JP4133753B2 - Method of measuring optical interference of detour surface and interferometer device for detour surface measurement - Google Patents
Method of measuring optical interference of detour surface and interferometer device for detour surface measurement Download PDFInfo
- Publication number
- JP4133753B2 JP4133753B2 JP2003381718A JP2003381718A JP4133753B2 JP 4133753 B2 JP4133753 B2 JP 4133753B2 JP 2003381718 A JP2003381718 A JP 2003381718A JP 2003381718 A JP2003381718 A JP 2003381718A JP 4133753 B2 JP4133753 B2 JP 4133753B2
- Authority
- JP
- Japan
- Prior art keywords
- test surface
- starting
- interference
- interference fringe
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B9/00—Measuring instruments characterised by the use of optical techniques
- G01B9/02—Interferometers
- G01B9/02083—Interferometers characterised by particular signal processing and presentation
- G01B9/02085—Combining two or more images of different regions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2441—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Instruments For Measurement Of Length By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
本発明は、迂曲した被検面の形状を略全域に亘って測定するための迂曲面の光波干渉測定方法および迂曲面測定用の干渉計装置に関する。 The present invention relates to a light-wave interference measuring method of a detour surface for measuring the shape of a detoured test surface over substantially the entire area, and an interferometer device for detour surface measurement.
従来、被検面が干渉計装置の1回の測定可能範囲より大きい場合に用いられる技術として開口合成法が知られている。この方法は、隣接する部分が一部重なるような複数の小領域に被検面を分割してこの小領域ごとに測定を行ない、それぞれの測定結果をデータ処理した後、各測定結果を繋ぎ合せることによって被検面の全体形状を求める方法であり、対象となる被検面の形状やデータの処理方法の違いにより種々の開口合成法が提案されている(下記特許文献1〜3参照)。 Conventionally, an aperture synthesis method is known as a technique used when a surface to be measured is larger than a single measurable range of an interferometer device. In this method, the test surface is divided into a plurality of small areas such that adjacent portions partially overlap, the measurement is performed for each small area, each measurement result is processed, and then the measurement results are connected. Thus, various aperture synthesis methods have been proposed depending on the shape of the target test surface and the data processing method (see Patent Documents 1 to 3 below).
また、基準面および被検面をアライメントするためのアライメント光学系を備えた干渉計装置が知られている。アライメント光学系は、基準面および被検面で反射される測定光の戻り光をそれぞれアライメント光像(どちらも点状となる)として結像させるように構成されており、2つのアライメント光像が互いに一致するように被検面の傾きを調整することによって基準面および被検面を容易にアライメントすることが可能となる。 There is also known an interferometer device including an alignment optical system for aligning a reference surface and a test surface. The alignment optical system is configured to form the return light of the measurement light reflected by the reference surface and the test surface as an alignment light image (both are dotted), and the two alignment light images are It is possible to easily align the reference surface and the test surface by adjusting the inclination of the test surface so as to coincide with each other.
従来、このようなアライメント光学系により得られた2つのアライメント光像を表示装置の画面上に表示すると共に、表示画面に対応した座標系上において2つのアライメント光像の位置を特定し、その位置情報に基づき基準面および被検面を自動アライメントする技術が知られている(下記特許文献4参照)。 Conventionally, two alignment light images obtained by such an alignment optical system are displayed on the screen of the display device, and the positions of the two alignment light images are specified on a coordinate system corresponding to the display screen, A technique for automatically aligning a reference surface and a test surface based on information is known (see Patent Document 4 below).
ところで、被検面の起伏が大きかったり波状にうねっていたりするような場合には、被検面全域に平均的に干渉縞が発生するように基準面および被検面をアライメントしても、基準面に対する傾きが被検面の一部領域で急峻となるため、その急峻な部分に関しては発生する干渉縞の密度が高くなりすぎて撮像手段で解像可能な干渉縞が得られないことがある。このような急峻なうねりを持った(以下「迂曲した」ということがある)被検面を略全域に亘って測定するためには、基準面に対する被検面の傾きを何回か変えて被検面を撮像手段で解像可能な干渉縞が得られる程度の領域別に測定し、得られた各測定結果を開口合成法により繋ぎ合せることが必要となる。 By the way, if the undulation of the test surface is large or wavy, even if the reference surface and the test surface are aligned so that interference fringes are generated on the entire test surface, Since the inclination with respect to the surface becomes steep in a part of the test surface, the density of the generated interference fringes becomes too high for the steep portions, and interference fringes that can be resolved by the imaging means may not be obtained. . In order to measure a test surface having such a steep swell (hereinafter sometimes referred to as “detour”) over substantially the entire area, the test surface is changed by changing the inclination of the test surface with respect to the reference surface several times. It is necessary to measure the inspection surface for each region where interference fringes that can be resolved by the imaging means are obtained, and to connect the obtained measurement results by the aperture synthesis method.
これまで、放物面や球面のように被検面全域の傾斜角度分布が予め分かるような場合には、傾斜角度分布に応じて被検面の傾きを順次変えていくことにより、被検面全域の形状測定を行なうことが可能であった。しかし、被検面全域の傾斜角度分布を事前に知ることができないような迂曲形状の場合には、被検面の傾き調整はオペレータの経験に基づく判断に頼らざるを得なかった。このため、安定した測定結果が得られない、オペレータに多くの負担を強いる、測定時間が長くなるなどの問題があった。 Until now, when the inclination angle distribution of the entire test surface is known in advance, such as a paraboloid or a spherical surface, the test surface can be changed by sequentially changing the inclination of the test surface according to the inclination angle distribution. It was possible to measure the shape of the entire area. However, in the case of a detour shape in which the inclination angle distribution over the entire test surface cannot be known in advance, the tilt adjustment of the test surface has to rely on judgment based on the experience of the operator. For this reason, there are problems such as that a stable measurement result cannot be obtained, the operator is burdened with a lot of load, and the measurement time is long.
本発明は、このような事情に鑑みなされたものであり、迂曲した被検面を略全域に亘って容易に測定することができ、かつ安定した測定結果が得られる迂曲面の光波干渉測定方法および迂曲面測定用の干渉計装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to easily measure a detoured surface to be measured over substantially the entire area, and to obtain a stable measurement result. An object of the present invention is to provide an interferometer device for measuring a detour surface.
上記課題を解決するため本発明に係る迂曲面の光波干渉測定方法は、
基準面および被検面に測定光を照射して基準面から反射された参照光と被検面から反射された被検面光との干渉により生じる干渉縞の画像を得る干渉光学系と、前記基準面に対する前記被検面の傾き姿勢を調整するアライメント機構とを備えた干渉計装置を用いて、迂曲した前記被検面の略全域の形状を求める迂曲面の光波干渉測定方法において、
前記基準面に対する前記被検面の傾き姿勢を調整して、該被検面の全域測定の起点となる起点領域に対応した最初の起点干渉縞を発生させる起点干渉縞発生手順を実施した後に、
前記起点干渉縞に基づき前記起点領域の形状を求める起点干渉縞解析手順と、
前記起点領域の形状に基づき、該起点領域の周縁部を一部含む隣接領域の前記基準面に対する傾斜角度を算定する傾斜角度算定手順と、
前記隣接領域の前記基準面に対する前記傾斜角度が略0度となるように前記基準面に対する前記被検面の傾き姿勢を調整して、前記隣接領域に対応した隣接干渉縞を発生させる隣接干渉縞発生手順とを、
前記隣接領域を次の起点領域に前記隣接干渉縞を次の起点干渉縞に置き換えながら、置き換える度に繰り返し実施して前記被検面の領域別形状を順次求めるとともに、開口合成法によりこれら各領域別形状を繋ぎ合わせて前記被検面の測定領域内における略全域の形状を求めることを特徴とするものである。
In order to solve the above problems, a method for measuring a light wave interference of a detour surface according to the present invention is as follows:
An interference optical system that obtains an image of interference fringes caused by interference between the reference light reflected from the reference surface and the test surface light reflected from the test surface by irradiating the reference surface and the test surface with measurement light; In an interferometer apparatus that includes an alignment mechanism that adjusts an inclination posture of the test surface with respect to a reference surface, in a detoured surface light wave interference measurement method that obtains a shape of a substantially entire area of the detoured test surface,
After adjusting the inclination posture of the test surface with respect to the reference surface and performing a starting interference fringe generation procedure for generating a first starting interference fringe corresponding to a starting region that is a starting point of the entire area of the test surface,
Origin interference fringe analysis procedure for determining the shape of the origin region based on the origin interference fringes;
An inclination angle calculation procedure for calculating an inclination angle with respect to the reference plane of an adjacent area partially including a peripheral edge of the starting area based on the shape of the starting area;
An adjacent interference fringe that adjusts an inclination posture of the test surface with respect to the reference surface so that an inclination angle of the adjacent region with respect to the reference surface is approximately 0 degrees to generate an adjacent interference fringe corresponding to the adjacent region. The generation procedure
While replacing the adjacent interference fringes with the next starting interference fringes with the adjacent starting fringes, repeatedly performing each time the replacement is performed, and sequentially determining the shape of each area of the test surface, and each of these areas by the aperture synthesis method By connecting different shapes, the shape of substantially the entire region in the measurement region of the surface to be measured is obtained.
前記干渉計装置が、前記参照光および前記被検面光の各アライメント光像を得るアライメント光学系を備えたものである場合には、前記起点干渉縞発生手順において、
前記アライメント光学系の撮像面に対応した座標系上において前記被検面光の前記アライメント光像の分布範囲を求めるとともに、該分布範囲を複数の区域に分け該区域ごとに該アライメント光像が占める割合を算定し、該割合が最大となる区域内の該アライメント光像の重心を求め、該重心が前記参照光の前記アライメント光像と略重なるように前記基準面に対する前記被検面の傾き姿勢を調整して、前記最初の起点干渉縞を発生させるようにしてもよい。
When the interferometer device includes an alignment optical system that obtains alignment light images of the reference light and the test surface light, in the starting interference fringe generation procedure,
A distribution range of the alignment light image of the test surface light is obtained on a coordinate system corresponding to the imaging surface of the alignment optical system, and the distribution light is divided into a plurality of areas, and the alignment light image occupies each area. Calculating a ratio, obtaining a center of gravity of the alignment light image in an area where the ratio is maximum, and tilting the test surface with respect to the reference surface so that the center of gravity substantially overlaps the alignment light image of the reference light May be adjusted to generate the first starting interference fringes.
また、前記起点干渉縞および前記隣接干渉縞の画像に対して平滑化処理を施し、これら干渉縞の位置範囲を確定することが好ましい。 Further, it is preferable that a smoothing process is performed on the images of the starting interference fringes and the adjacent interference fringes to determine the position ranges of these interference fringes.
また、上記課題を解決するため本発明に係る迂曲面測定用の干渉計装置は、
基準面および被検面に照明光を照射して基準面から反射された参照光と被検面から反射された被検面光との光干渉により生じる干渉縞の画像を得る干渉光学系と、前記基準面に対する前記被検面の傾き姿勢を調整するアライメント機構とを備えた干渉計装置において、
前記基準面に対する前記被検面の傾き姿勢を調整して、該被検面の全域測定の起点となる起点領域に対応した最初の起点干渉縞を発生させる起点干渉縞発生手段と、
前記起点干渉縞に基づき前記起点領域の形状を求める起点干渉縞解析手段と、
前記起点領域の形状に基づき、該起点領域の周縁部を一部含む隣接領域の前記基準面に対する傾斜角度を算定する傾斜角度算定手段と、
前記隣接領域の前記基準面に対する前記傾斜角度が略0度となるように前記基準面に対する前記被検面の傾き姿勢を調整して、前記隣接領域に対応した隣接干渉縞を発生させる隣接干渉縞発生手段と、
前記隣接領域を次の起点領域に前記隣接干渉縞を次の起点干渉縞に置き換えながら、置き換える度に前記縞解析傾斜角度算定手段および前記隣接干渉縞発生手段による各処理を繰り返し実施させて前記被検面の領域別形状を順次求めるとともに、開口合成法により前記領域別形状を繋ぎ合わせて前記被検面の測定領域内における略全域の形状を求める縞解析演算手段とを備えてなることを特徴とするものである。
In order to solve the above problem, an interferometer device for measuring a detour surface according to the present invention includes:
An interference optical system for obtaining an image of interference fringes caused by optical interference between the reference light reflected from the reference surface and the test surface light reflected from the test surface by irradiating the reference surface and the test surface with illumination light; In an interferometer apparatus comprising an alignment mechanism that adjusts an inclination posture of the test surface with respect to the reference surface,
Adjusting the inclination posture of the test surface with respect to the reference surface, starting interference fringe generating means for generating a first starting interference fringe corresponding to a starting region serving as a starting point of the whole area measurement of the test surface;
Origin interference fringe analysis means for determining the shape of the origin region based on the origin interference fringes;
An inclination angle calculating means for calculating an inclination angle with respect to the reference plane of an adjacent area partially including a peripheral edge of the starting area based on the shape of the starting area;
An adjacent interference fringe that adjusts an inclination posture of the test surface with respect to the reference surface so that an inclination angle of the adjacent region with respect to the reference surface is approximately 0 degrees to generate an adjacent interference fringe corresponding to the adjacent region. Generating means;
While replacing the adjacent interference fringe with the next starting interference fringe with the adjacent starting area, the processing by the fringe analysis inclination angle calculating means and the adjacent interference fringe generating means is repeatedly performed each time the replacement is performed. And a fringe analysis calculation means for obtaining the shape of the entire surface within the measurement region of the surface to be examined by sequentially obtaining the shape of the surface to be examined and connecting the shapes of the regions by an aperture synthesis method. It is what.
本発明に係る迂曲面の光波干渉測定方法によれば、上記手順を実施することにより、迂曲した被検面を略全域に亘って容易に測定することが可能となるとともに安定した測定結果を得ることができる。 According to the optical interference measurement method for a detour surface according to the present invention, by performing the above-described procedure, it is possible to easily measure the detoured test surface over substantially the entire area and obtain a stable measurement result. be able to.
また、本発明に係る迂曲面測定用の干渉計装置によれば、上記構成を備えていることにより、迂曲した被検面を略全域に亘って自動的に測定することが可能となるとともに安定した測定結果を得ることができる。 Further, according to the interferometer device for measuring a detoured surface according to the present invention, by providing the above configuration, it is possible to automatically measure the detoured test surface over almost the entire area and to be stable. Measurement results can be obtained.
以下、本発明に係る実施形態について、図面を参照しながら詳細に説明する。
〈迂曲面測定用の干渉計装置〉
まず図1および図2に基づいて、本発明の一実施形態に係る迂曲面測定用の干渉計装置の構成について説明する。図1は本発明の一実施形態に係る迂曲面測定用の干渉計装置の概略構成図、図2は図1に示すコントローラの概略構成図である。なお、以下の説明では、図1における紙面内での水平方向をX方向と称するとともに、紙面内でX方向に垂直な方向をZ方向、紙面に垂直な方向をY方向と称する。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
<Interferometer device for detour surface measurement>
First, based on FIG. 1 and FIG. 2, the structure of the interferometer apparatus for detour surface measurement which concerns on one Embodiment of this invention is demonstrated. FIG. 1 is a schematic configuration diagram of an interferometer device for detour surface measurement according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of a controller shown in FIG. In the following description, the horizontal direction in FIG. 1 is referred to as the X direction, the direction perpendicular to the X direction in the paper is referred to as the Z direction, and the direction perpendicular to the paper is referred to as the Y direction.
図1に示す干渉計装置10は、レーザー光源等の可干渉距離の長い光源11を搭載したフィゾー型の干渉計装置であり、光源11から射出された光の進む順に、拡大レンズ13、ビームスプリッタ15,17、コリメータレンズ19、および基準板21を備えている。なお、図示されていないが基準板21には、干渉計装置10の光軸(不図示)に対する基準板21の傾斜角度を調整するための基準板アライメント機構と、基準板21を光軸方向に微動させるためのフリンジスキャンアダプタが設けられている。
An
被検体27は迂曲した被検面27aを有しており、被検面27aが基準板21の基準面21aと対向するように、また基準面21aと被検面27aとの間に所定の間隔が空くようにして、載置ステージ29上に載置されている。
The
なお、本実施形態においては、「迂曲した被検面」を次のように規定する。すなわち、被検面の全域に平均的に干渉縞が発生するように基準面と被検面をアライメントした場合において、撮像素子(例えば、CCD)上に結像された被検面の干渉縞画像にその撮像素子で解像可能な干渉縞の領域と共に、解像できない程度に細かい干渉縞の領域が現れるような被検面を、迂曲した被検面と称する。なお、撮像素子で解像できない程度に細かい干渉縞の領域とは、撮像素子が一般的なCCDである場合、およそ3画素中に縞が1本以上発生してサンプリング定理を満たすだけの標本点が得られないような領域を意味する。 In the present embodiment, the “detoured test surface” is defined as follows. That is, when the reference surface and the test surface are aligned so that the interference fringes are generated on the entire surface of the test surface on average, the interference fringe image of the test surface imaged on the image sensor (for example, CCD) A test surface in which an interference fringe area that is so fine that it cannot be resolved together with an interference fringe area that can be resolved by the imaging device is referred to as a detoured test surface. Note that the interference fringe area that is so fine that it cannot be resolved by the image sensor means that when the image sensor is a general CCD, one or more fringes are generated in approximately three pixels and the sampling point is sufficient to satisfy the sampling theorem. It means the area where cannot be obtained.
上記載置ステージ29は被検面27aのアライメント機構を構成する2段重ねのスイベルステージ31,33によって保持されており、2つのスイベルステージ31,33はXYステージ35を介して設置盤37上に配置されている。スイベルステージ31はXZ平面(XおよびZ方向に延びる平面)に沿って回動することにより、またスイベルステージ33はYZ平面(YおよびZ方向に延びる平面)に沿って回動することにより、基準面21aに対する被検面27aの傾き姿勢をそれぞれ変更するように構成されている。また、XYステージ35はXY平面(XおよびY方向に延びる平面)上において被検面27aを移動させるように構成されており、スイベルステージ31,33により傾き調整された際に生じる被検面27aの基準面21aに対するXY平面内の位置ずれを微調整できるようになっている。
The
なお、スイベルステージ31,33は各アクチュエータ32(一方のみ図示)によって、XYステージ35は各アクチュエータ36(一方のみ図示)によってそれぞれ駆動されるように構成されており、アクチュエータ32および36はドライバ53および55からの出力信号に基づきそれぞれ駆動されるようになっている。また、スイベルステージ31,33の各回動中心は、被検面27aの略中央部において互いに略重なるように構成されている。
The swivel stages 31 and 33 are configured to be driven by the actuators 32 (only one is shown), and the
また、干渉計装置10は、基準面21aから反射された参照光と被検面27aから反射された被検面光との干渉により生じる干渉縞の画像を得るための撮影レンズ43および撮像カメラ45と、参照光および被検面光の各アライメント光像を得るための結像レンズ39および面センサ41と、起点干渉縞発生手段,起点干渉縞解析手段,傾斜角度算定手段,隣接干渉縞発生手段および縞解析演算手段としての各種演算を実行するコンピュータを含むコントローラ50とを備えている。なお、コンピュータ内のメモリに格納されたプログラムによって上記5つの手段が構成されている。
In addition, the
また、図2に示すように上記コントローラ50は、後述する起点干渉縞発生手順,起点干渉縞解析手順,傾斜角度算定手順,隣接干渉縞発生手順をそれぞれ実施するための起点干渉縞発生指示部52,起点干渉縞解析部54,傾斜角度算定部56,隣接干渉縞発生指示部58と、縞解析演算手段としての演算を実施する縞解析演算部60とを備えている。なお、起点干渉縞解析部54,傾斜角度算定部56,縞解析演算部60は、起点干渉縞解析手段,傾斜角度算定手段,縞解析演算手段をそれぞれ構成しており、起点干渉縞発生指示部52および隣接干渉縞発生指示部58は、スイベルステージ31,33、アクチュエータ32、ドライバ53と共に、起点干渉縞発生手段および隣接干渉縞発生手段をそれぞれ構成している。
As shown in FIG. 2, the
干渉計装置10においては、光源11から射出された光が拡大レンズ13により発散されてビームスプリッタ15,17を透過する。ビームスプリッタ17を透過した発散光はコリメータレンズ19に入射され、コリメータレンズ19により平行光に変換されて射出される。コリメータレンズ19から射出された平行光は、基準板21の基準面21aでその一部が参照光として再帰反射されるとともに、基準板21を通過した残りが被検体27の被検面27aに照射される。迂曲した被検面27aで反射された光は広範囲に広がるが、その反射光のうち被検面27aの一部の領域から反射された光は被検面光として基準板21を透過し、基準面21aから反射された参照光と共に入射光路を逆行し、コリメータレンズ19を透過して集光されビームスプリッタ17に入射される。
In the
ビームスプリッタ17に入射された参照光および被検面光は、その一部がハーフミラー面17aで直角に反射され、撮影レンズ43により撮像カメラ45の撮像素子(CCD)上に被検面27aの干渉縞画像として結像される。一方、ビームスプリッタ17に入射された参照光および被検面光の残りはハーフミラー面17aを透過してビームスプリッタ15に達し、その一部がハーフミラー面15aで直角に反射され、結像レンズ39により面センサ41の撮像素子(CCD)上に参照光および被検面光の各アライメント光像を形成する。このように干渉計装置10では、ビームスプリッタ17、コリメータレンズ19、基準板21、撮影レンズ43、撮像カメラ45等により干渉光学系が構成され、ビームスプリッタ15、コリメータレンズ19、基準板21、結像レンズ39、面センサ41等によりアライメント光学系が構成されている。
A part of the reference light and the test surface light incident on the
被検面27aが略平面である場合には、撮像カメラ45の撮像素子上に結像された被検面27aの像中において、解像可能な干渉縞が被検面27aの略全域に亘って観察される。しかし、被検面27aが迂曲している場合には、被検面27aの一部の領域については基準面21aに対する傾きが大きくなるために解像できないような細かい干渉縞が現れてしまう。このため、被検面27aの略全域の形状を求めるためには、基準面21aに対する被検面27aの傾斜姿勢を順次変えることによって被検面27aの各領域に対応した解像可能な干渉縞を逐次得る必要がある。
When the
また、被検面27aが略平面である場合には、面センサ41の撮像素子上に形成される被検面光のアライメント光像は所定の径を有する点像となる。しかし、被検面27aが迂曲している場合には、被検面光は被検面27aの形状によって種々の方向に反射するため、この被検面光を結像レンズ39により集光しても、そのアライメント光像は被検面27aの領域ごとの傾斜角度分布に対応した拡がりを持ち、点状には結像されない。なお、基準面21aは高精度に平面であるため、参照光のアライメント光像は所定の径を有する点像となる。
When the
詳しくは後述するように干渉計装置10では、被検面27aの傾斜姿勢を順次変えることによって被検面27aの各領域に対応した解像可能な干渉縞が得られるようになっている。得られた被検面27aの領域別干渉縞はコントローラ50において縞解析されるとともに、隣接して互いに重なり合う部分に関しては開口合成法を用いて繋ぎ合わされ、これにより被検面27aの略全域の形状が求められる。また、得られた干渉縞の画像や各アライメント光像の画像、被検面27aの形状解析結果等は画像表示装置57の画面上に表示されるとともに、測定範囲の指定や表示画像の選択などの指示をキーボード、マウス等の入力装置59を介してオペレータが行なえるようになっている。
As will be described in detail later, in the
〈迂曲面の光波干渉測定方法〉
次に、本発明の一実施形態に係る迂曲面の光波干渉測定方法(以下「本実施形態方法」と称することがある)について説明する。本実施形態方法の要部は、以下に説明する起点干渉縞発生手順,起点干渉縞解析手順,傾斜角度算定手順および隣接干渉縞発生手順により構成される。
<Optical wave interference measurement method of detour surface>
Next, a detour surface lightwave interference measurement method (hereinafter also referred to as “the present embodiment method”) according to an embodiment of the present invention will be described. The main part of the method of this embodiment is composed of a starting interference fringe generation procedure, a starting interference fringe analysis procedure, a tilt angle calculation procedure, and an adjacent interference fringe generation procedure described below.
図3は本実施形態方法の起点干渉縞発生手順を同図(a)〜(d)の順に例示する図、図4は最初の起点干渉縞画像の一例を示す図、図5は本実施形態方法の起点干渉縞解析手順を同図(a)〜(d)の順に例示する図、図6は本実施形態方法の傾斜角度算定手順を例示する図である。なお、本実施形態方法は上述した干渉計装置10により実行されるもので、被検体27はディスク状の被検面27aを有するものとする。
FIG. 3 is a diagram illustrating the origin interference fringe generation procedure of the method of the present embodiment in the order of FIGS. 4A to 4D, FIG. 4 is a diagram illustrating an example of the first origin interference fringe image, and FIG. FIG. 6 is a diagram illustrating the starting interference fringe analysis procedure of the method in the order of FIGS. 6A to 6D, and FIG. 6 is a diagram illustrating the tilt angle calculation procedure of the method of the present embodiment. The method of the present embodiment is executed by the
(起点干渉縞発生手順)
この起点干渉縞発生手順は、基準面21aに対する被検面27aの傾き姿勢を調整して、被検面27aの全域測定の起点となる起点領域に対応した最初の起点干渉縞71(図4参照)を発生させるものであり、本実施形態方法では図3に例示した以下の手順により被検面27aの傾き姿勢を調整する。
(Starting interference fringe generation procedure)
In this starting point interference fringe generation procedure, the first starting point interference fringe 71 (see FIG. 4) corresponding to the starting point region serving as the starting point of the whole area measurement of the
すなわち図3に示すように、面センサ41の撮像面に対応した座標系上において、所定の閾値を超える光強度を測定した画素領域をアライメント光領域として、同図(a)に示すように被検面光のアライメント光像61および参照光のアライメント光像63の分布範囲を求め、同図(b)に示すようにこれらに外接する範囲確定用矩形65を設定する。
That is, as shown in FIG. 3, on the coordinate system corresponding to the imaging surface of the
次に、範囲確定用矩形65内を複数の矩形状の区域に分けこれらの区域ごとにアライメント光像61が占める割合を算定し、この割合が最大となる区域内のアライメント光像61の重心67を求める(同図(c))。そして、この重心67と参照光のアライメント光像63との位置関係に基づき、重心67が参照光のアライメント光像63と略重なるようにするために必要な、基準面21aに対する被検面27aの傾斜角度調整量を算定する。なお、これらの演算は、上記干渉計装置10では起点干渉縞発生指示部52においてなされる。
Next, the
次いで、算定された傾斜角度調整量に基づき、アライメント光像61の重心67が参照光のアライメント光像63と略重なるように基準面21aに対する被検面27aの傾き姿勢を調整して、図4に示すように最初の起点干渉縞71を発生させる。この傾き調整は、上記干渉計装置10においては、起点干渉縞発生指示部52からの指令によりドライバ53から駆動信号が出力されてアクチュエータ32が駆動され、このアクチュエータ32によりスイベルステージ31,33が駆動されることにより実行される。また、傾き調整がなされる際、コントローラ50からの指令によりドライバ55から駆動信号が出力されてアクチュエータ36が駆動され、このアクチュエータ36によりXYステージ35が駆動されることにより、傾き調整によって生じる被検面27aの基準面21aに対するXY平面内の位置ずれが微調整される。
Next, based on the calculated tilt angle adjustment amount, the tilt posture of the
(起点干渉縞解析手順)
この起点干渉縞解析手順は、上記起点干渉縞71に基づき、この起点干渉縞71に対応した起点領域の形状を求めるものであり、本実施形態方法では図5に例示した以下の手順により起点領域の形状を求める。なお、最初の起点干渉縞71が被検面27aのどの部分領域(起点領域)に対応しているのかについては、最初の起点干渉縞71が撮像された段階で判明する。すなわち、最初の起点干渉縞71が撮像された段階で起点領域の位置情報が得られるとともに、この起点領域の基準面21aに対する傾斜角度情報が上記傾斜角度調整量によって得られる。
(Starting interference fringe analysis procedure)
The starting interference fringe analysis procedure is to obtain the shape of the starting region corresponding to the starting
最初に上記起点領域の位置範囲を確定する。本実施形態方法では、起点干渉縞71の撮像倍率を2段階に変化させ、撮像倍率を小さくした段階では起点領域の重心位置を求め、撮像倍率を大きくした段階においてその位置範囲を確定する。なお、撮像倍率が小さい状態(例えば1倍)の標準画面領域73(図5参照)と撮像倍率を大きくした状態(例えば6倍)の拡大画面領域75(図5参照)との対応関係は予め求めておく。
First, the position range of the starting area is determined. In the method of the present embodiment, the imaging magnification of the starting
まず撮像倍率が小さい状態においてフリンジスキャン測定を実施し、これにより得られた起点干渉縞71の画像に対して平滑化処理(例えば平均化フィルタ処理)を施す。そして、平滑化処理を施した画像においてモジュレーションを求め、所定のモジュレーション閾値を超える高モジュレーション領域77についてその重心79を求める(図5(a))。
First, fringe scan measurement is performed in a state where the imaging magnification is small, and smoothing processing (for example, averaging filter processing) is performed on the image of the starting
次に、拡大画面領域75の中心81に対応する標準画面領域73の座標位置に、上記重心79が略重なるように被検面27aの位置を調整する。この位置調整は、上記干渉計装置10においては、起点干渉縞発生指示部52からの指令によりドライバ55から駆動信号が出力されてアクチュエータ36が駆動され、このアクチュエータ36によりXYステージ35が駆動されることにより実行される。
Next, the position of the
被検面27aの位置調整完了後、撮像倍率を大きくしてフリンジスキャン測定を実施し、これにより得られた起点干渉縞71の画像(図5(c))に対して平滑化処理を施す。そして、平滑化処理を施した画像においてモジュレーションを求め、所定のモジュレーション閾値を超える領域を起点領域に対応した起点画像領域83(図5(d))として、この起点画像領域83に対して平滑化処理前の画像から起点領域の形状を求める。このようにモジュレーションの値によって起点画像領域83を確定することにより、起点干渉縞71の画像信号中に混在する高周波ノイズを低減することができる。なお、上記干渉計装置10では、これらの演算は起点干渉縞解析部54においてなされる。
After the position adjustment of the
(傾斜角度算定手順)
この傾斜角度算定手順は、求められた起点領域の形状に基づき、この起点領域の周縁部を一部含む隣接領域の基準面21aに対する傾斜角度を算定するものであり、本実施形態方法では以下の手順により隣接領域の傾斜角度を求める。
(Tilt angle calculation procedure)
This inclination angle calculation procedure calculates the inclination angle with respect to the
すなわち図6に示すように、まず上記起点画像領域83が上記拡大画面領域75に占める割合を計算し、その割合に応じた分割数の矩形状の区域に拡大画面領域75を分割する(例えば、割合が80%以上であれば4分割、50%〜80%であれば9分割、10%〜50%であれば16分割する。図6は9分割した場合を例示している)。
That is, as shown in FIG. 6, first, the ratio of the
次に、分割された区域ごとに、各区域に占める起点画像領域83の割合を求め、この割合が最大となる区域を隣接領域に対応した対応区域として指定する。ただし、予め指定しておいた割合(例えば10%)を全ての区域において満たさない場合は、対応区域の指定は行なわず、最初の拡大画面領域75内における測定は終了する。
Next, for each divided area, the ratio of the starting
次いで、対応区域内に含まれる起点領域の形状に対してフィッティングする平面を最小2乗法により求め、この平面(以下「最小2乗平面」と称する)の傾き角度を計算し、この傾き角度を隣接領域の基準面21aに対する傾斜角度とする。なお、上記干渉計装置10では、これらの演算は傾斜角度算定部56においてなされる。
Next, a plane to be fitted to the shape of the starting area included in the corresponding area is obtained by the method of least squares, the inclination angle of this plane (hereinafter referred to as “the least square plane”) is calculated, and this inclination angle is adjacent. The inclination angle of the region with respect to the
(隣接干渉縞発生手順)
この隣接干渉縞発生手順は、求められた隣接領域の基準面21aに対する傾斜角度が略0度となるように基準面21aに対する被検面27aの傾き姿勢を調整して、隣接領域に対応した隣接干渉縞を発生させるものである。本実施形態方法では、上記最小2乗平面の傾き角度が略0度となるように基準面21aに対する被検面27aの傾き姿勢を調整して、隣接領域に対応した隣接干渉縞を発生させる。
(Procedure for generating adjacent fringes)
In this adjacent interference fringe generation procedure, the inclination posture of the
なお、この傾き調整は、上記干渉計装置10においては、隣接干渉縞発生指示部58からの指令によりドライバ53から駆動信号が出力されてアクチュエータ32が駆動され、このアクチュエータ32によりスイベルステージ31,33が駆動されることにより実行される。また、傾き調整がなされる際、コントローラ50からの指令によりドライバ55から駆動信号が出力されてアクチュエータ36が駆動され、このアクチュエータ36によりXYステージ35が駆動されることにより、傾き調整によって生じる被検面27aの基準面21aに対するXY平面内の位置ずれが微調整される。
In the
以下、上記隣接領域を次の起点領域に上記隣接干渉縞を次の起点干渉縞に置き換えながら、置き換える度に上記の起点干渉縞解析手順,傾斜角度算定手順および隣接干渉縞発生手順を繰り返し実施して被検面27aの上記拡大画面領域75内における領域別形状を順次求める。そして、開口合成法によりこれら各領域別形状を繋ぎ合わせて被検面27aの拡大画面領域75(これを最初の測定領域とする)内における略全域の形状を求める。
Thereafter, the above-described adjacent interference fringe analysis procedure, inclination angle calculation procedure and adjacent interference fringe generation procedure are repeated each time the adjacent region is replaced with the next starting point region and the adjacent interference fringes are replaced with the next starting point interference fringes. Thus, the area-specific shapes in the
なお、本実施形態方法では、求められた領域別形状を順次繋ぎ合わせていき、繋ぎ合わされた領域の大きさが予め指定された、上記拡大画面領域75の大きさに対する割合(例えば95%)を超えた時点で拡大画面領域75内の測定を終了する。また、求められた領域別形状を順次繋ぎ合わせていく際に、繋ぎ合わされる領域間の基準面21aに対する相対的な傾斜角度の違いによる傾き補正を行なう。また、上記干渉計装置10では、開口合成に関する演算は縞解析演算部60においてなされる。
In the method of the present embodiment, the obtained area-specific shapes are sequentially connected, and the ratio (for example, 95%) with respect to the size of the
次に、測定領域を移動する。本実施形態方法では、測定領域の移動は図7に例示する以下の手順で行なわれる。図7は測定領域の移動方法を例示する図である。 Next, the measurement area is moved. In the method of the present embodiment, the measurement region is moved by the following procedure illustrated in FIG. FIG. 7 is a diagram illustrating a method of moving the measurement area.
まず図7に示すように、上記標準画面領域73内において、最初の測定領域となる上記拡大画面領域75の位置範囲を求め、この拡大画面領域75の中心81の位置(図5(a)に示す高モジュレーション領域77の重心79に一致する)を求める。また、標準画面領域73内において、被検面27aの測定対象全域の範囲を指定する。ここでは、図7に示す円形の外側境界線85および内側境界線87で囲まれた範囲が測定対象全域として指定されている。
First, as shown in FIG. 7, in the
次に、図7に示す標準画面領域73内において、最初の測定領域となる拡大画面領域75と隣接する部分に、この拡大画面領域75と等しい大きさの矩形枠89を移動させた場合に、この矩形枠89の一部が拡大画面領域75と重なるようにするために必要な移動距離を求める。そして、標準画面領域73内において、この移動距離に等しい間隔の格子91,93(付番一部省略)を上記中心81の位置を起点として縦横に設定し、これらの格子91,93の交点95(付番一部省略)を各測定領域の中心とする。
Next, when a
次いで、被検体27を移動させることにより最初の測定領域から隣接する測定領域に順次移動し、移動する度に上述の起点干渉縞解析手順,傾斜角度算定手順および隣接干渉縞発生手順を繰り返し実施して被検面27aの各測定領域内における形状を順次求める。そして、開口合成法によりこれら各形状を繋ぎ合わせて被検面27aの測定対象全域における形状を求める。
Next, the subject 27 is moved to sequentially move from the first measurement region to the adjacent measurement region, and each time the
なお、測定領域を移動した際、その測定領域における最初の干渉縞は以下の手順によって得る。すなわち、移動する前の測定領域において、移動後の測定領域と重なる部分を特定し、この部分の形状に対してフィッティングする最小2乗平面の傾き角度を計算する。そして、この傾き角度が略0度となるように基準面21aに対する被検面27aの傾き姿勢を調整することにより、移動後の測定領域における最初の干渉縞を発生させる。
When the measurement area is moved, the first interference fringes in the measurement area are obtained by the following procedure. That is, in the measurement region before moving, a portion overlapping with the measurement region after moving is specified, and the inclination angle of the least square plane to be fitted to the shape of this portion is calculated. Then, by adjusting the inclination posture of the
なお、以上説明した態様においては、被検面27aの測定対象全域の大きさが干渉計装置10の1回の測定可能範囲(拡大画面領域75の大きさ)より大きいことを前提としている。測定対象全域の大きさが1回の測定可能範囲より小さい場合には、上述した測定範囲を移動させる手順は不要となる。
In the embodiment described above, it is assumed that the size of the entire measurement target area of the
また、上述の干渉計装置10はフィゾー型であるが、本発明はマイケルソン型等の等光路長型の干渉計装置にも適用することが可能である。
Further, although the above-described
10 干渉計装置
11 光源
13 拡大レンズ
15,17 ビームスプリッタ
15a,17a ハーフミラー面
19 コリメータレンズ
21 基準板
21a 基準面
27 被検体
27a 被検面
29 載置ステージ
31,33 スイベルステージ
32,36 アクチュエータ
35 XYステージ
37 設置盤
39 結像レンズ
41 面センサ
43 撮影レンズ
45 撮像カメラ
50 コントローラ
52 起点干渉縞発生指示部
53,55 ドライバ
54 起点干渉縞解析部
56 傾斜角度算定部
57 画像表示装置
58 隣接干渉縞発生指示部
59 入力装置
60 縞解析演算部
61 被検面光のアライメント光像
63 参照光のアライメント光像
65 範囲確定用矩形
67 被検面光のアライメント光像の重心
71 最初の起点干渉縞
73 標準画面領域
75 拡大画面領域
77 高モジュレーション領域
79 高モジュレーション領域の重心
81 拡大画面領域の中心
83 起点画像領域
85 外側境界線
87 内側境界線
89 矩形枠
91,93 格子
95 格子の交点
DESCRIPTION OF
Claims (4)
前記基準面に対する前記被検面の傾き姿勢を調整して、該被検面の全域測定の起点となる起点領域に対応した最初の起点干渉縞を発生させる起点干渉縞発生手順を実施した後に、
前記起点干渉縞に基づき前記起点領域の形状を求める起点干渉縞解析手順と、
前記起点領域の形状に基づき、該起点領域の周縁部を一部含む隣接領域の前記基準面に対する傾斜角度を算定する傾斜角度算定手順と、
前記隣接領域の前記基準面に対する前記傾斜角度が略0度となるように前記基準面に対する前記被検面の傾き姿勢を調整して、前記隣接領域に対応した隣接干渉縞を発生させる隣接干渉縞発生手順とを、
前記隣接領域を次の起点領域に前記隣接干渉縞を次の起点干渉縞に置き換えながら、置き換える度に繰り返し実施して前記被検面の領域別形状を順次求めるとともに、開口合成法によりこれら各領域別形状を繋ぎ合わせて前記被検面の測定領域内における略全域の形状を求めることを特徴とする迂曲面の光波干渉測定方法。 An interference optical system that obtains an image of interference fringes caused by interference between the reference light reflected from the reference surface and the test surface light reflected from the test surface by irradiating the reference surface and the test surface with measurement light; In an interferometer apparatus that includes an alignment mechanism that adjusts an inclination posture of the test surface with respect to a reference surface, in a detoured surface light wave interference measurement method that obtains a shape of a substantially entire area of the detoured test surface,
After adjusting the inclination posture of the test surface with respect to the reference surface and performing a starting interference fringe generation procedure for generating a first starting interference fringe corresponding to a starting region that is a starting point of the entire area of the test surface,
Origin interference fringe analysis procedure for determining the shape of the origin region based on the origin interference fringes;
An inclination angle calculation procedure for calculating an inclination angle with respect to the reference plane of an adjacent area partially including a peripheral edge of the starting area based on the shape of the starting area;
An adjacent interference fringe that adjusts an inclination posture of the test surface with respect to the reference surface so that an inclination angle of the adjacent region with respect to the reference surface is approximately 0 degrees to generate an adjacent interference fringe corresponding to the adjacent region. The generation procedure
While replacing the adjacent interference fringes with the next starting interference fringes with the adjacent starting fringes, repeatedly performing each time the replacement is performed, and sequentially determining the shape of each area of the test surface, and each of these areas by the aperture synthesis method A method for measuring a light wave interference of a detoured surface, wherein different shapes are connected to obtain a shape of a substantially entire area in a measurement region of the test surface.
前記起点干渉縞発生手順においては、
前記アライメント光学系の撮像面に対応した座標系上において前記被検面光の前記アライメント光像の分布範囲を求めるとともに、該分布範囲を複数の区域に分け該区域ごとに該アライメント光像が占める割合を算定し、該割合が最大となる区域内の該アライメント光像の重心を求め、該重心が前記参照光の前記アライメント光像と略重なるように前記基準面に対する前記被検面の傾き姿勢を調整して、前記最初の起点干渉縞を発生させることを特徴とする請求項1記載の迂曲面の光波干渉測定方法。 The interferometer device includes an alignment optical system for obtaining alignment light images of the reference light and the test surface light,
In the origin interference fringe generation procedure,
A distribution range of the alignment light image of the test surface light is obtained on a coordinate system corresponding to the imaging surface of the alignment optical system, and the distribution light is divided into a plurality of areas, and the alignment light image occupies each area. A ratio is calculated, a center of gravity of the alignment light image in an area where the ratio is maximum is obtained, and an inclination posture of the test surface with respect to the reference surface so that the center of gravity substantially overlaps the alignment light image of the reference light The method of claim 1, wherein the first starting interference fringe is generated to adjust the detour surface lightwave interference measurement method.
前記基準面に対する前記被検面の傾き姿勢を調整して、該被検面の全域測定の起点となる起点領域に対応した最初の起点干渉縞を発生させる起点干渉縞発生手段と、
前記起点干渉縞に基づき前記起点領域の形状を求める起点干渉縞解析手段と、
前記起点領域の形状に基づき、該起点領域の周縁部を一部含む隣接領域の前記基準面に対する傾斜角度を算定する傾斜角度算定手段と、
前記隣接領域の前記基準面に対する前記傾斜角度が略0度となるように前記基準面に対する前記被検面の傾き姿勢を調整して、前記隣接領域に対応した隣接干渉縞を発生させる隣接干渉縞発生手段と、
前記隣接領域を次の起点領域に前記隣接干渉縞を次の起点干渉縞に置き換えながら、置き換える度に前記縞解析傾斜角度算定手段および前記隣接干渉縞発生手段による各処理を繰り返し実施させて前記被検面の領域別形状を順次求めるとともに、開口合成法により前記領域別形状を繋ぎ合わせて前記被検面の測定領域内における略全域の形状を求める縞解析演算手段とを備えてなることを特徴とする迂曲面測定用の干渉計装置。 An interference optical system for obtaining an image of interference fringes caused by optical interference between the reference light reflected from the reference surface and the test surface light reflected from the test surface by irradiating the reference surface and the test surface with illumination light; In an interferometer apparatus comprising an alignment mechanism that adjusts an inclination posture of the test surface with respect to the reference surface,
Adjusting the inclination posture of the test surface with respect to the reference surface, starting interference fringe generating means for generating a first starting interference fringe corresponding to a starting region serving as a starting point of the whole area measurement of the test surface;
Origin interference fringe analysis means for determining the shape of the origin region based on the origin interference fringes;
An inclination angle calculating means for calculating an inclination angle with respect to the reference plane of an adjacent area partially including a peripheral edge of the starting area based on the shape of the starting area;
An adjacent interference fringe that adjusts an inclination posture of the test surface with respect to the reference surface so that an inclination angle of the adjacent region with respect to the reference surface is approximately 0 degrees to generate an adjacent interference fringe corresponding to the adjacent region. Generating means;
While replacing the adjacent interference fringe with the next starting interference fringe with the adjacent starting area, the processing by the fringe analysis inclination angle calculating means and the adjacent interference fringe generating means is repeatedly performed each time the replacement is performed. And a fringe analysis calculation means for obtaining the shape of the entire surface within the measurement region of the surface to be examined by sequentially obtaining the shape of the surface to be examined and connecting the shapes of the regions by an aperture synthesis method. Interferometer device for detour surface measurement.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003381718A JP4133753B2 (en) | 2003-11-11 | 2003-11-11 | Method of measuring optical interference of detour surface and interferometer device for detour surface measurement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003381718A JP4133753B2 (en) | 2003-11-11 | 2003-11-11 | Method of measuring optical interference of detour surface and interferometer device for detour surface measurement |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005147715A JP2005147715A (en) | 2005-06-09 |
JP4133753B2 true JP4133753B2 (en) | 2008-08-13 |
Family
ID=34691008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003381718A Expired - Fee Related JP4133753B2 (en) | 2003-11-11 | 2003-11-11 | Method of measuring optical interference of detour surface and interferometer device for detour surface measurement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4133753B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111406198A (en) * | 2020-02-24 | 2020-07-10 | 长江存储科技有限责任公司 | System and method for semiconductor chip surface topography metrology |
US11243067B2 (en) | 2020-02-24 | 2022-02-08 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
US11448499B2 (en) | 2020-02-24 | 2022-09-20 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
US11454491B2 (en) | 2020-02-24 | 2022-09-27 | Yangtze Memory Technologies Co., Ltd. | Systems having light source with extended spectrum for semiconductor chip surface topography metrology |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008046037A (en) * | 2006-08-18 | 2008-02-28 | Osaka Prefecture | Optical method and device for measuring angle/displacement |
JP5070370B2 (en) * | 2007-05-23 | 2012-11-14 | 株式会社ジェイテック | Ultraprecision shape measuring method and apparatus |
JP4494438B2 (en) * | 2007-06-15 | 2010-06-30 | 株式会社オプセル | Laser scanning interferometer |
US7847954B2 (en) * | 2008-05-15 | 2010-12-07 | Kla-Tencor Corporation | Measuring the shape and thickness variation of a wafer with high slopes |
JP5235591B2 (en) * | 2008-10-10 | 2013-07-10 | 富士フイルム株式会社 | Method for measuring transmitted wavefront of birefringent optical element |
WO2011032572A1 (en) * | 2009-09-18 | 2011-03-24 | Carl Zeiss Smt Gmbh | Method of measuring a shape of an optical surface and interferometric measuring device |
JP5483993B2 (en) * | 2009-10-20 | 2014-05-07 | キヤノン株式会社 | Interferometer |
CN102788563B (en) * | 2012-08-31 | 2014-09-10 | 中国科学院光电技术研究所 | Device and method for adjusting inclination of measured mirror in planar subaperture splicing measurement |
US9157868B2 (en) * | 2013-03-07 | 2015-10-13 | Kla-Tencor Corporation | System and method for reviewing a curved sample edge |
EP3186588B1 (en) * | 2014-08-28 | 2018-10-24 | Johnson & Johnson Vision Care Inc. | In-line inspection of ophthalmic device with auto-alignment system and interferometer |
CN106500590A (en) * | 2016-12-15 | 2017-03-15 | 宁夏共享模具有限公司 | A kind of laser interferometer interferoscope adjusts platform |
CN108955565B (en) * | 2018-07-11 | 2020-06-23 | 安徽大学 | Self-adaptive zero compensator space distance self-calibration method in free-form surface interferometer |
-
2003
- 2003-11-11 JP JP2003381718A patent/JP4133753B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111406198A (en) * | 2020-02-24 | 2020-07-10 | 长江存储科技有限责任公司 | System and method for semiconductor chip surface topography metrology |
CN111406198B (en) * | 2020-02-24 | 2021-02-19 | 长江存储科技有限责任公司 | System and method for semiconductor chip surface topography metrology |
US11243067B2 (en) | 2020-02-24 | 2022-02-08 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
US11448499B2 (en) | 2020-02-24 | 2022-09-20 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
US11454491B2 (en) | 2020-02-24 | 2022-09-27 | Yangtze Memory Technologies Co., Ltd. | Systems having light source with extended spectrum for semiconductor chip surface topography metrology |
US11562919B2 (en) | 2020-02-24 | 2023-01-24 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
US11796307B2 (en) | 2020-02-24 | 2023-10-24 | Yangtze Memory Technologies Co., Ltd. | Systems and methods for semiconductor chip surface topography metrology |
Also Published As
Publication number | Publication date |
---|---|
JP2005147715A (en) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4133753B2 (en) | Method of measuring optical interference of detour surface and interferometer device for detour surface measurement | |
KR102369831B1 (en) | Method for detecting a structure of a lithography mask and device for carrying out the method | |
JP3258385B2 (en) | Optical board inspection system | |
US7204596B2 (en) | Projector with tilt angle measuring device | |
JP5632650B2 (en) | Inspection system and method using multi-image phase shift analysis | |
JP6758765B2 (en) | Measurement method and measurement program | |
JP2004309240A (en) | Three-dimensional shape measuring apparatus | |
JP2016099306A (en) | Image measuring device and measuring device | |
JP2001108417A (en) | Optical shape measuring instrument | |
KR100663323B1 (en) | Three dimension measuring apparatus and measuring method of object using the same | |
JP6212314B2 (en) | Image measuring apparatus and program | |
JP2015108582A (en) | Three-dimensional measurement method and device | |
KR101826127B1 (en) | optical apparatus for inspecting pattern image of semiconductor wafer | |
JP2015152379A (en) | grazing incidence interferometer | |
JP3134852B2 (en) | Crystal distortion measuring device and crystal distortion measuring method | |
JP5955001B2 (en) | Aspherical shape measurement method, shape measurement program, and shape measurement device | |
JP3228458B2 (en) | Optical three-dimensional measuring device | |
JP2005147870A (en) | Light wave interference measuring method on winding surface, and interferometer device for winding surface measurement | |
JP2009244226A (en) | Pattern projection shape measuring device | |
KR100790706B1 (en) | Device for detecting focal lenghth of lenses | |
JP3863408B2 (en) | Magnetic head slider inspection device | |
TWI769545B (en) | Method for measuring a reflectivity of an object for measurement light and metrology system for carrying out the method | |
JP2005214807A (en) | Grid projection type moire device | |
JP2009180708A (en) | Method and apparatus for shape measurement | |
JP2010133939A (en) | Alignment system, method for controlling the same, program, and measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060719 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080501 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080515 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080602 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |