

Also Published As

Publication number Publication date
JP3349235B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
USRE46012E1 (en) Non-contact probe
DK2914205T3 (en) Calibration device and method for calibrating a dental camera
US20050238237A1 (en) Method and apparatus for determining the shape and the local surface normals of specular surfaces
JP2003527582A (en) Phase profile measurement system with telecentric projector
JP5515432B2 (en) 3D shape measuring device
JPH06109454A (en) Method for measuring optical surface feature of mirror and device for determining said feature
US8879068B2 (en) Abscissa calibration jig and abscissa calibration method of laser interference measuring apparatus
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
JP4133753B2 (en) Method of measuring optical interference of detour surface and interferometer device for detour surface measurement
TWI388797B (en) Three - dimensional model reconstruction method and its system
CN113566740B (en) Ultra-precise measurement device and method based on microscopic stereo deflection beam technology
JPH0593888A (en) Method and device for determining optical axis of off-set mirror
CN111406197A (en) Transparent or translucent material curved surface contour detection system
KR20110065365A (en) Method and apparatus for measuring aspherical body
JP3352298B2 (en) Lens performance measuring method and lens performance measuring device using the same
JP3349235B2 (en) Interference measurement method
JP2009267064A (en) Measurement method and exposure apparatus
JP2009244227A (en) Light wave interference measuring method
JP2002206915A (en) Abscissa calibration method for facial shape measuring device and facial shape measuring device
CN117168357B (en) Method, device, equipment and medium for correcting aircraft shape scanning error
WO2010052895A1 (en) Alignment system, method and program for controlling the same, and measurement device
CN116839512B (en) Aircraft surface quality detection method
CN114594596B (en) Compensation of pupil aberration of objective lens
JP5618727B2 (en) Shape measuring method and shape measuring device
JP3863408B2 (en) Magnetic head slider inspection device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees