JPH07190541A - Absorption type refrigerator - Google Patents
Absorption type refrigeratorInfo
- Publication number
- JPH07190541A JPH07190541A JP5336007A JP33600793A JPH07190541A JP H07190541 A JPH07190541 A JP H07190541A JP 5336007 A JP5336007 A JP 5336007A JP 33600793 A JP33600793 A JP 33600793A JP H07190541 A JPH07190541 A JP H07190541A
- Authority
- JP
- Japan
- Prior art keywords
- liquid
- valve
- refrigerant
- absorption
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
Landscapes
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、冷凍能力の適性制御
を可能にした吸収式冷凍機に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an absorption refrigerating machine capable of appropriately controlling refrigerating capacity.
【0002】[0002]
【従来の技術】従来の吸収式冷凍機における冷凍能力の
調整は、冷媒液、または冷媒液を吸収している吸収液の
供給路に開閉弁を設けて成されており、使用条件に応じ
て精密に冷凍能力を適性制御することは困難であった。2. Description of the Related Art The refrigerating capacity of a conventional absorption refrigerating machine is adjusted by providing an opening / closing valve in a supply path of a refrigerant liquid or an absorbing liquid absorbing the refrigerant liquid. It was difficult to precisely control the refrigeration capacity.
【0003】[0003]
【発明が解決しようとする課題】しかるに、室内の空調
に吸収式冷凍機を使用する場合、燃費の低減と快適使用
性の観点から冷凍能力の精密な制御の必要性が増大して
いる。この発明の目的は、使用条件に応じて冷凍能力の
適性制御が容易にできる吸収式冷凍機の提供にある。However, when an absorption refrigerator is used for air conditioning in a room, the need for precise control of the refrigerating capacity is increasing from the viewpoint of reducing fuel consumption and comfortable use. An object of the present invention is to provide an absorption refrigerator that can easily control the appropriateness of the refrigerating capacity according to usage conditions.
【0004】[0004]
【課題を解決するための手段】この発明の吸収式冷凍機
では、冷媒を含む低濃度吸収液を沸騰させる再生器と、
該沸騰した吸収液を冷媒蒸気と高濃度吸収液に分離させ
る気液分離器と、前記分離した冷媒蒸気を凝縮させる凝
縮器と、該凝縮器で凝縮した液相冷媒の気化熱で冷却対
象を冷却する蒸発器と、前記気液分離器から供給された
高濃度吸収液に前記蒸発器で気化した冷媒を吸収させる
吸収器とを供給路で連結するとともに、吸収器と再生器
との間に液体ポンプを設けた吸収式冷凍機において、前
記液体ポンプと再生器との間の供給路、または凝縮器と
蒸発器との間の供給路の何れか一か所以上に通電量に応
じて液体流量が変化する電磁式比例制御弁を設け、該比
例制御弁への通電量の制御により冷凍能力を調整するこ
とを特徴とする。また請求項2に記載の構成では、上記
電磁式比例制御弁を二重効用形吸収式冷凍機に適用し
た。In the absorption refrigerator of the present invention, a regenerator for boiling a low-concentration absorption liquid containing a refrigerant,
A gas-liquid separator that separates the boiling absorption liquid into a refrigerant vapor and a high-concentration absorption liquid, a condenser that condenses the separated refrigerant vapor, and a vaporization heat of the liquid-phase refrigerant condensed in the condenser to cool the cooling target. An evaporator for cooling and an absorber for absorbing the refrigerant vaporized in the evaporator to the high-concentration absorbent supplied from the gas-liquid separator are connected by a supply path, and between the absorber and the regenerator. In an absorption refrigerating machine provided with a liquid pump, a liquid is supplied to one or more of a supply path between the liquid pump and the regenerator or a supply path between the condenser and the evaporator depending on the amount of electricity. An electromagnetic proportional control valve whose flow rate changes is provided, and the refrigerating capacity is adjusted by controlling the amount of electricity supplied to the proportional control valve. Further, in the configuration according to claim 2, the electromagnetic proportional control valve is applied to a double-effect absorption refrigerator.
【0005】[0005]
【発明の作用効果】請求項1または2に記載の吸収式冷
凍機では、電磁式比例制御弁への通電量で冷媒、冷媒の
一部を分離した高(中)濃度の吸収液、または冷媒を吸
収した低濃度の吸収液の流量を全開から全閉まで制御
し、冷凍能力を調整している。このため、使用状態に応
じて自動または手動操作による冷凍能力の精密な調節が
可能である。請求項3に記載の電磁式比例制御弁は、構
造が簡単で故障が生じにくく、長期間メンテナンスフリ
ーの運転ができる。請求項4に記載の電磁比例制御弁
は、定流量機能を有するので、通過流体の圧力変動があ
っても冷媒などの流量が一定に保たれる。この結果、冷
凍能力が安定する。請求項5に記載の電磁式比例制御弁
では、簡単な構造で流体の遮断も可能であり、冷凍能力
の調整範囲が拡大できる。請求項6に記載の電磁式比例
制御弁では、一般に腐食性の強い吸収液に対する耐久性
が向上できる。なお、電磁駆動体には磁性ステンレスを
使用する。According to the absorption refrigerating machine of the present invention, a refrigerant, a high (medium) concentration absorption liquid in which a part of the refrigerant is separated by the amount of electricity to the electromagnetic proportional control valve, or a refrigerant. The refrigerating capacity is adjusted by controlling the flow rate of the low-concentration absorption liquid that absorbed the water from full opening to full closing. Therefore, the refrigerating capacity can be precisely adjusted by automatic or manual operation according to the usage state. The electromagnetic proportional control valve according to the third aspect has a simple structure, is less likely to cause a failure, and can be maintenance-free operated for a long period of time. Since the electromagnetic proportional control valve according to the fourth aspect has a constant flow rate function, the flow rate of the refrigerant or the like can be kept constant even if the pressure of the passing fluid changes. As a result, the refrigerating capacity becomes stable. In the electromagnetic proportional control valve according to the fifth aspect, the fluid can be shut off with a simple structure, and the refrigerating capacity adjustment range can be expanded. In the electromagnetic proportional control valve according to the sixth aspect, durability against an absorbing liquid that is generally highly corrosive can be improved. It should be noted that magnetic stainless steel is used for the electromagnetic driver.
【0006】[0006]
【実施例】図1は、この発明の一実施例にかかる二重効
用形吸収式冷凍機を示す。バーナBで吸収液を加熱する
高温再生器1の上方に、縦型円筒形を呈する気液分離器
2を配置し、該気液分離器2の周囲に円環状断面を有す
る縦型の低温再生器3を設けている。該低温再生器3の
周部に縦型の吸収器4を配置し、吸収器4の周部で下方
に蒸発器5を設け、上方に凝縮器6を設置してある。1 shows a double-effect absorption refrigerator according to an embodiment of the present invention. Above the high temperature regenerator 1 that heats the absorbing liquid with the burner B, a vertical cylindrical gas-liquid separator 2 is arranged, and the vertical low temperature regeneration having an annular cross section around the gas-liquid separator 2 is arranged. The vessel 3 is provided. A vertical absorber 4 is arranged around the low temperature regenerator 3, an evaporator 5 is provided below the absorber 4 and a condenser 6 is provided above the absorber 4.
【0007】高温再生器1の上部は、冷媒蒸気と吸収液
の上昇流路7で気液分離器2の下部に連通し、気液分離
器2は、吸収液供給路8で低温再生器3の下部に連通し
ている。吸収液供給路8には、電磁式比例制御弁100
が装着されている。低温再生器3の上部に連通する気液
分離部9に、吸収器4の上部の吸収液散布口10を吸収
液供給路11で接続し、ポンプP付きの吸収液供給路1
2で吸収器4の下部に高温再生器1を接続してある。吸
収液供給路12には、電磁式比例制御弁100が装着さ
れている。The upper part of the high temperature regenerator 1 communicates with the lower part of the gas-liquid separator 2 through the ascending flow path 7 for the refrigerant vapor and the absorbing liquid, and the gas-liquid separator 2 uses the absorbing liquid supply path 8 for the low temperature regenerator 3. Communicates with the bottom of the. An electromagnetic proportional control valve 100 is provided in the absorbing liquid supply passage 8.
Is installed. The gas-liquid separating section 9 communicating with the upper part of the low temperature regenerator 3 is connected to the absorbent dispersion port 10 on the upper part of the absorber 4 by an absorbent supply path 11, and the absorbent supply path 1 with a pump P is connected.
At 2, the high temperature regenerator 1 is connected to the bottom of the absorber 4. An electromagnetic proportional control valve 100 is attached to the absorbent supply path 12.
【0008】低温再生器3から吸収器4への吸収液供給
路11には、吸収器4からの吸収液を加熱する低温熱交
換器19を設けている。また、気液分離器2から低温再
生器3への吸収液供給路8には、低温熱交換器19から
高温再生器1への吸収液を加熱する高温熱交換器20を
設けてある。気液分離器2の冷媒液受け部と凝縮器6と
を冷媒液供給路15で連通し、低温再生器3の気液分離
部9と凝縮器6とを冷媒蒸気供給路16で連通し、凝縮
器6の下部と蒸発器5の冷媒液散布具17とを冷媒液供
給路18で連通してある。冷媒液供給路18には、電磁
式比例制御弁100が装着されている。A low temperature heat exchanger 19 for heating the absorption liquid from the absorber 4 is provided in the absorption liquid supply path 11 from the low temperature regenerator 3 to the absorber 4. Further, a high temperature heat exchanger 20 for heating the absorption liquid from the low temperature heat exchanger 19 to the high temperature regenerator 1 is provided in the absorption liquid supply path 8 from the gas-liquid separator 2 to the low temperature regenerator 3. The refrigerant liquid receiving portion of the gas-liquid separator 2 and the condenser 6 are communicated with each other through the refrigerant liquid supply passage 15, and the gas liquid separation portion 9 of the low temperature regenerator 3 and the condenser 6 are communicated with each other through the refrigerant vapor supply passage 16. The lower part of the condenser 6 and the refrigerant liquid spraying tool 17 of the evaporator 5 are connected by a refrigerant liquid supply passage 18. An electromagnetic proportional control valve 100 is attached to the refrigerant liquid supply passage 18.
【0009】また、蒸発器5と吸収器4とは隔壁を設け
ず連通してある。吸収器4内の冷却コイル21を冷却水
供給源22に接続し、凝縮器6内の冷却コイル23を吸
収器4内の冷却コイル21に接続してある。蒸発器5内
の被冷却用コイル24と冷却対象25を熱運搬流体の循
環路26で接続してある。吸収液は、高温再生器1→気
液分離器2→低温再生器3→吸収器4→高温再生器1の
順に循環する。The evaporator 5 and the absorber 4 are communicated with each other without a partition wall. The cooling coil 21 in the absorber 4 is connected to the cooling water supply source 22, and the cooling coil 23 in the condenser 6 is connected to the cooling coil 21 in the absorber 4. The coil 24 to be cooled in the evaporator 5 and the object to be cooled 25 are connected by the circulation path 26 for the heat transfer fluid. The absorbing liquid circulates in the order of the high temperature regenerator 1 → gas-liquid separator 2 → low temperature regenerator 3 → absorber 4 → high temperature regenerator 1.
【0010】この吸収式冷凍機では、冷媒(水)を多量
に含んだ低濃度吸収液(臭化リチュウム水溶液)は、高
温再生器1で加熱されて吸収液に含まれた冷媒が沸騰
し、気液分離器2に入る。ここで冷媒が一部分離され、
中濃度となった吸収液は上昇流路7の出口に設けられた
気液分離傘71により気液分離器2の底に溜まる。また
冷媒は気液分離器2の側壁で凝縮し、下方に流下する。In this absorption refrigerator, a low-concentration absorption liquid (lithium bromide aqueous solution) containing a large amount of refrigerant (water) is heated in the high temperature regenerator 1 and the refrigerant contained in the absorption liquid boils. Enter the gas-liquid separator 2. Here, the refrigerant is partially separated,
The absorbing liquid having a medium concentration is collected at the bottom of the gas-liquid separator 2 by the gas-liquid separating umbrella 71 provided at the outlet of the ascending flow path 7. The refrigerant is condensed on the side wall of the gas-liquid separator 2 and flows downward.
【0011】気液分離器2内はほぼ大気圧となってお
り、低温再生器3内は70mmHgと低圧に維持されて
いるため、中濃度の吸収液は供給路8を通じて電磁式比
例制御弁100で流量制御されて低温再生器3の底部に
供給される。気液分離器2と低温再生器3とを区隔する
隔壁13は、気液分離器2内の冷媒蒸気で低温再生器3
内の吸収液を加熱するための伝熱壁となっており、隔壁
13の内面での凝縮により発生した冷媒液を隔壁13と
内筒14の間の冷媒液受け部に流下させる。Since the inside of the gas-liquid separator 2 is almost at atmospheric pressure and the inside of the low temperature regenerator 3 is maintained at a low pressure of 70 mmHg, the medium-concentration absorption liquid passes through the supply passage 8 and the electromagnetic proportional control valve 100. It is supplied to the bottom portion of the low temperature regenerator 3 after the flow rate is controlled. The partition wall 13 that separates the gas-liquid separator 2 and the low-temperature regenerator 3 is the refrigerant vapor in the gas-liquid separator 2 and is used as the low-temperature regenerator 3.
It serves as a heat transfer wall for heating the absorbing liquid therein, and causes the refrigerant liquid generated by the condensation on the inner surface of the partition wall 13 to flow down to the refrigerant liquid receiving portion between the partition wall 13 and the inner cylinder 14.
【0012】低温再生器内の中濃度の吸収液は、気液分
離器2の熱で再加熱されて再び沸騰し、低温再生器3の
上部の気液分離部9で冷媒の一部が気化して分離され
る。この結果、高濃度となった吸収液は供給路11を介
して吸収器4の上部に供給される。このとき高濃度吸収
液は供給路11に設けられた前記低温熱交換器19で冷
却されるとともに、前記供給路12内の低濃度吸収液を
加熱する。また、気液分離部9で分離された冷媒蒸気は
冷媒蒸気供給路16を介して凝縮器6に入り、冷却コイ
ル23で冷却され液化する。The medium-concentration absorption liquid in the low-temperature regenerator is reheated by the heat of the gas-liquid separator 2 and boiled again, and a part of the refrigerant is vaporized in the gas-liquid separation section 9 above the low-temperature regenerator 3. Are separated and separated. As a result, the absorbing liquid having a high concentration is supplied to the upper portion of the absorber 4 via the supply passage 11. At this time, the high-concentration absorbent is cooled by the low-temperature heat exchanger 19 provided in the supply path 11, and the low-concentration absorbent in the supply path 12 is heated. Further, the refrigerant vapor separated in the gas-liquid separation section 9 enters the condenser 6 via the refrigerant vapor supply passage 16, and is cooled and liquefied by the cooling coil 23.
【0013】前記凝縮器6内の液化冷媒は、供給路18
を介して電磁比例制御弁100で流量を要求冷凍能力に
応じて制御されながら、蒸発器5に供給される。蒸発器
5内は5mmHg程度の真空状態となっており、冷媒液
散布具17から被冷却コイル24に散布された冷媒は瞬
時に蒸発して被冷却コイル24から蒸発熱を奪う。これ
により冷却対象の冷却がなされる。蒸発した冷媒は高濃
度の吸収液に吸収されるため、蒸発器5(吸収器4)内
は低圧に維持される。この吸収時に発熱するため、吸収
器4には被冷却用コイル24が配され、発熱を外部に排
気して前記吸収を持続させている。冷媒を吸収して低濃
度となった吸収液は、液体ポンプPにより高温再生器1
へ循環される。この際、ポンプPと高温再生器1との間
に設けた電磁比例制御弁100により、帰還する低濃度
吸収液の流量が、設定された要求冷凍能力など運転条件
に応じて適性制御される。The liquefied refrigerant in the condenser 6 is supplied to the supply passage 18
It is supplied to the evaporator 5 via the electromagnetic proportional control valve 100 while controlling the flow rate according to the required refrigerating capacity. The inside of the evaporator 5 is in a vacuum state of about 5 mmHg, and the refrigerant sprayed from the refrigerant liquid spraying tool 17 to the cooled coil 24 instantly evaporates to remove the heat of evaporation from the cooled coil 24. As a result, the cooling target is cooled. Since the evaporated refrigerant is absorbed by the high-concentration absorption liquid, the inside of the evaporator 5 (absorber 4) is maintained at a low pressure. Since heat is generated during this absorption, the coil 4 to be cooled is arranged in the absorber 4, and the heat is exhausted to the outside to maintain the absorption. The absorbing liquid that has become a low concentration by absorbing the refrigerant is heated by the liquid pump P to the high temperature regenerator 1.
Is circulated to. At this time, the electromagnetic proportional control valve 100 provided between the pump P and the high temperature regenerator 1 appropriately controls the flow rate of the low-concentration absorbing liquid to be returned according to operating conditions such as the set required refrigerating capacity.
【0014】すなわち、この吸収式冷凍機は、高温再生
器1で吸収液から発生した冷媒蒸気を気液分離器2に送
って低温再生器3との熱交換により隔壁13の内面で凝
縮させ、気液分離器2から凝縮器6に冷媒液を送る。ま
た、低温再生器3で吸収液から発生した冷媒蒸気を気液
分離器2から凝縮器6に送る。そして、凝縮器6におい
て冷却コイル23の作用で冷媒蒸気を凝縮させ、凝縮器
6から蒸発器5に送った冷媒液を被冷却用コイル24の
作用で蒸発させ、蒸発器5から吸収器4に送った冷媒蒸
気を吸収液に吸収させ、その吸収による熱を冷却コイル
21の作用で取り出し、冷媒を循環させる。その結果、
冷却対象25からの入熱が、蒸発器5から吸収器4に送
られた後、冷却コイル21の作用で冷却水に付与されて
外部放出される。That is, in this absorption refrigerator, the refrigerant vapor generated from the absorption liquid in the high temperature regenerator 1 is sent to the gas-liquid separator 2 and is condensed on the inner surface of the partition wall 13 by heat exchange with the low temperature regenerator 3. The refrigerant liquid is sent from the gas-liquid separator 2 to the condenser 6. Further, the refrigerant vapor generated from the absorbing liquid in the low temperature regenerator 3 is sent from the gas-liquid separator 2 to the condenser 6. Then, in the condenser 6, the refrigerant vapor is condensed by the action of the cooling coil 23, and the refrigerant liquid sent from the condenser 6 to the evaporator 5 is vaporized by the action of the coil 24 to be cooled, and then from the evaporator 5 to the absorber 4. The sent refrigerant vapor is absorbed by the absorbing liquid, the heat due to the absorption is taken out by the action of the cooling coil 21, and the refrigerant is circulated. as a result,
The heat input from the cooling target 25 is sent from the evaporator 5 to the absorber 4, and then applied to the cooling water by the action of the cooling coil 21 and discharged to the outside.
【0015】図2は電磁式比例制御弁100の断面を示
す。電磁式比例制御弁100は、吸収液または冷媒液の
供給路を構成する管路101の外側に配された電磁コイ
ル102と、該電磁コイル102の内側の管路101内
に配された円環状磁性駆動体103と、前記管路101
の開口度合いを調整する絞り弁110と、該絞り弁11
0の弁体120と前記磁性駆動体103との間に介在さ
せたスプリング104とからなる。FIG. 2 shows a cross section of the electromagnetic proportional control valve 100. The electromagnetic proportional control valve 100 includes an electromagnetic coil 102 arranged outside a pipe line 101 that constitutes a supply line of an absorption liquid or a refrigerant liquid, and an annular ring arranged inside the pipe line 101 inside the electromagnetic coil 102. Magnetic driver 103 and the conduit 101
Throttle valve 110 for adjusting the opening degree of the throttle valve 11 and the throttle valve 11
It is composed of a zero valve body 120 and a spring 104 interposed between the magnetic drive body 103.
【0016】絞り弁110は、管路101に設けた円形
オリフィスからなる弁口111と、該弁口111に貫設
された弁体120とを備える。弁体120は、前記弁口
111の上流側に位置し、弁口111の開口度合いを調
整する逆円錐部121と、該逆円錐部121と連結棒1
22で一体に連結されるとともに前記弁口111の下流
に位置し、小オリフィス123付き受圧板124とで構
成される。弁体120は、流路の圧力が増大すると前記
受圧板124の上流側面および下流側面の圧力差の増大
により前記スプリング104を圧縮して図示上方に変位
し、逆円錐部121が弁口111の開口度合いを低減さ
せる定流量弁機能を有する。The throttle valve 110 includes a valve port 111 formed of a circular orifice provided in the pipe line 101, and a valve body 120 penetrating the valve port 111. The valve body 120 is located on the upstream side of the valve port 111, and has an inverted conical portion 121 for adjusting the opening degree of the valve port 111, the inverted conical portion 121 and the connecting rod 1.
The pressure receiving plate 124 with a small orifice 123 is integrally connected with the valve 22 and is located downstream of the valve port 111. When the pressure of the flow passage increases, the valve body 120 compresses the spring 104 due to the increase of the pressure difference between the upstream side surface and the downstream side surface of the pressure receiving plate 124 and is displaced upward in the drawing, and the inverted conical portion 121 causes the inverted conical portion 121 of the valve port 111 to move. It has a constant flow valve function to reduce the degree of opening.
【0017】上記電磁式比例制御弁100において、磁
性駆動体103は磁性ステンレス製、管路101、弁体
120、弁口111を形成するオリフィス板、およびス
プリング104は、それぞれステンレス製である。これ
は吸収液である臭化リチウムが強い腐食性を有すること
による。In the above electromagnetic proportional control valve 100, the magnetic driver 103 is made of magnetic stainless steel, and the conduit 101, the valve body 120, the orifice plate forming the valve port 111, and the spring 104 are made of stainless steel. This is because lithium bromide, which is the absorbing liquid, has strong corrosiveness.
【0018】図3は電磁式比例制御弁100の他の実施
例を示す。この実施例では、弁体120の連結棒122
と受圧板124との間がテーパー部125となってお
り、電磁コイル102の通電量を所定値以上としたと
き、磁性駆動体103が図示下方に変位してスプリング
104を介して弁体120を下方に押圧し、前記テーパ
ー部125が弁口111を閉鎖する。逆流が防止できる
ので新たな電磁弁を追加する必要がない。この構成によ
り、電磁式比例制御弁100は管路101を開閉する開
閉弁としても作用する。FIG. 3 shows another embodiment of the electromagnetic proportional control valve 100. In this embodiment, the connecting rod 122 of the valve body 120.
A taper portion 125 is formed between the pressure receiving plate 124 and the pressure receiving plate 124, and when the energization amount of the electromagnetic coil 102 is equal to or larger than a predetermined value, the magnetic drive body 103 is displaced downward in the drawing to move the valve body 120 via the spring 104. When pressed downward, the tapered portion 125 closes the valve port 111. Since backflow can be prevented, there is no need to add a new solenoid valve. With this configuration, the electromagnetic proportional control valve 100 also functions as an opening / closing valve that opens / closes the conduit 101.
【0019】上記実施例の吸収式冷凍機では、使用状態
に応じて要求される冷凍能力により各電磁式比例制御弁
への通電量を全開から全閉まで適宜制御し、中濃度吸収
液供給路8、低濃度吸収液供給路12、および冷媒液供
給路18の流量を最適に調整する。これにより吸引式冷
凍機の低燃費運転および最適冷凍運転が達成されるとと
もにポンプや温度変化による圧力変化があっても、流量
は制御された開度に応じて一定流量が確保できる。In the absorption refrigerating machine of the above embodiment, the amount of electricity supplied to each electromagnetic proportional control valve is appropriately controlled from fully open to fully closed according to the refrigerating capacity required in accordance with the use condition, and the medium concentration absorbent supply path is provided. 8, the flow rates of the low-concentration absorption liquid supply passage 12 and the refrigerant liquid supply passage 18 are optimally adjusted. As a result, a low fuel consumption operation and an optimum refrigeration operation of the suction type refrigerator are achieved, and a constant flow rate can be secured according to the controlled opening degree even if there is a pressure change due to a pump or temperature change.
【0020】上記実施例では、熱効率にすぐれた二重効
用形吸収式冷凍機について説明したが、電磁比例制御弁
100は、構造の簡単な(一重効用形)吸収式冷凍機に
も適用できることは当然である。なお、上記実施例で
は、吸収式冷凍機の3か所に電磁式比例制御弁100を
設けているが、冷凍機の使用目的に応じて冷凍能力の調
整があまり精密でなくてよいものには、何れか1か所ま
たは2か所のみに装着してもよい。In the above embodiment, the double effect type absorption refrigerator having excellent thermal efficiency has been described. However, the electromagnetic proportional control valve 100 can be applied to a simple structure (single effect type) absorption refrigerator. Of course. In the above-mentioned embodiment, the electromagnetic proportional control valve 100 is provided at three places in the absorption refrigerator, but if the refrigerating capacity does not need to be adjusted very precisely depending on the purpose of use of the refrigerator, It may be attached to any one or two places.
【図1】この発明の吸収式冷凍機の概念図である。FIG. 1 is a conceptual diagram of an absorption refrigerator according to the present invention.
【図2】電磁式比例制御弁の断面図である。FIG. 2 is a sectional view of an electromagnetic proportional control valve.
【図3】他の実施例にかかる電磁式比例制御弁の断面図
である。FIG. 3 is a sectional view of an electromagnetic proportional control valve according to another embodiment.
1 高温再生器 2 気液分離器 3 低温再生器 4 吸収器 5 蒸発器 6 凝縮器 8 吸収液供給路(流路) 11 吸収液供給路(流路) 18 冷媒液供給路(流路) 25 冷却対象 100 電磁式比例制御弁 102 電磁コイル 103 磁性駆動体 104 スプリング 110 絞り弁 120 弁体 1 High Temperature Regenerator 2 Gas-Liquid Separator 3 Low Temperature Regenerator 4 Absorber 5 Evaporator 6 Condenser 8 Absorbing Liquid Supply Channel (Flow Path) 11 Absorbing Liquid Supply Channel (Flow Path) 18 Refrigerant Liquid Supply Channel (Flow Path) 25 Cooling target 100 Electromagnetic proportional control valve 102 Electromagnetic coil 103 Magnetic driver 104 Spring 110 Throttle valve 120 Valve body
───────────────────────────────────────────────────── フロントページの続き (72)発明者 野邑 直人 名古屋市中川区福住町2番26号 リンナイ 株式会社内 (72)発明者 福知 徹 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 上西 勝彦 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Naoto Nomura, No. 26, Fukuzumi-cho, Nakagawa-ku, Nagoya City, No. 26, Rinnai Co., Ltd. (72) Toru Fukuchi, No. 1-2, Hirano-cho, Chuo-ku, Osaka City, Osaka Prefecture In Osaka Gas Co., Ltd. (72) Inventor Katsuhiko Uenishi 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka
Claims (6)
生器と、該沸騰した吸収液を冷媒蒸気と高濃度吸収液に
分離させる気液分離器と、前記分離した冷媒蒸気を凝縮
させる凝縮器と、該凝縮器で凝縮した液相冷媒の気化熱
で冷却対象を冷却する蒸発器と、前記気液分離器から供
給された高濃度吸収液に前記蒸発器で気化した冷媒を吸
収させる吸収器とを供給路で連結するとともに、吸収器
と再生器との間に液体ポンプを設けた吸収式冷凍機にお
いて、 前記液体ポンプと再生器との間の供給路、または凝縮器
と蒸発器との間の供給路の何れか一か所以上に通電量に
応じて液体流量が変化する電磁式比例制御弁を設け、該
比例制御弁への通電量をポンプや温度変化による圧力変
化があっても、流量は制御された開度に応じて一定流量
が確保するように制御することにより冷凍能力を調整す
ることを特徴とする吸収式冷凍機。1. A regenerator for boiling a low-concentration absorption liquid containing a refrigerant, a gas-liquid separator for separating the boiling absorption liquid into a refrigerant vapor and a high-concentration absorption liquid, and a condenser for condensing the separated refrigerant vapor. And an evaporator that cools the object to be cooled by the heat of vaporization of the liquid-phase refrigerant condensed in the condenser, and an absorption that absorbs the refrigerant evaporated in the evaporator into the high-concentration absorption liquid supplied from the gas-liquid separator In the absorption type refrigerator having a liquid pump provided between the absorber and the regenerator, which is connected to the regenerator with a supply path, a supply path between the liquid pump and the regenerator, or a condenser and an evaporator. An electromagnetic proportional control valve that changes the liquid flow rate according to the amount of electricity supplied is provided at any one or more of the supply paths between the two, and the amount of electricity supplied to the proportional control valve is changed by a pump or pressure change due to temperature change. Also, the flow rate is kept constant according to the controlled opening. Absorption chiller which is characterized by adjusting the cooling capacity by controlled so.
温再生器と、該沸騰した吸収液を冷媒蒸気と中濃度吸収
液に分離させる気液分離器と、該分離した中濃度吸収液
を再沸騰させ冷媒蒸気と高濃度吸収液とを分離させると
同時に前記気液分離器内の冷媒蒸気を液化させる低温再
生器と、前記気液分離器および低温再生器で分離した冷
媒を凝縮させる凝縮器と、該凝縮器で凝縮した液相冷媒
の気化熱で冷却対象を冷却する蒸発器と、低温再生され
た高濃度吸収液に前記蒸発器で気化した冷媒を吸収させ
る吸収器とを供給路で連結するとともに、吸収器と高温
再生器との間に液体ポンプを設けた二重効用形吸収式冷
凍機において、 液体ポンプと高温再生器との間の供給路、気液分離器と
低温再生器との間の供給路、または凝縮器と蒸発器との
間の供給路の何れか一か所以上に通電量に応じて液体流
量が変化する電磁式比例制御弁を設け、該比例制御弁へ
の通電量をポンプや温度変化による圧力変化があって
も、流量は制御された開度に応じて一定流量が確保され
るように制御することにより冷凍能力を調整することを
特徴とする吸収式冷凍機。2. A high-temperature regenerator for boiling a low-concentration absorption liquid containing a refrigerant, a gas-liquid separator for separating the boiling absorption liquid into a refrigerant vapor and a medium-concentration absorption liquid, and the separated middle-concentration absorption liquid. A low-temperature regenerator that re-boils to separate the refrigerant vapor and the high-concentration absorption liquid and at the same time liquefy the refrigerant vapor in the gas-liquid separator, and a condenser that condenses the refrigerant separated in the gas-liquid separator and the low-temperature regenerator. Supply path for an evaporator, an evaporator for cooling a cooling target by heat of vaporization of the liquid-phase refrigerant condensed by the condenser, and an absorber for absorbing the refrigerant evaporated by the evaporator in the high-concentration absorption liquid regenerated at low temperature In a double-effect absorption refrigerator with a liquid pump installed between the absorber and the high-temperature regenerator, the supply path between the liquid pump and the high-temperature regenerator, the gas-liquid separator and the low-temperature regeneration Between the condenser and the evaporator, or between the condenser and the evaporator An electromagnetic proportional control valve that changes the liquid flow rate according to the amount of electricity supplied is provided at any one or more of the supply passages, and the amount of electricity supplied to the proportional control valve can be changed even if there is a pressure change due to a pump or temperature change. Is an absorption refrigerating machine, wherein the refrigerating capacity is adjusted by controlling so that a constant flow rate is secured according to a controlled opening degree.
式比例制御弁は、供給路の外側に配された電磁コイル
と、該電磁コイルの内側の前記供給路内に配された磁性
駆動体と、前記供給路の開口度合いを調整する絞り弁
と、該絞り弁の弁体と前記磁性駆動体との間に介在させ
たスプリングとからなる吸収式冷凍機。3. The electromagnetic proportional control valve according to claim 1, wherein the electromagnetic proportional control valve has an electromagnetic coil arranged outside the supply passage, and a magnetic driver arranged inside the supply passage inside the electromagnetic coil. An absorption refrigerator comprising: a throttle valve for adjusting the opening degree of the supply passage; and a spring interposed between the valve body of the throttle valve and the magnetic drive body.
設けた弁口と、該弁口上流側に位置し弁口の開口度合い
を調整する弁体と、該弁体と一体に連結されるとともに
前記弁口の下流に位置したオリフィス付き受圧板とから
なり、供給路の圧力が増大すると前記受圧板の上流側面
および下流側面の圧力差の増大により前記スプリングを
圧縮して前記弁体が弁口の開口度合いを低減させる定流
量弁である吸収式冷凍機。4. The throttle valve according to claim 3, wherein the throttle valve is provided with a valve opening, a valve element located upstream of the valve opening for adjusting the opening degree of the valve opening, and integrally connected with the valve element. And a pressure receiving plate with an orifice located downstream of the valve port, and when the pressure in the supply path increases, the pressure difference between the upstream side surface and the downstream side surface of the pressure receiving plate increases to compress the spring to compress the valve body. Is an absorption refrigerator that is a constant flow valve that reduces the degree of opening of the valve port.
コイルへの通電量の調整により、受圧板、弁体または両
者の連結部分が前記弁口を全閉し、ポンプや温度変化に
よる圧力変化があっても、流量は制御された開度に応じ
て一定流量を確保する開閉弁を兼ねた吸収式冷凍機。5. The throttle valve according to claim 4, wherein the pressure receiving plate, the valve body, or a connecting portion between the two fully closes the valve opening by adjusting the amount of electricity supplied to the electromagnetic coil. Even if there is a change, the flow rate is an absorption refrigerator that also functions as an on-off valve that ensures a constant flow rate according to the controlled opening.
板、弁体、両者の連結部分、弁口を形成する部材、およ
びスプリングはステンレス製である吸収式冷凍機。6. The absorption refrigerator according to claim 4, wherein the magnetic drive body, the pressure receiving plate, the valve body, a connecting portion between the two, a member forming a valve opening, and a spring are made of stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5336007A JP2659331B2 (en) | 1993-12-28 | 1993-12-28 | Absorption refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5336007A JP2659331B2 (en) | 1993-12-28 | 1993-12-28 | Absorption refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07190541A true JPH07190541A (en) | 1995-07-28 |
JP2659331B2 JP2659331B2 (en) | 1997-09-30 |
Family
ID=18294735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5336007A Expired - Fee Related JP2659331B2 (en) | 1993-12-28 | 1993-12-28 | Absorption refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2659331B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58117084A (en) * | 1981-12-30 | 1983-07-12 | Fujitsu Ltd | Recognizing system of manuscript |
JPS6113483A (en) * | 1984-06-29 | 1986-01-21 | Nec Home Electronics Ltd | Optical disk cassette |
JPS63172076A (en) * | 1987-01-07 | 1988-07-15 | Yamada Mitsue | In-line type magnet valve |
JPH0560420A (en) * | 1991-09-02 | 1993-03-09 | Osaka Gas Co Ltd | Absorption refrigerating machine |
-
1993
- 1993-12-28 JP JP5336007A patent/JP2659331B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58117084A (en) * | 1981-12-30 | 1983-07-12 | Fujitsu Ltd | Recognizing system of manuscript |
JPS6113483A (en) * | 1984-06-29 | 1986-01-21 | Nec Home Electronics Ltd | Optical disk cassette |
JPS63172076A (en) * | 1987-01-07 | 1988-07-15 | Yamada Mitsue | In-line type magnet valve |
JPH0560420A (en) * | 1991-09-02 | 1993-03-09 | Osaka Gas Co Ltd | Absorption refrigerating machine |
Also Published As
Publication number | Publication date |
---|---|
JP2659331B2 (en) | 1997-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0886530A (en) | Absorption type water cooling and heating machine | |
JP2659331B2 (en) | Absorption refrigerator | |
KR0177718B1 (en) | Ammonia absorptive cooler/heater | |
JP3209927B2 (en) | Absorption refrigeration equipment | |
JP3443100B2 (en) | Absorption refrigerator and method of operating the same | |
JPS6113884Y2 (en) | ||
JP2650654B2 (en) | Absorption refrigeration cycle device | |
KR19990029907A (en) | Absorption Chiller | |
JPS6135890Y2 (en) | ||
JP2538424B2 (en) | Single-double-effect absorption refrigerator | |
JPS6135891Y2 (en) | ||
JPH109707A (en) | Absorption type refrigerating device | |
KR960005669B1 (en) | Double effective absorption type refrigerator | |
JP2618192B2 (en) | Absorption refrigeration cycle device | |
JP3315349B2 (en) | solenoid valve | |
JPH0424368Y2 (en) | ||
JP2951245B2 (en) | Cooling and heating system using absorption refrigeration system | |
JPH11281187A (en) | Absorption refrigerating machine | |
JP3113195B2 (en) | Bleeding device for absorption refrigeration system | |
JP3408116B2 (en) | Absorption refrigeration equipment | |
JPS6113888Y2 (en) | ||
JP3031847B2 (en) | Absorption air conditioner | |
JP2898202B2 (en) | Absorption cooling system | |
JPH06323682A (en) | Double effect absorptive refrigerat | |
JPH09329369A (en) | Absorption refrigerating plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |