JPH0560420A - Absorption refrigerating machine - Google Patents

Absorption refrigerating machine

Info

Publication number
JPH0560420A
JPH0560420A JP22139691A JP22139691A JPH0560420A JP H0560420 A JPH0560420 A JP H0560420A JP 22139691 A JP22139691 A JP 22139691A JP 22139691 A JP22139691 A JP 22139691A JP H0560420 A JPH0560420 A JP H0560420A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
coolant
section
refrigerating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22139691A
Other languages
Japanese (ja)
Inventor
Ryuichiro Kawakami
隆一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP22139691A priority Critical patent/JPH0560420A/en
Publication of JPH0560420A publication Critical patent/JPH0560420A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To miniaturize an evaporator that is provided with a heat exchanging section to exchange heat with a liquid that is to be cooled and an object of cooling and an absorption refrigerating machine that is provided with a coolant transporting channel for transporting the coolant from a condenser to the evaporator without requiring a coolant circulation pump and lower their cost. CONSTITUTION:The end section of the evaporator of a coolant transporting channel 7 is formed as a coolant spreading section 7a that spreads the coolant to a heat exchanging section 4a. And an absorption refrigerating machine is constituted that is provided with a coolant spreading volume control means that is constituted of a solenoid proportional valve 8 which changes the volume of the coolant spread to the heat exchanging section 4a from this coolant spreading section 7a according to the refrigeration load, degree of opening control device 9, and detection system 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は吸収式冷凍機に於ける凝
縮器及び蒸発器の構成に関するものであり、さらに詳細
には、冷却対象の被冷却液との熱交換をおこなう熱交換
部を備えた蒸発器と、凝縮器から前記蒸発器へ冷媒を冷
媒搬送ポンプにより搬送する冷媒搬送路とを備えた吸収
式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condenser and an evaporator in an absorption refrigerating machine, and more particularly to a heat exchanging section for exchanging heat with a liquid to be cooled. The present invention relates to an absorption refrigerating machine provided with an evaporator provided with the evaporator and a refrigerant transfer path for transferring a refrigerant from a condenser to the evaporator by a refrigerant transfer pump.

【0002】[0002]

【従来の技術】この種吸収式冷凍機は、図2に示すよう
に吸収器2、再生器3(図示するものは高温再生器3a
及び低温再生器3bを備えている。)、蒸発器4及び凝
縮器5を備えて構成されている。ここで、凝縮器5から
蒸発器4までの冷媒の移動は、凝縮器下部に設けられる
凝縮器冷媒溜まり5aから蒸発器4に接続される冷媒搬
送路7を設けるとともに、この冷媒搬送路7に冷媒搬送
ポンプP2を配設して、この冷媒搬送ポンプP2により
おこなわれている。さらに、蒸発器4においては、その
下部域が蒸発器冷媒溜まり4bとして形成されるととも
に、この蒸発器冷媒溜まり4bの上部側に熱交換部4a
(被冷却液としての冷水循環部)が設けられている。こ
の熱交換部4aにおいて、冷媒がその蒸発により被冷却
液と熱交換をする(被冷却液は冷却される。)。また、
前述の熱交換部4aに対して、その上部に冷媒散布部4
0aを設けた冷媒循環路40が設けられており、この冷
媒循環路40に冷媒循環ポンプP3を介装して、前述の
蒸発器冷媒溜まり4bに溜まった冷媒を熱交換部4aに
導いて蒸発を起こさせている。
2. Description of the Related Art As shown in FIG. 2, an absorption refrigerator of this type includes an absorber 2 and a regenerator 3 (the one shown in the figure is a high temperature regenerator 3a).
And a low temperature regenerator 3b. ), An evaporator 4 and a condenser 5. Here, the movement of the refrigerant from the condenser 5 to the evaporator 4 is performed by providing the refrigerant carrier path 7 connected to the evaporator 4 from the condenser refrigerant reservoir 5a provided in the lower part of the condenser, and in the refrigerant carrier path 7. The refrigerant transfer pump P2 is provided and the operation is performed by the refrigerant transfer pump P2. Further, in the evaporator 4, the lower region thereof is formed as an evaporator refrigerant reservoir 4b, and the heat exchange portion 4a is provided on the upper side of the evaporator refrigerant reservoir 4b.
(Cold water circulation unit as liquid to be cooled) is provided. In the heat exchange section 4a, the refrigerant exchanges heat with the liquid to be cooled due to its evaporation (the liquid to be cooled is cooled). Also,
Above the heat exchange section 4a, the refrigerant distribution section 4 is provided above the heat exchange section 4a.
0a is provided in the refrigerant circulation path 40, and the refrigerant circulation pump 40 is provided in the refrigerant circulation path 40 to guide the refrigerant accumulated in the evaporator refrigerant reservoir 4b to the heat exchange section 4a for evaporation. Is causing

【0003】[0003]

【発明が解決しようとする課題】こういった従来技術に
おいて、基本的には前述の熱交換部への冷媒散布量は、
冷媒搬送ポンプによる冷媒搬送量によって決まる。即
ち、全負荷状態においては冷媒搬送ポンプにより搬送さ
れてきた冷媒の量だけ、散布がおこなわれるとともに、
蒸発器により蒸発が起こりバランスが保たれているので
ある。しかしながら、冷凍機が部分付加状態で運転され
る場合、冷媒の一部が無効となる。従ってこの無効とな
った冷媒液を滞留させるために前記の蒸発器冷媒溜りが
必要とされたのであり、この蒸発器冷媒溜りの冷媒液を
熱交換部に再循環するために前述の冷媒循環ポンプ及び
循環路が必要とされるのである。ここで、この冷媒循環
ポンプ及び循環路は、吸収式冷凍機の小型化の障害とな
るとともに、コスト的にも無視できないものであり、さ
らに冷媒循環ポンプは高い補起動力を必要とする。そこ
で本発明の目的は、冷媒循環ポンプを必要とせず、小型
で、低コストの吸収式冷凍機を得ることにある。
In such a prior art, basically, the amount of refrigerant sprayed to the heat exchange section is
It is determined by the amount of refrigerant conveyed by the refrigerant conveying pump. That is, in the full load state, only the amount of the refrigerant carried by the refrigerant carrying pump is sprayed,
Evaporation is caused by the evaporator and the balance is maintained. However, when the refrigerator is operated in the partial addition state, a part of the refrigerant becomes invalid. Therefore, the evaporator refrigerant pool is required to retain the invalid refrigerant liquid, and the refrigerant circulation pump described above is used to recirculate the refrigerant liquid in the evaporator refrigerant pool to the heat exchange section. And a circuit is needed. Here, the refrigerant circulation pump and the circulation path hinder the downsizing of the absorption chiller and cannot be ignored in terms of cost, and the refrigerant circulation pump requires a high auxiliary starting force. Therefore, an object of the present invention is to obtain a compact and low-cost absorption refrigerating machine that does not require a refrigerant circulation pump.

【0004】[0004]

【課題を解決するための手段】この目的を達成するため
の本発明による吸収式冷凍機の特徴構成は、冷媒搬送路
の蒸発器側端部を、熱交換部に冷媒を散布する冷媒散布
部として形成するとともに、冷媒散布部から熱交換部へ
の冷媒散布量を、冷凍負荷に応じて変更する冷媒散布量
制御手段を設けたことにあり、その作用・効果は次の通
りである。
In order to achieve this object, the absorption refrigerating machine according to the present invention has a characteristic structure in which an end portion on the evaporator side of a refrigerant transfer path is provided with a refrigerant distribution section for distributing a refrigerant to a heat exchange section. In addition to the above, there is provided a refrigerant spray amount control means for changing the amount of refrigerant sprayed from the refrigerant spray part to the heat exchange part according to the refrigeration load, and the operation and effect thereof are as follows.

【0005】[0005]

【作用】つまり、この吸収式冷凍機においては、冷媒搬
送路を介して凝縮器から蒸発器へ送られる冷媒が、直接
冷媒散布部より熱交換部に散布されて蒸発する。さら
に、この散布量は冷媒散布量制御手段により量的制御を
受け、冷凍負荷に見合ったものとされる。ここで冷凍負
荷の一例を挙げると、被冷却液としての冷水の蒸発器出
口側の温度情報を挙げることができる(この温度が目標
温度より掛け離れている場合が冷凍負荷が高く、逆の場
合が冷凍負荷が低い。)。そして、本願の構成において
は、冷媒の滴下量が蒸発器に於ける冷媒の蒸発量に見合
ったものとされるため、実質的には滴下された冷媒がほ
とんど蒸発することとなる。
In other words, in this absorption refrigerating machine, the refrigerant sent from the condenser to the evaporator via the refrigerant conveying path is directly sprayed from the refrigerant spraying section to the heat exchanging section for evaporation. Further, the sprayed amount is quantitatively controlled by the refrigerant sprayed amount control means, and is made to correspond to the refrigeration load. An example of the refrigerating load is temperature information of the outlet side of the cold water as the liquid to be cooled, which is higher than the target temperature, and the refrigerating load is high, and vice versa. The refrigeration load is low.). In addition, in the configuration of the present application, the amount of the dropped refrigerant is set to be commensurate with the amount of the evaporated refrigerant in the evaporator, so that the dripped refrigerant is substantially evaporated.

【0006】[0006]

【発明の効果】結果、無効な冷媒が蒸発器に残留するこ
とが避けられるため、蒸発器冷媒溜まりに溜まる冷媒を
蒸発器内で再循環させるための冷媒循環ポンプ及び循環
路を設ける必要がなくなる。その結果、吸収式冷凍機の
小型化・コストダウン及び補起動力の低減が可能となっ
た。
As a result, ineffective refrigerant is prevented from remaining in the evaporator, so that it is not necessary to provide a refrigerant circulation pump and a circulation path for recirculating the refrigerant accumulated in the evaporator refrigerant reservoir in the evaporator. .. As a result, it has become possible to reduce the size and cost of the absorption chiller and reduce the auxiliary starting force.

【0007】[0007]

【実施例】本願の実施例を図面に基づいて説明する。図
1は空冷式の二重効用吸収式冷凍機の構成図である。こ
の冷凍機1は、吸収器2、再生器3(図示するものは高
温再生器3a及び低温再生器3bを備えている。)、蒸
発器4及び凝縮器5を備えて構成されている。そして吸
収剤としてのLiBrに冷媒としての水が高濃度で溶け
込んだ濃溶液L1が低温再生器3bで、さらに中間濃度
の中間濃度液L2が高温再生器3aで夫々再生されて溶
液ポンプP1により吸収器2に移流されるとともに、吸
収器2において生成した希溶液L3が再生器3(高温再
生器3a、低温再生器3bの順に)に返送される。一
方、冷媒としての水wは、再生器3から移動する蒸気v
が凝縮器5において凝縮して水wとなり、これが冷媒搬
送ポンプP2により蒸発器4に送られ、蒸発して熱搬送
媒体としての冷水W1を冷却するとともに、蒸気vが、
吸収器2に移動して吸収剤に吸収される構成とされてい
る。ここで、冷却状態の冷水W1が蒸発器4より空調器
6に循環されて、この空調器6が冷房作動をする。
Embodiments of the present application will be described with reference to the drawings. FIG. 1 is a configuration diagram of an air-cooled double-effect absorption refrigerator. This refrigerator 1 comprises an absorber 2, a regenerator 3 (the one shown includes a high temperature regenerator 3a and a low temperature regenerator 3b), an evaporator 4 and a condenser 5. Then, a concentrated solution L1 in which water as a refrigerant is dissolved in LiBr as an absorbent at a high concentration is regenerated by the low temperature regenerator 3b, and an intermediate concentration liquid L2 having an intermediate concentration is regenerated by the high temperature regenerator 3a and absorbed by the solution pump P1. The diluted solution L3 produced in the absorber 2 is returned to the regenerator 3 (the high temperature regenerator 3a and the low temperature regenerator 3b in this order) while being admitted to the regenerator 2. On the other hand, the water w as the refrigerant is the steam v moving from the regenerator 3.
Is condensed in the condenser 5 to become water w, which is sent to the evaporator 4 by the refrigerant transfer pump P2 and evaporates to cool the cold water W1 as the heat transfer medium, while the steam v becomes
It is configured to move to the absorber 2 and be absorbed by the absorbent. Here, the cold water W1 in the cooled state is circulated from the evaporator 4 to the air conditioner 6, and the air conditioner 6 performs cooling operation.

【0008】以下に本願の特徴構成である凝縮器5から
蒸発器4への冷媒の移動構成について説明する。図示す
るように、凝縮器5の下部には凝縮器冷媒溜まり5aが
設けられており、これに蒸発器4に到る冷媒搬送路7が
設けられている。そして、この冷媒搬送路7には前述の
冷媒搬送ポンプP2が備えられている。さらにこの冷媒
搬送路7の蒸発器側端部は、蒸発器4に設けられている
熱交換部4a(この部位において冷媒である水wは蒸発
するとともに、被冷却液としての冷水W1が冷却され
る。)より機台上下方向で上部側に設けられ、この熱交
換部4aに冷媒を散布する冷媒散布部7aとして構成さ
れている。さらに、前述の冷媒散布部7aの近傍に前記
冷媒搬送路7の絞り量を決定する電磁比例弁8が配設さ
れている。ここで、この電磁比例弁8は蒸発器4におけ
る熱交換部4aに滴下する冷媒の量を制御することとな
る。さらに、電磁比例弁8の開度は、開度制御装置9よ
り出力される開度情報により制御される。この開度制御
装置9は、前述の冷水W1の出口温度を検出する検出系
10を備えており、この検出結果と目標冷水温度との差
が冷凍負荷として認識され、蒸発器4における熱交換部
4aに対する冷媒の散布量を制御する構成とされてい
る。(ここで、前記電磁比例弁8、開度制御装置9及び
検出系10を総称して冷媒散布量制御手段と呼ぶ。)図
上、蒸発器冷媒溜まり4bから溶液ポンプP1へ接続さ
れている流路11は、希釈運転時に使用される希釈運転
用流路である。この流路11は必要に応じて使用される
ため、開閉弁12が配設されている。
The structure for moving the refrigerant from the condenser 5 to the evaporator 4, which is a characteristic structure of the present application, will be described below. As shown in the figure, a condenser refrigerant reservoir 5a is provided in the lower portion of the condenser 5, and a refrigerant transfer path 7 reaching the evaporator 4 is provided therein. Further, the above-described refrigerant transfer pump P2 is provided in the refrigerant transfer path 7. Further, the evaporator-side end of the refrigerant transport path 7 is provided with a heat exchange section 4a provided in the evaporator 4 (water w as a refrigerant evaporates at this portion, and cold water W1 as a liquid to be cooled is cooled). Is provided on the upper side in the up-down direction of the machine base, and is configured as a refrigerant distribution section 7a for distributing the refrigerant to the heat exchange section 4a. Further, an electromagnetic proportional valve 8 that determines the throttle amount of the refrigerant transport path 7 is arranged near the above-mentioned refrigerant distribution portion 7a. Here, the solenoid proportional valve 8 controls the amount of the refrigerant dropped on the heat exchange section 4a of the evaporator 4. Further, the opening of the solenoid proportional valve 8 is controlled by the opening information output from the opening control device 9. The opening control device 9 includes a detection system 10 that detects the outlet temperature of the cold water W1 described above, and the difference between the detection result and the target cold water temperature is recognized as a refrigeration load, and the heat exchange unit in the evaporator 4 is recognized. 4a is configured to control the amount of refrigerant sprayed. (Here, the solenoid proportional valve 8, the opening control device 9, and the detection system 10 are collectively referred to as a refrigerant distribution amount control means.) In the figure, the flow connected from the evaporator refrigerant reservoir 4b to the solution pump P1. The passage 11 is a diluting operation flow path used during the dilution operation. Since this flow path 11 is used as needed, an opening / closing valve 12 is provided.

【0009】以下に、この吸収式冷凍器1における蒸発
器4の作動について説明すると、冷水出口温度により演
算される開度情報により、前述の電磁比例弁8が開閉制
御され、蒸発器4への冷媒散布量が常に適量に保持され
る(散布量の殆どが、蒸発器4において蒸発する。)。
従って本願の吸収式冷凍機1においては、冷媒循環ポン
プが不要となり、必ずしも蒸発器下部に蒸発器冷媒溜4
bは必要とされない。結果、冷凍機の小型化と補起動力
の低減が可能となっている。
The operation of the evaporator 4 in the absorption refrigerator 1 will be described below. The opening / closing information of the solenoid proportional valve 8 is controlled by the opening information calculated by the cold water outlet temperature, and the evaporator 4 is operated. The amount of sprayed refrigerant is always maintained at an appropriate amount (most of the sprayed amount is evaporated in the evaporator 4).
Therefore, in the absorption refrigerator 1 of the present application, the refrigerant circulation pump is not necessary, and the evaporator refrigerant reservoir 4 is not necessarily provided in the lower portion of the evaporator.
b is not needed. As a result, it is possible to downsize the refrigerator and reduce the auxiliary starting force.

【0010】〔別実施例〕本願の別実施例を、以下に箇
条書きする。 (イ) 上記の実施例においては、冷凍負荷の検出を蒸
発器出口における冷水の温度で検出したが、冷凍負荷は
他の方法でも推定することが可能である。例えば、冷水
が冷凍作動する出力側の機器(空調器)に於ける冷水温
度を参考としておこなう等してもよい。さらに、この冷
凍負荷に対する冷媒散布量の決定手法は、その冷凍負荷
の検出・推定方法に依存して様々に変更することができ
る。
[Other Embodiments] Other embodiments of the present application are listed below. (A) In the above embodiment, the detection of the refrigeration load was detected by the temperature of the cold water at the outlet of the evaporator, but the refrigeration load can be estimated by other methods. For example, the cold water temperature in the output side device (air conditioner) where the cold water is frozen may be used as a reference. Further, the method of determining the amount of refrigerant sprayed for this refrigeration load can be variously changed depending on the method for detecting and estimating the refrigeration load.

【0011】(ロ)上記実施例では冷媒散布量制御手段
として電磁比例弁8、開度制御装置9を用いたが冷媒散
布量制御手段は他の方法でも可能である。例えば冷凍負
荷検出信号により冷媒搬送ポンプP2の回転数を制御し
て冷媒散布量を変更する制御装置(たとえばインバータ
回路)を用いても良い。
(B) In the above embodiment, the solenoid proportional valve 8 and the opening degree control device 9 are used as the refrigerant spraying amount control means, but the refrigerant spraying amount control means may be other methods. For example, a control device (for example, an inverter circuit) that controls the number of rotations of the refrigerant transport pump P2 by the refrigeration load detection signal to change the refrigerant spray amount may be used.

【0012】(ハ)さらに上記の実施例においては、吸
収式冷凍機1として空冷式二重効用吸収式冷凍機の例に
ついて説明したが、これは水冷式もしくは単効用の吸収
式冷凍機であってもよい。
(C) Further, in the above embodiment, an example of the air-cooled double-effect absorption refrigerator was explained as the absorption refrigerator 1, but this is a water-cooled or single-effect absorption refrigerator. May be.

【0013】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that reference numerals are given in the claims for convenience of comparison with the drawings, but the present invention is not limited to the configuration of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の吸収式冷凍機の構成を示す図FIG. 1 is a diagram showing a configuration of an absorption refrigerator according to the present application.

【図2】従来の吸収式冷凍機の構成を示す図FIG. 2 is a diagram showing a configuration of a conventional absorption refrigerator.

【符号の説明】[Explanation of symbols]

4 蒸発器 4a 熱交換部 5 凝縮器 7 冷媒搬送路 7a 冷媒散布部 8 冷媒散布量制御手段 9 冷媒散布量制御手段 10 冷媒散布量制御手段 4 Evaporator 4a Heat Exchange Section 5 Condenser 7 Refrigerant Conveying Path 7a Refrigerant Dispersion Section 8 Refrigerant Dispersion Amount Control Means 9 Refrigerant Dispersion Amount Control Means 10 Refrigerant Dispersion Amount Control Means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷却対象の被冷却液との熱交換をおこな
う熱交換部(4a)を備えた蒸発器(4)と、凝縮器
(5)から前記蒸発器(4)へ冷媒を冷媒搬送ポンプ
(P2)により搬送する冷媒搬送路(7)とを備えた吸
収式冷凍機であって、 前記冷媒搬送路(7)の蒸発器側端部を、前記熱交換部
(4a)に前記冷媒を散布する冷媒散布部(7a)とし
て形成するとともに、 前記冷媒散布部(7a)から前記熱交換部(4a)への
冷媒散布量を、冷凍負荷に応じて変更する冷媒散布量制
御手段(8),(9),(10)を設けた吸収式冷凍機。
1. An evaporator (4) having a heat exchange section (4a) for exchanging heat with a liquid to be cooled, and a refrigerant transfer from the condenser (5) to the evaporator (4). An absorption chiller comprising a refrigerant transfer path (7) for transfer by a pump (P2), wherein an end of the refrigerant transfer path (7) on the evaporator side is connected to the heat exchange section (4a). A refrigerant spraying amount control means (8) for changing the amount of the refrigerant sprayed from the refrigerant spraying part (7a) to the heat exchanging part (4a) according to the refrigerating load. ), (9), (10) provided absorption refrigerator.
JP22139691A 1991-09-02 1991-09-02 Absorption refrigerating machine Pending JPH0560420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22139691A JPH0560420A (en) 1991-09-02 1991-09-02 Absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22139691A JPH0560420A (en) 1991-09-02 1991-09-02 Absorption refrigerating machine

Publications (1)

Publication Number Publication Date
JPH0560420A true JPH0560420A (en) 1993-03-09

Family

ID=16766106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22139691A Pending JPH0560420A (en) 1991-09-02 1991-09-02 Absorption refrigerating machine

Country Status (1)

Country Link
JP (1) JPH0560420A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190541A (en) * 1993-12-28 1995-07-28 Rinnai Corp Absorption type refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190541A (en) * 1993-12-28 1995-07-28 Rinnai Corp Absorption type refrigerator

Similar Documents

Publication Publication Date Title
KR100343845B1 (en) Absorption Chiller
EP0322476A1 (en) Air-cooled absorbtion-type water cooling and heating apparatus
JP2829080B2 (en) Absorption heat pump
JPH0560420A (en) Absorption refrigerating machine
KR19980064574A (en) Operation stop method of absorption refrigeration unit
US5174129A (en) Absorption heat pump
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JP2581617B2 (en) Absorption refrigerator
JPH11304276A (en) Absorption refrigerating machine
JP2789951B2 (en) Absorption refrigerator
JP3868763B2 (en) Absorption refrigerator
JPH06347126A (en) Absorption freezer
JP2940787B2 (en) Double effect absorption refrigerator
JP3111205B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JPH0882452A (en) Absorption refrigerating machine
JPH09170845A (en) Absorption chiller heater and its control method
JP3249635B2 (en) Absorption refrigerator
JPH04151468A (en) Adsorption type freezer corresponding to cryogenic cooling medium and its controlling
JPS6365257A (en) Air cooling type absorption water chiller and heater
JPH11304275A (en) Absorption refrigerating machine
JPH09113057A (en) Absorption type chilled and warm water generator
JPH0524416B2 (en)
JP3251100B2 (en) Absorption refrigerator
JPH046356A (en) Air-cooled absorption type cooled and hot water supply apparatus
JPH04139361A (en) Absorption type refrigerator and controlling method therefor