JPH07190506A - Saturated vapor temperature detector of refrigeration cycle - Google Patents

Saturated vapor temperature detector of refrigeration cycle

Info

Publication number
JPH07190506A
JPH07190506A JP32913093A JP32913093A JPH07190506A JP H07190506 A JPH07190506 A JP H07190506A JP 32913093 A JP32913093 A JP 32913093A JP 32913093 A JP32913093 A JP 32913093A JP H07190506 A JPH07190506 A JP H07190506A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
saturated vapor
refrigeration cycle
saturated steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32913093A
Other languages
Japanese (ja)
Other versions
JP3351076B2 (en
Inventor
Koji Murozono
宏治 室園
Akira Fujitaka
章 藤高
Yuichi Kusumaru
雄一 薬丸
Yoshinori Kobayashi
義典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32913093A priority Critical patent/JP3351076B2/en
Publication of JPH07190506A publication Critical patent/JPH07190506A/en
Application granted granted Critical
Publication of JP3351076B2 publication Critical patent/JP3351076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To detect saturated vapor temperature of a compressor suction refrigerant in a refrigeration cycle using a non azeotropic mixture refrigerant without complicating the construction of the refrigeration cycle. CONSTITUTION:There is disposed a bypass circuit 5, one end of which is connected with a line extending from an outlet of a condenser 2 to a motor driven expansion valve 3 and the other end of which is connected with a line extending from an outlet of an evaporator 4 to an inlet of a compressor 1. On the bypass circuit 5 there are provided in order from the upstream side an auxiliary drawing 6, a temperature sensor 7, and saturated vapor temperature correction means for detecting refrigerant temperature using the temperature sensor 7 and adding a predetermined value to the refrigerant temperature in response to the kind of the used refrigerant and a composition ratio of the same.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷媒として沸点が異な
る2種類以上の冷媒を所定の比率で混合した非共沸混合
冷媒を用いた冷凍サイクルの飽和蒸気温度検出装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a saturated vapor temperature detector for a refrigeration cycle using a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio.

【0002】[0002]

【従来の技術】近年、地球環境保護の立場から、オゾン
層を破壊するフロンに対する規制が強化されてきてお
り、特に破壊力が大きなCFC(クロロフルオロカーボ
ン)については1995年末に全廃が決定しており、ま
た破壊力が比較的小さなHCFC(ハイドロクロロフル
オロカーボン)についても1996年より総量規制が開
始され、将来的には全廃されることが決定している。従
って、冷媒としてフロンを用いた機器について、その代
替冷媒の開発が進められており、オゾン層を破壊しない
HFC(ハイドロフルオロカーボン)が検討されている
が、冷凍機や空調機に用いられているHCFCの代替冷
媒として単独で用いることのできるものはHFCの中に
は見あたらず、従って2種類以上のHFC系冷媒を混合
させた非共沸の混合冷媒が有望視されている。
2. Description of the Related Art In recent years, from the standpoint of protecting the global environment, regulations on CFCs that destroy the ozone layer have been strengthened, and it has been decided to abolish CFC (chlorofluorocarbon), which has a particularly high destructive power, at the end of 1995. Also, regarding the FCFC (hydrochlorofluorocarbon), which has a relatively small destructive power, the total amount regulation was started in 1996, and it has been decided that it will be completely abolished in the future. Therefore, for devices that use CFCs as refrigerants, alternative refrigerants are being developed, and HFCs (hydrofluorocarbons) that do not destroy the ozone layer are being studied, but HCFCs used in refrigerators and air conditioners are being investigated. No substitute refrigerant that can be used alone as a substitute refrigerant is found in HFC, and therefore, a non-azeotropic mixed refrigerant obtained by mixing two or more kinds of HFC refrigerants is considered promising.

【0003】従来、CFCやHCFC等の単一冷媒を用
いた冷凍機や空気調和機等の冷凍サイクルは、COP
(成績係数)を向上させ、圧縮機の信頼性を確保するた
めにスーパーヒート制御を行っており、そのために飽和
蒸気温度検出回路を設けていた。
Conventionally, a refrigeration cycle such as a refrigerator or an air conditioner using a single refrigerant such as CFC or HCFC has a COP
In order to improve the (coefficient of performance) and ensure the reliability of the compressor, superheat control was performed, and for that purpose, a saturated steam temperature detection circuit was provided.

【0004】以下、図面を参照しながら従来の飽和蒸気
温度検出回路について説明する。図5は、従来の冷凍機
や空気調和機等の冷凍サイクル図である。同図におい
て、1は圧縮機、2は凝縮器、3はステッピングモータ
を用いて弁開度をパルス制御可能とした電動膨張弁、4
は蒸発器であり、これらは順に環状に連結されている。
また、5は凝縮器2と電動膨張弁3とを結ぶ管路に一端
を接続し、他端を蒸発器4と圧縮機1とを結ぶ管路に接
続したバイパス回路であり、このバイパス回路5には補
助絞り6が設けられている。さらに、バイパス回路5及
び圧縮機1の吸入側の管路上にそれぞれ温度センサ7、
8が配設されており、この温度センサ7、8によって検
出された温度から弁開度演算回路10にて電動膨張弁3
の弁開度を演算して弁開度信号を送出し、この弁開度信
号を受けて膨張弁駆動回路11にて電動膨張弁3の弁開
度を制御する。
A conventional saturated vapor temperature detecting circuit will be described below with reference to the drawings. FIG. 5 is a refrigeration cycle diagram of a conventional refrigerator, air conditioner, or the like. In the figure, 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve whose valve opening can be pulse-controlled by using a stepping motor, 4
Are evaporators, which are in turn connected in a ring.
Reference numeral 5 denotes a bypass circuit having one end connected to a pipe line connecting the condenser 2 and the electric expansion valve 3 and the other end connected to a pipe line connecting the evaporator 4 and the compressor 1. Is provided with an auxiliary aperture 6. Furthermore, the temperature sensor 7 is provided on the bypass circuit 5 and the suction side pipe of the compressor 1, respectively.
8 is provided, and the valve opening calculation circuit 10 uses the temperature detected by the temperature sensors 7 and 8 to drive the electric expansion valve 3
The valve opening signal of the electric expansion valve 3 is controlled by the expansion valve drive circuit 11 in response to the valve opening signal.

【0005】図6は、この冷凍サイクルをP−h(モリ
エル)線図上にあらわしたもので、同図におけるA、
B、Cの記号のポイントは、図5のA、B、Cの位置の
冷媒の状態を示す。同図から明らかなように、ポイント
Cでは気液2相状態であるため、冷媒の温度はポイント
Bの冷媒の飽和蒸気温度TSである。従って、温度セン
サ7で検出した温度TSと温度センサ8で検出した温度
T2の差(T2−TS)が、圧縮機1に吸入される冷媒
のスーパーヒート量△Tをあらわす。
FIG. 6 shows this refrigeration cycle on the P-h (Moriel) diagram.
The points indicated by the symbols B and C indicate the states of the refrigerant at the positions A, B and C in FIG. As is clear from the figure, since the point C is in the gas-liquid two-phase state, the temperature of the refrigerant is the saturated vapor temperature TS of the refrigerant at the point B. Therefore, the difference (T2-TS) between the temperature TS detected by the temperature sensor 7 and the temperature T2 detected by the temperature sensor 8 represents the superheat amount ΔT of the refrigerant sucked into the compressor 1.

【0006】次に、この冷凍サイクルの制御を説明す
る。図7は、スーパーヒート量と電動膨張弁3の弁開度
変更量との関係を示す図であり、温度センサ7と8で検
出した温度信号TS、T2より所定周期毎に弁開度演算
回路10で△Tを算出し、図7に示す関係に従って(ス
ーパーヒート量が設定値より大きい場合は弁開度を大き
くし、設定値より小さい場合は弁開度を小さくする)、
電動膨張弁3の弁開度信号を膨張弁駆動回路11に送出
し、膨張弁駆動回路11にて電動膨張弁3の弁開度を制
御してスーパーヒート量を設定値に保つ。
Next, the control of this refrigeration cycle will be described. FIG. 7 is a diagram showing the relationship between the superheat amount and the valve opening change amount of the electric expansion valve 3, which is based on the temperature signals TS and T2 detected by the temperature sensors 7 and 8 and which is used for calculating the valve opening calculation circuit at predetermined intervals. 10, ΔT is calculated, and according to the relationship shown in FIG. 7 (when the superheat amount is larger than the set value, the valve opening is increased, and when it is smaller than the set value, the valve opening is decreased),
The valve opening signal of the electric expansion valve 3 is sent to the expansion valve driving circuit 11, and the expansion valve driving circuit 11 controls the valve opening of the electric expansion valve 3 to keep the superheat amount at a set value.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の冷凍サイクルの飽和蒸気温度検出回路には以下のよ
うな課題があった。
However, the conventional saturated vapor temperature detection circuit for the refrigeration cycle has the following problems.

【0008】図8は、冷媒として非共沸混合冷媒を用い
た場合の冷凍サイクルをP−h(モリエル)線図上にあ
らわしたもので、同図におけるA、B、Cの記号のポイ
ントは、図5のA、B、Cの位置の冷媒の状態を示す。
ここで、ポイントBにおけるスーパーヒート量は、ポイ
ントBの温度とその飽和蒸気温度(ポイントE)との差
で求めることができる。ここで、単一冷媒の場合は図6
に示すようにポイントCの温度は飽和蒸気温度と同じで
あるが、非共沸混合冷媒の場合は図8に示すように、2
相域での等温線は右下がりの線となっているため、ポイ
ントCの温度は飽和蒸気温度(ポイントE)の温度より
も低い。従って、温度センサ8と9で検出した温度信号
TS、T2から算出した△Tは真のスーパーヒート量よ
りも大きな値となってしまい、この状態で設定値に保つ
制御を行うために冷媒は、実際のスーパーヒート量が設
定値よりも低い状態か若しくは湿り蒸気の状態で圧縮機
に吸入される。
FIG. 8 shows a refrigeration cycle in the case of using a non-azeotropic mixed refrigerant as a refrigerant on the P-h (Mollier) diagram, and the points of symbols A, B and C in FIG. 5 shows states of the refrigerant at positions A, B and C in FIG.
Here, the amount of superheat at the point B can be obtained by the difference between the temperature at the point B and the saturated steam temperature (point E). Here, in the case of a single refrigerant, FIG.
As shown in FIG. 8, the temperature at point C is the same as the saturated vapor temperature, but in the case of a non-azeotropic mixed refrigerant, as shown in FIG.
Since the isotherm in the phase region is a line descending to the right, the temperature at point C is lower than the temperature at the saturated steam temperature (point E). Therefore, ΔT calculated from the temperature signals TS and T2 detected by the temperature sensors 8 and 9 becomes a value larger than the true amount of superheat, and the refrigerant for controlling to keep the set value in this state is It is sucked into the compressor when the actual amount of superheat is lower than the set value or in the state of wet steam.

【0009】このため、液圧縮による圧縮機信頼性の低
下やCOPの低下を招くおそれがあった。
Therefore, there is a possibility that the reliability of the compressor may be lowered and the COP may be lowered due to the liquid compression.

【0010】本発明の冷凍サイクルの飽和蒸気温度検出
回路は上記課題に鑑み、非共沸混合冷媒を用いた冷凍サ
イクルにおいて、冷凍サイクルの構成を複雑にすること
なく圧縮機吸入冷媒の飽和蒸気温度を簡単に検出するこ
とを目的とし、これにより最適な冷凍サイクル制御の実
現を図るものである。
In view of the above problems, the saturated vapor temperature detection circuit of the refrigeration cycle of the present invention, in a refrigeration cycle using a non-azeotropic mixed refrigerant, does not complicate the structure of the refrigeration cycle, but the saturated vapor temperature of the compressor suction refrigerant The purpose of this is to easily detect and to realize the optimal refrigeration cycle control.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に本発明の冷凍サイクルの飽和蒸気温度検出回路は、冷
媒として沸点が異なる2種類以上の冷媒を所定の比率で
混合した非共沸混合冷媒を用い、圧縮機、凝縮器、減圧
器、蒸発器を順に配管にて環状に連結して冷媒回路を構
成し、凝縮器出口から減圧器出口に至る管路に一端を接
続し、他端を蒸発器出口から圧縮機入口に至る管路に接
続したバイパス回路を配設し、このバイパス回路に上流
側から順に補助減圧器、冷媒温度検出手段を設け、前記
冷媒温度検出手段により冷媒温度を検出し、用いた冷媒
の種類及びその組成比に応じた所定値を前記冷媒温度に
加える飽和蒸気温度補正手段を有するものである。
In order to solve the above problems, a saturated vapor temperature detection circuit of a refrigerating cycle according to the present invention is a non-azeotropic mixture in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio as refrigerants. Using a refrigerant, a compressor, a condenser, a decompressor, and an evaporator are sequentially connected by a pipe in a ring shape to form a refrigerant circuit, and one end is connected to a conduit from the condenser outlet to the decompressor outlet, and the other end. A bypass circuit connected to the pipeline from the evaporator outlet to the compressor inlet is provided, and an auxiliary decompressor and refrigerant temperature detecting means are provided in this bypass circuit in order from the upstream side, and the refrigerant temperature is detected by the refrigerant temperature detecting means. It has a saturated vapor temperature correction means for detecting and adding a predetermined value according to the type of refrigerant used and its composition ratio to the refrigerant temperature.

【0012】また、本発明の他の冷凍サイクルの飽和蒸
気温度検出回路は、冷媒として沸点が異なる2種類以上
の冷媒を所定の比率で混合した非共沸混合冷媒を用い、
圧縮機、凝縮器、減圧器、蒸発器を順に配管にて環状に
連結して冷媒回路を構成し、前記蒸発器入口から出口に
至る管路に複数の冷媒温度検出手段を設け、前記冷媒温
度検出手段によって検出された複数の冷媒温度を用いて
前記圧縮機に吸入される冷媒の飽和蒸気温度を算出する
飽和蒸気温度算出手段を有するものである。
A saturated vapor temperature detection circuit of another refrigeration cycle of the present invention uses a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio as the refrigerant.
A compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected in an annular shape by a pipe to form a refrigerant circuit, and a plurality of refrigerant temperature detecting means are provided in a pipeline from the evaporator inlet to the outlet, and the refrigerant temperature is set. It has a saturated vapor temperature calculation means for calculating the saturated vapor temperature of the refrigerant sucked into the compressor using the plurality of refrigerant temperatures detected by the detection means.

【0013】また、本発明の他の冷凍サイクルの飽和蒸
気温度検出回路は、冷媒として沸点が異なる2種類以上
の冷媒を所定の比率で混合した非共沸混合冷媒を用い、
圧縮機、凝縮器、減圧器、蒸発器を順に配管にて環状に
連結して冷媒回路を構成し、前記蒸発器入口から出口に
至る管路に複数の冷媒温度検出手段を設け、前記冷媒温
度検出手段によって検出された複数の冷媒温度を用いて
前記圧縮機に吸入される冷媒の飽和蒸気温度を算出する
飽和蒸気温度算出手段及びこの飽和蒸気温度算出手段に
よって算出された飽和蒸気温度を補正する飽和蒸気温度
補正手段を有するものである。
A saturated vapor temperature detecting circuit of another refrigeration cycle of the present invention uses a non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio as the refrigerant.
A compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected in an annular shape by a pipe to form a refrigerant circuit, and a plurality of refrigerant temperature detecting means are provided in a pipeline from the evaporator inlet to the outlet, and the refrigerant temperature is set. Saturated steam temperature calculation means for calculating the saturated steam temperature of the refrigerant sucked into the compressor using the plurality of refrigerant temperatures detected by the detection means and the saturated steam temperature calculated by the saturated steam temperature calculation means It has a saturated vapor temperature correction means.

【0014】[0014]

【作用】本発明は、上記手段により次のような作用を有
する。
The present invention has the following actions due to the above means.

【0015】すなわち、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に補助減圧器、冷媒温度検出
手段を設け、前記冷媒温度検出手段により冷媒温度を検
出し、用いた冷媒の種類及びその組成比に応じた所定値
を前記冷媒温度に加える飽和蒸気温度補正手段を有する
ことで、非共沸混合冷媒を用いた冷凍サイクルにおい
て、冷凍サイクルの構成を複雑にすることなく圧縮機吸
入冷媒の飽和蒸気温度を簡単に求めることができ、これ
により最適な冷凍サイクル制御の実現を図ることができ
る。
That is, a bypass circuit having one end connected to a conduit from the condenser outlet to the decompressor outlet and the other end connected to a conduit from the evaporator outlet to the compressor inlet is provided. Auxiliary decompressor and refrigerant temperature detecting means are provided in order from the upstream side, the refrigerant temperature is detected by the refrigerant temperature detecting means, and a saturated vapor temperature is added to the refrigerant temperature to a predetermined value according to the type of refrigerant used and its composition ratio. By including the correction means, in the refrigeration cycle using the non-azeotropic mixed refrigerant, the saturated vapor temperature of the compressor suction refrigerant can be easily obtained without complicating the structure of the refrigeration cycle, and thereby the optimum refrigeration cycle can be obtained. It is possible to realize cycle control.

【0016】また、蒸発器入口から出口に至る管路に複
数の冷媒温度検出手段を設け、冷媒温度検出手段によっ
て検出された複数の冷媒温度を用いて前記圧縮機に吸入
される冷媒の飽和蒸気温度を算出する飽和蒸気温度算出
手段を有することで、非共沸混合冷媒を用いた冷凍サイ
クルにおいて、バイパス回路を設けることなく圧縮機吸
入冷媒の飽和蒸気温度を簡単に求めることができ、これ
により最適な冷凍サイクル制御の実現を図ることができ
る。
Further, a plurality of refrigerant temperature detecting means are provided in a pipe line from the evaporator inlet to the outlet, and the saturated vapor of the refrigerant sucked into the compressor by using the plurality of refrigerant temperatures detected by the refrigerant temperature detecting means. By having the saturated vapor temperature calculating means for calculating the temperature, in the refrigeration cycle using the non-azeotropic mixed refrigerant, the saturated vapor temperature of the compressor suction refrigerant can be easily obtained without providing a bypass circuit. It is possible to realize optimal refrigeration cycle control.

【0017】また、蒸発器入口から出口に至る管路に複
数の冷媒温度検出手段を設け、前記冷媒温度検出手段に
よって検出された複数の冷媒温度を用いて前記圧縮機に
吸入される冷媒の飽和蒸気温度を算出する飽和蒸気温度
算出手段及びこの飽和蒸気温度算出手段によって算出さ
れた飽和蒸気温度を補正する飽和蒸気温度補正手段を有
することで、非共沸混合冷媒を用いた冷凍サイクルにお
いて、バイパス回路を設けることなく圧縮機吸入冷媒の
飽和蒸気温度を簡単に精度よく求めることができ、これ
により最適な冷凍サイクル制御の実現を図ることができ
る。
Further, a plurality of refrigerant temperature detecting means are provided in a pipeline extending from the evaporator inlet to the outlet, and the refrigerant sucked into the compressor is saturated using the plurality of refrigerant temperatures detected by the refrigerant temperature detecting means. By having a saturated vapor temperature calculating means for calculating the vapor temperature and a saturated vapor temperature correcting means for correcting the saturated vapor temperature calculated by the saturated vapor temperature calculating means, in the refrigeration cycle using the non-azeotropic mixed refrigerant, the bypass The saturated vapor temperature of the refrigerant sucked into the compressor can be easily and accurately obtained without providing a circuit, and thus optimal refrigeration cycle control can be realized.

【0018】[0018]

【実施例】以下、本発明の実施例について、図面を参考
に説明する。なお、従来の技術の項で説明したものと同
一の機能を有するものには同一の番号を付して詳細な説
明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. It should be noted that components having the same functions as those described in the section of the related art are designated by the same reference numerals and detailed description thereof will be omitted.

【0019】図1は、本発明の第1の実施例における冷
凍サイクル図である。同図において、1は圧縮機、2は
凝縮器、3は電動膨張弁、4は蒸発器であり、これらは
順に環状に連結されており、冷媒として非共沸混合冷媒
を用いている。また、5は凝縮器2と電動膨張弁3とを
結ぶ管路に一端を接続し、他端を蒸発器4と圧縮機1と
を結ぶ管路に接続したバイパス回路であり、このバイパ
ス回路5には補助絞り6が設けられている。また、補助
絞り6の下流側の管路上及び圧縮機1の吸入側の管路上
にそれぞれ温度センサ7、8が配設されている。また、
9は温度センサ7で検出した温度TSを受けて補正を加
える飽和蒸気温度補正回路、10は飽和蒸気温度補正回
路9で補正した値TS1と温度センサ8で検出した値T
2を受けて、電動膨張弁3の開度を演算して弁開度信号
を送出する弁開度演算回路であり、この弁開度信号を受
けて膨張弁駆動回路11にて電動膨張弁3の弁開度を制
御する。
FIG. 1 is a refrigeration cycle diagram in the first embodiment of the present invention. In the figure, 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve, and 4 is an evaporator, which are sequentially connected in an annular shape and use a non-azeotropic mixed refrigerant as a refrigerant. Reference numeral 5 denotes a bypass circuit having one end connected to a pipe line connecting the condenser 2 and the electric expansion valve 3 and the other end connected to a pipe line connecting the evaporator 4 and the compressor 1. Is provided with an auxiliary aperture 6. In addition, temperature sensors 7 and 8 are provided on the pipeline on the downstream side of the auxiliary throttle 6 and the pipeline on the suction side of the compressor 1, respectively. Also,
Reference numeral 9 denotes a saturated steam temperature correction circuit that receives and corrects the temperature TS detected by the temperature sensor 7. Reference numeral 10 denotes a value TS1 corrected by the saturated steam temperature correction circuit 9 and value T detected by the temperature sensor 8.
2 is a valve opening calculation circuit that calculates the opening of the electric expansion valve 3 and sends a valve opening signal. The expansion valve drive circuit 11 receives the valve opening signal and the electric expansion valve 3 Control the valve opening degree of.

【0020】また、同図における冷媒管路のA、B、C
の位置における冷媒の状態は、図8のポイントA、B、
Cであらわされる。
Further, the refrigerant lines A, B and C in FIG.
The state of the refrigerant at the position of is the points A, B in FIG.
Represented by C.

【0021】この冷凍サイクルの制御を説明すると、ま
ず所定周期毎に温度センサ7で温度TSを、温度センサ
8で温度T2を検出し、温度T2はそのまま弁開度演算
回路10へ送られるが、温度TSは飽和蒸気温度補正回
路9へ送られる。TSは、図8においてポイントCの位
置であり、従来の技術の項で説明したように、ポイント
Bの冷媒の飽和蒸気温度であるポイントEの温度よりも
小さな値となる。ポイントEとポイントCの温度差は、
用いる冷媒の種類及びその組成比より、公知の混合冷媒
熱物性推算手法にて算出可能であるため、この値をTR
1とすると飽和蒸気温度補正回路9にて飽和蒸気温度の
補正値TS1を式(TS1=TS+TR1)で算出し、
この値を弁開度演算回路10に送出する。弁開度演算回
路10においては、温度TS1、T2より所定周期毎に
△Tを算出し(△T=T2−TS1)、図7に示す関係
に従って(スーパーヒート量が設定値より大きい場合は
弁開度を大きくし、設定値より小さい場合は弁開度を小
さくする)、電動膨張弁3の弁開度信号を膨張弁駆動回
路11に送出し、膨張弁駆動回路11にて電動膨張弁3
の弁開度を制御してスーパーヒート量を設定値に保つ。
このように、冷媒として非共沸混合冷媒を用いた場合で
も、冷凍サイクルの構成を複雑にすることなく圧縮機吸
入冷媒の飽和蒸気温度を精度よく検出することができ、
これにより最適な冷凍サイクル制御の実現を図ることが
できる。
The control of the refrigeration cycle will be described. First, the temperature sensor 7 detects the temperature TS and the temperature sensor 8 detects the temperature T2 at predetermined intervals, and the temperature T2 is sent to the valve opening calculation circuit 10 as it is. The temperature TS is sent to the saturated steam temperature correction circuit 9. TS is the position of point C in FIG. 8, and has a value smaller than the temperature of point E, which is the saturated vapor temperature of the refrigerant at point B, as described in the section of the related art. The temperature difference between points E and C is
This value can be calculated by the known mixed refrigerant thermophysical property estimation method from the type of refrigerant used and its composition ratio.
When the value is 1, the saturated steam temperature correction circuit 9 calculates the correction value TS1 of the saturated steam temperature by the formula (TS1 = TS + TR1),
This value is sent to the valve opening calculation circuit 10. In the valve opening calculation circuit 10, ΔT is calculated from the temperatures TS1 and T2 at every predetermined cycle (ΔT = T2-TS1), and according to the relationship shown in FIG. 7 (when the superheat amount is larger than the set value, The valve opening degree of the electric expansion valve 3 is sent to the expansion valve drive circuit 11, and the expansion valve drive circuit 11 causes the electric expansion valve 3 to increase.
Controls the valve opening of to keep the superheat amount at the set value.
Thus, even when using a non-azeotropic mixed refrigerant as the refrigerant, it is possible to accurately detect the saturated vapor temperature of the compressor suction refrigerant without complicating the configuration of the refrigeration cycle,
This makes it possible to realize optimum refrigeration cycle control.

【0022】次に、本発明の第2の実施例について、図
面を参照しながら説明する。図2は、本発明の第2の実
施例における冷凍サイクル図である。同図において、1
2及び13は蒸発器4を構成する管路の入口及び中間部
付近の冷媒温度を検出する温度センサであり、14は温
度センサ12で検出した温度T3及び温度センサ13で
検出した温度T4より飽和蒸気温度を算出する飽和蒸気
温度算出回路である。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a refrigeration cycle diagram in the second embodiment of the present invention. In the figure, 1
Reference numerals 2 and 13 denote temperature sensors that detect the temperature of the refrigerant near the inlet and intermediate portions of the pipes that form the evaporator 4, and 14 is saturated from the temperature T3 detected by the temperature sensor 12 and the temperature T4 detected by the temperature sensor 13. It is a saturated steam temperature calculation circuit that calculates the steam temperature.

【0023】この冷凍サイクルの制御について説明する
と、まず所定周期毎に温度センサ12及び13で温度T
3及びT4を検出してこれらの値を飽和蒸気温度算出回
路14に送出し、飽和蒸気温度算出回路14にて温度T
3及びT4を用いて飽和蒸気温度を算出する。この算出
方法について、図面を用いて説明する。図3は、蒸発器
4内の冷媒管路における冷媒温度の変化を示す。同図よ
り明らかなように、非共沸混合冷媒特有の現象として、
蒸発器内では冷媒の蒸発が進行するにつれて温度が上昇
しており、その上昇の割合は直線的である。そして、蒸
発器出口付近で過熱域に入って温度は急激に上昇する。
従って、飽和蒸気温度TSは、式(TS=T3+(T4
−T3)×2)で算出すると、ほぼ真の飽和蒸気温度に
近い値を得ることができる。このようにして算出した温
度TSを弁開度演算回路10に送出し、弁開度演算回路
10においては、温度TS、T2より所定周期毎に△T
を算出し(△T=T2−TS)、図7に示す関係に従っ
て(スーパーヒート量が設定値より大きい場合は弁開度
を大きくし、設定値より小さい場合は弁開度を小さくす
る)、電動膨張弁3の弁開度信号を膨張弁駆動回路11
に送出し、膨張弁駆動回路11にて電動膨張弁3の弁開
度を制御してスーパーヒート量を設定値に保つ。
The control of the refrigeration cycle will be described. First, the temperature T is measured by the temperature sensors 12 and 13 every predetermined period.
3 and T4 are detected and these values are sent to the saturated steam temperature calculation circuit 14, and the saturated steam temperature calculation circuit 14 detects the temperature T
Calculate saturated vapor temperature using 3 and T4. This calculation method will be described with reference to the drawings. FIG. 3 shows changes in the refrigerant temperature in the refrigerant pipe line in the evaporator 4. As is clear from the figure, as a phenomenon unique to the non-azeotropic mixed refrigerant,
The temperature rises in the evaporator as the refrigerant evaporates, and the rate of increase is linear. Then, in the vicinity of the evaporator outlet, it enters the overheated region and the temperature rises rapidly.
Therefore, the saturated steam temperature TS is calculated by the formula (TS = T3 + (T4
When calculated by −T3) × 2), a value close to the true saturated steam temperature can be obtained. The temperature TS calculated in this way is sent to the valve opening calculation circuit 10. In the valve opening calculation circuit 10, ΔT is calculated from the temperatures TS and T2 at predetermined intervals.
Is calculated (ΔT = T2-TS) and according to the relationship shown in FIG. 7 (when the superheat amount is larger than the set value, the valve opening is increased, and when the superheat amount is smaller than the set value, the valve opening is decreased). The valve opening signal of the electric expansion valve 3 is sent to the expansion valve drive circuit 11
And the expansion valve drive circuit 11 controls the valve opening of the electric expansion valve 3 to maintain the superheat amount at a set value.

【0024】このように、冷媒として非共沸混合冷媒を
用いた場合でも、新たにバイパス回路を設けることなく
圧縮機吸入冷媒の飽和蒸気温度を簡単に検出することが
でき、これにより最適な冷凍サイクル制御の実現を図る
ことができる。
As described above, even when the non-azeotropic mixed refrigerant is used as the refrigerant, it is possible to easily detect the saturated vapor temperature of the compressor suction refrigerant without newly providing a bypass circuit. It is possible to realize cycle control.

【0025】次に、本発明の第3の実施例について、図
面を参照しながら説明する。図4は、本発明の第3の実
施例における冷凍サイクル図である。同図において、図
2に示す第2の実施例と異なるのは、飽和蒸気温度演算
回路14と弁開度演算回路10との間に飽和蒸気温度補
正回路15を設けた点である。この飽和蒸気温度補正回
路15は、飽和蒸気温度演算回路14で検出した飽和蒸
気温度から所定値TR2を減じて補正するものである。
これにより蒸発器4から圧縮機1に至る冷媒配管が長
く、圧力損失が大きくて圧縮機1に吸入される冷媒の飽
和蒸気温度が蒸発器4での飽和蒸気温度と異なる場合で
も、精度よくスーパーヒート量を算出して制御を行うこ
とが可能となる。
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a refrigeration cycle diagram in the third embodiment of the present invention. In the figure, the difference from the second embodiment shown in FIG. 2 is that a saturated steam temperature correction circuit 15 is provided between the saturated steam temperature calculation circuit 14 and the valve opening calculation circuit 10. The saturated steam temperature correction circuit 15 corrects by subtracting a predetermined value TR2 from the saturated steam temperature detected by the saturated steam temperature calculation circuit 14.
As a result, even when the refrigerant pipe from the evaporator 4 to the compressor 1 is long, the pressure loss is large, and the saturated vapor temperature of the refrigerant sucked into the compressor 1 is different from the saturated vapor temperature in the evaporator 4, the superconductivity is accurately measured. It becomes possible to control by calculating the heat amount.

【0026】この冷凍サイクルの制御について説明する
と、まず所定周期毎に温度センサ12及び13で温度T
3及びT4を検出してこれらの値を飽和蒸気温度算出回
路14に送出し、飽和蒸気温度算出回路14にて温度T
3及びT4を用いて上記第2の実施例と同様にして飽和
蒸気温度TSを算出し、算出した温度TSを飽和蒸気温
度補正回路15に送出して飽和蒸気温度の補正値TS2
を式(TS2=TS−TR2)で算出して弁開度演算回
路10に送出し、弁開度演算回路10においては、温度
TS2、T2より所定周期毎に△Tを算出し(△T=T
2−TS2)、図7に示す関係に従って(スーパーヒー
ト量が設定値より大きい場合は弁開度を大きくし、設定
値より小さい場合は弁開度を小さくする)、電動膨張弁
3の弁開度信号を膨張弁駆動回路11に送出し、膨張弁
駆動回路11にて電動膨張弁3の弁開度を制御してスー
パーヒート量を設定値に保つ。
The control of the refrigeration cycle will be described. First, the temperature T is measured by the temperature sensors 12 and 13 every predetermined period.
3 and T4 are detected and these values are sent to the saturated steam temperature calculation circuit 14, and the saturated steam temperature calculation circuit 14 detects the temperature T
3 and T4, the saturated steam temperature TS is calculated in the same manner as in the second embodiment, and the calculated temperature TS is sent to the saturated steam temperature correction circuit 15 to correct the saturated steam temperature TS2.
Is calculated by the equation (TS2 = TS−TR2) and sent to the valve opening calculation circuit 10. In the valve opening calculation circuit 10, ΔT is calculated from the temperatures TS2 and T2 at predetermined intervals (ΔT = T
2-TS2), according to the relationship shown in FIG. 7 (if the superheat amount is larger than the set value, the valve opening is increased, and if it is smaller than the set value, the valve opening is decreased). To the expansion valve drive circuit 11, and the expansion valve drive circuit 11 controls the valve opening degree of the electric expansion valve 3 to maintain the superheat amount at the set value.

【0027】このように、冷媒として非共沸混合冷媒を
用いた場合でも、新たにバイパス回路を設けることなく
圧縮機吸入冷媒の飽和蒸気温度を精度よく検出すること
ができ、これにより最適な冷凍サイクル制御の実現を図
ることができる。
As described above, even when the non-azeotropic mixed refrigerant is used as the refrigerant, the saturated vapor temperature of the compressor suction refrigerant can be accurately detected without newly providing a bypass circuit. It is possible to realize cycle control.

【0028】なお、上記第1〜第3の実施例において
は、本発明の飽和蒸気温度検出回路で検出した飽和蒸気
温度をスーパーヒート制御に利用した場合について説明
したがそれに限定されるものではなく、例えば検出した
飽和蒸気温度より蒸発器の氷結を推定したり、飽和圧力
への換算式を作成しておき、検出した飽和蒸気温度より
圧縮機吸入圧力を算出して保護制御に利用する等、他の
制御にも利用可能である。
In the above first to third embodiments, the case where the saturated steam temperature detected by the saturated steam temperature detecting circuit of the present invention is used for superheat control has been described, but the present invention is not limited to this. , For example, the freezing of the evaporator is estimated from the detected saturated vapor temperature, a conversion formula to the saturated pressure is created, and the compressor suction pressure is calculated from the detected saturated vapor temperature and used for protection control. It can also be used for other controls.

【0029】また、上記第1の実施例においては、バイ
パス回路5の一端を凝縮器2と減圧器(電動膨張弁3)
とを結ぶ管路の一部に接続したがこれに限定されるもの
ではなく、液冷媒の割合が多くて圧縮機1の吸入側より
高圧となるところであればよい。例えば減圧器が2つに
分割されている場合は2つの減圧器間へ接続してもよ
く、また減圧器がキャピラリチューブの場合ならば、キ
ャピラリチューブの管路上のいずれかの位置へ接続して
もよい。
In the first embodiment, one end of the bypass circuit 5 is connected to the condenser 2 and the pressure reducer (electric expansion valve 3).
Although it is connected to a part of the pipe line connecting to and, the present invention is not limited to this, and it is sufficient if the ratio of the liquid refrigerant is large and the pressure becomes higher than the suction side of the compressor 1. For example, when the decompressor is divided into two, it may be connected between the two decompressors, and when the decompressor is a capillary tube, it may be connected to any position on the pipeline of the capillary tube. Good.

【0030】また、上記第2及び第3の実施例において
は、飽和蒸気温度を算出するのに2つの温度センサ1
2、13を設けたが、それに限定されるものでなく、さ
らにセンサの数を増加させてもよく、また算出式もこれ
に限定されるものではない。
In the second and third embodiments, two temperature sensors 1 are used to calculate the saturated steam temperature.
Although 2 and 13 are provided, the number is not limited to this, and the number of sensors may be increased, and the calculation formula is not limited to this.

【0031】また、本発明の飽和蒸気温度検出回路は、
フロン系冷媒に限らず非共沸混合冷媒であれば、他の冷
媒にも適用可能である。
Further, the saturated vapor temperature detection circuit of the present invention is
Not only the CFC-based refrigerant but also a non-azeotropic mixed refrigerant can be applied to other refrigerants.

【0032】[0032]

【発明の効果】上記実施例より明らかなように本発明の
冷凍サイクルの飽和蒸気温度検出回路は、凝縮器出口か
ら減圧器出口に至る管路に一端を接続し、他端を蒸発器
出口から圧縮機入口に至る管路に接続したバイパス回路
を配設し、このバイパス回路に上流側から順に補助減圧
器、冷媒温度検出手段を設け、前記冷媒温度検出手段に
より冷媒温度を検出し、用いた冷媒の種類及びその組成
比に応じた所定値を前記冷媒温度に加える飽和蒸気温度
補正手段を有することで、非共沸混合冷媒を用いた冷凍
サイクルにおいて、冷凍サイクルの構成を複雑にするこ
となく圧縮機吸入冷媒の飽和蒸気温度を簡単に求めるこ
とができ、これにより最適な冷凍サイクル制御の実現を
図ることができる。
As is apparent from the above embodiment, the saturated vapor temperature detection circuit of the refrigeration cycle of the present invention has one end connected to the conduit from the condenser outlet to the pressure reducer outlet, and the other end from the evaporator outlet. A bypass circuit connected to the pipeline leading to the compressor inlet was provided, and an auxiliary decompressor and refrigerant temperature detecting means were provided in this bypass circuit in order from the upstream side, and the refrigerant temperature was detected by the refrigerant temperature detecting means and used. By having a saturated vapor temperature correction means for adding a predetermined value depending on the type of refrigerant and its composition ratio to the refrigerant temperature, in a refrigeration cycle using a non-azeotropic mixed refrigerant, without complicating the structure of the refrigeration cycle. The saturated vapor temperature of the refrigerant sucked into the compressor can be easily obtained, and thus optimal refrigeration cycle control can be realized.

【0033】また、蒸発器入口から出口に至る管路に複
数の冷媒温度検出手段を設け、冷媒温度検出手段によっ
て検出された複数の冷媒温度を用いて前記圧縮機に吸入
される冷媒の飽和蒸気温度を算出する飽和蒸気温度算出
手段を有することで、非共沸混合冷媒を用いた冷凍サイ
クルにおいて、バイパス回路を設けることなく圧縮機吸
入冷媒の飽和蒸気温度を簡単に求めることができ、これ
により最適な冷凍サイクル制御の実現を図ることができ
る。
Further, a plurality of refrigerant temperature detecting means is provided in a pipeline extending from the evaporator inlet to the outlet, and the saturated vapor of the refrigerant sucked into the compressor by using the plurality of refrigerant temperatures detected by the refrigerant temperature detecting means. By having the saturated vapor temperature calculating means for calculating the temperature, in the refrigeration cycle using the non-azeotropic mixed refrigerant, the saturated vapor temperature of the compressor suction refrigerant can be easily obtained without providing a bypass circuit. It is possible to realize optimal refrigeration cycle control.

【0034】また、蒸発器入口から出口に至る管路に複
数の冷媒温度検出手段を設け、前記冷媒温度検出手段に
よって検出された複数の冷媒温度を用いて前記圧縮機に
吸入される冷媒の飽和蒸気温度を算出する飽和蒸気温度
算出手段及びこの飽和蒸気温度算出手段によって算出さ
れた飽和蒸気温度を補正する飽和蒸気温度補正手段を有
することで、非共沸混合冷媒を用いた冷凍サイクルにお
いて、バイパス回路を設けることなく圧縮機吸入冷媒の
飽和蒸気温度を簡単に精度よく求めることができ、これ
により最適な冷凍サイクル制御の実現を図ることができ
る。
Further, a plurality of refrigerant temperature detecting means are provided in the pipeline extending from the evaporator inlet to the outlet, and the refrigerant sucked into the compressor is saturated using the plurality of refrigerant temperatures detected by the refrigerant temperature detecting means. By having a saturated vapor temperature calculating means for calculating the vapor temperature and a saturated vapor temperature correcting means for correcting the saturated vapor temperature calculated by the saturated vapor temperature calculating means, in the refrigeration cycle using the non-azeotropic mixed refrigerant, the bypass The saturated vapor temperature of the refrigerant sucked into the compressor can be easily and accurately obtained without providing a circuit, and thus optimal refrigeration cycle control can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の飽和蒸気温度検出回路の第1の実施例
における冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram in a first embodiment of a saturated vapor temperature detection circuit of the present invention.

【図2】本発明の飽和蒸気温度検出回路の第2の実施例
における冷凍サイクル図
FIG. 2 is a refrigeration cycle diagram in a second embodiment of the saturated vapor temperature detection circuit of the present invention.

【図3】同実施例における蒸発器内の冷媒温度変化を示
す特性図
FIG. 3 is a characteristic diagram showing a change in refrigerant temperature in the evaporator in the example.

【図4】本発明の飽和蒸気温度検出回路の第3の実施例
における冷凍サイクル図
FIG. 4 is a refrigeration cycle diagram in a third embodiment of the saturated vapor temperature detection circuit of the present invention.

【図5】従来の飽和蒸気温度検出回路の冷凍サイクル図FIG. 5 is a refrigeration cycle diagram of a conventional saturated vapor temperature detection circuit.

【図6】同飽和蒸気温度検出回路におけるP−h線図上
の冷凍サイクル図
FIG. 6 is a refrigeration cycle diagram on the Ph diagram in the saturated vapor temperature detection circuit.

【図7】スーパーヒート量と電動膨張弁の弁開度変更量
との関係図
FIG. 7 is a relationship diagram between the superheat amount and the valve opening change amount of the electric expansion valve.

【図8】従来の飽和蒸気温度検出回路における非共沸混
合冷媒を用いた場合のP−h線図上の冷凍サイクル図
FIG. 8 is a refrigeration cycle diagram on the Ph diagram when a non-azeotropic mixed refrigerant is used in a conventional saturated vapor temperature detection circuit.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 電動膨張弁(減圧器) 4 蒸発器 5 バイパス回路 6 補助絞り(補助減圧器) 7 温度センサ(冷媒温度検出手段) 9 飽和蒸気温度補正回路(飽和蒸気温度補正手段) 12 温度センサ(第1の冷媒温度検出手段) 13 温度センサ(第2の冷媒温度検出手段) 14 飽和蒸気温度算出回路(飽和蒸気温度算出手段) 15 飽和蒸気温度補正回路(飽和蒸気温度補正手段) 1 Compressor 2 Condenser 3 Electric expansion valve (pressure reducer) 4 Evaporator 5 Bypass circuit 6 Auxiliary throttle (auxiliary pressure reducer) 7 Temperature sensor (refrigerant temperature detecting means) 9 Saturated steam temperature correction circuit (saturated steam temperature correction means) 12 temperature sensor (first refrigerant temperature detecting means) 13 temperature sensor (second refrigerant temperature detecting means) 14 saturated steam temperature calculation circuit (saturated steam temperature calculation means) 15 saturated steam temperature correction circuit (saturated steam temperature correction means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 義典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshinori Kobayashi 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】冷媒として沸点が異なる2種類以上の冷媒
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、凝縮器出口から減圧器出口に至
る管路に一端を接続し、他端を蒸発器出口から圧縮機入
口に至る管路に接続したバイパス回路を配設し、このバ
イパス回路に上流側から順に補助減圧器、冷媒温度検出
手段を設け、前記冷媒温度検出手段により冷媒温度を検
出し、用いた冷媒の種類及びその組成比に応じた所定値
を前記冷媒温度に加える飽和蒸気温度補正手段を有する
冷凍サイクルの飽和蒸気温度検出装置。
1. A non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a condenser, a pressure reducer, and an evaporator are sequentially connected in an annular shape by pipes. A refrigerant circuit is constructed by connecting one end to the pipeline from the condenser outlet to the decompressor outlet, and the other end is connected to the pipeline from the evaporator outlet to the compressor inlet. Auxiliary pressure reducer and refrigerant temperature detection means are provided in order from the upstream side in the circuit, the refrigerant temperature is detected by the refrigerant temperature detection means, and a predetermined value according to the type of refrigerant used and its composition ratio is added to the refrigerant temperature. A saturated steam temperature detecting device for a refrigeration cycle, which has a steam temperature correcting means.
【請求項2】冷媒として沸点が異なる2種類以上の冷媒
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、前記蒸発器入口から出口に至る
管路に複数の冷媒温度検出手段を設け、前記冷媒温度検
出手段によって検出された複数の冷媒温度を用いて前記
圧縮機に吸入される冷媒の飽和蒸気温度を算出する飽和
蒸気温度算出手段を有する冷凍サイクルの飽和蒸気温度
検出装置。
2. A non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected in an annular shape by pipes. A refrigerant circuit, and a plurality of refrigerant temperature detecting means are provided in a pipeline from the evaporator inlet to the outlet, and the refrigerant is sucked into the compressor using the plurality of refrigerant temperatures detected by the refrigerant temperature detecting means. A saturated vapor temperature detection device for a refrigeration cycle, comprising saturated vapor temperature calculation means for calculating the saturated vapor temperature of a refrigerant.
【請求項3】冷媒として沸点が異なる2種類以上の冷媒
を所定の比率で混合した非共沸混合冷媒を用い、圧縮
機、凝縮器、減圧器、蒸発器を順に配管にて環状に連結
して冷媒回路を構成し、前記蒸発器入口から出口に至る
管路に複数の冷媒温度検出手段を設け、前記冷媒温度検
出手段によって検出された複数の冷媒温度を用いて前記
圧縮機に吸入される冷媒の飽和蒸気温度を算出する飽和
蒸気温度算出手段及びこの飽和蒸気温度算出手段によっ
て算出された飽和蒸気温度を補正する飽和蒸気温度補正
手段を有する冷凍サイクルの飽和蒸気温度検出装置。
3. A non-azeotropic mixed refrigerant in which two or more kinds of refrigerants having different boiling points are mixed at a predetermined ratio is used as a refrigerant, and a compressor, a condenser, a decompressor, and an evaporator are sequentially connected by a pipe in an annular shape. A refrigerant circuit, and a plurality of refrigerant temperature detecting means are provided in a pipeline from the evaporator inlet to the outlet, and the refrigerant is sucked into the compressor using the plurality of refrigerant temperatures detected by the refrigerant temperature detecting means. A saturated steam temperature detecting device for a refrigeration cycle, which has a saturated steam temperature calculating means for calculating a saturated steam temperature of a refrigerant and a saturated steam temperature correcting means for correcting the saturated steam temperature calculated by the saturated steam temperature calculating means.
【請求項4】蒸発器の入口から出口に至る管路の入口付
近に第1の冷媒温度検出手段、中間部付近に第2の冷媒
温度検出手段を設け、飽和蒸気温度算出手段において下
式を用いて飽和蒸気温度を算出する請求項2または3記
載の冷凍サイクルの飽和蒸気温度検出装置。 TS=T3+(T4−T3)×2 ただし、T3は第1の冷媒温度検出手段によって検出さ
れた温度、T4は第2の冷媒温度検出手段によって検出
された温度、TSは飽和蒸気温度をあらわす。
4. A first refrigerant temperature detecting means is provided near an inlet of a pipeline extending from an inlet of the evaporator to an outlet thereof, and a second refrigerant temperature detecting means is provided near an intermediate portion of the evaporator, and the following equation is used in the saturated vapor temperature calculating means. The saturated vapor temperature detection device of the refrigeration cycle according to claim 2 or 3, wherein the saturated vapor temperature is calculated using the saturated vapor temperature. TS = T3 + (T4−T3) × 2 where T3 represents the temperature detected by the first refrigerant temperature detecting means, T4 represents the temperature detected by the second refrigerant temperature detecting means, and TS represents the saturated vapor temperature.
【請求項5】飽和蒸気温度補正手段にて、飽和蒸気温度
算出手段にて算出された飽和蒸気温度より所定値を減じ
て補正する請求項3に記載の冷凍サイクルの飽和蒸気温
度検出装置。
5. The saturated steam temperature detecting device for a refrigeration cycle according to claim 3, wherein the saturated steam temperature correcting means corrects the saturated steam temperature calculated by the saturated steam temperature calculating means by subtracting a predetermined value from the saturated steam temperature.
JP32913093A 1993-12-24 1993-12-24 Refrigeration cycle saturated steam temperature detector Expired - Fee Related JP3351076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32913093A JP3351076B2 (en) 1993-12-24 1993-12-24 Refrigeration cycle saturated steam temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32913093A JP3351076B2 (en) 1993-12-24 1993-12-24 Refrigeration cycle saturated steam temperature detector

Publications (2)

Publication Number Publication Date
JPH07190506A true JPH07190506A (en) 1995-07-28
JP3351076B2 JP3351076B2 (en) 2002-11-25

Family

ID=18217963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32913093A Expired - Fee Related JP3351076B2 (en) 1993-12-24 1993-12-24 Refrigeration cycle saturated steam temperature detector

Country Status (1)

Country Link
JP (1) JP3351076B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100575223B1 (en) * 2005-01-17 2006-05-02 삼성전자주식회사 Variable capacity refrigeration cycle
US7225627B2 (en) * 1999-11-02 2007-06-05 Xdx Technology, Llc Vapor compression system and method for controlling conditions in ambient surroundings
JP2009174801A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2009174802A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2009174803A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
CN102661640A (en) * 2012-05-08 2012-09-12 雷宜东 Three-way thermostatic expansion valve
CN103335134A (en) * 2013-07-03 2013-10-02 无锡宇吉科技有限公司 Constant temperature adjusting device
CN104344927A (en) * 2013-07-29 2015-02-11 珠海格力电器股份有限公司 Pressure-measured pipeline pressure sensor connecting structure and pressure sensor installing assembly

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7225627B2 (en) * 1999-11-02 2007-06-05 Xdx Technology, Llc Vapor compression system and method for controlling conditions in ambient surroundings
KR100575223B1 (en) * 2005-01-17 2006-05-02 삼성전자주식회사 Variable capacity refrigeration cycle
JP2009174801A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2009174802A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2009174803A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
CN102661640A (en) * 2012-05-08 2012-09-12 雷宜东 Three-way thermostatic expansion valve
CN103335134A (en) * 2013-07-03 2013-10-02 无锡宇吉科技有限公司 Constant temperature adjusting device
CN104344927A (en) * 2013-07-29 2015-02-11 珠海格力电器股份有限公司 Pressure-measured pipeline pressure sensor connecting structure and pressure sensor installing assembly

Also Published As

Publication number Publication date
JP3351076B2 (en) 2002-11-25

Similar Documents

Publication Publication Date Title
JP5791716B2 (en) Refrigeration air conditioner and control method of refrigeration air conditioner
US5598717A (en) Air conditioner having frost preventing member
JPH07190571A (en) Refrigerator using non-azeotropic mixture refrigerant
JP3351076B2 (en) Refrigeration cycle saturated steam temperature detector
JP2943613B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JP3178178B2 (en) Refrigeration cycle saturated steam temperature detection circuit
JP2948105B2 (en) Refrigeration air conditioner using non-azeotropic mixed refrigerant
JPH07198235A (en) Air conditioner
JPH06101911A (en) Refrigerating cycle using non-azeotropic mixed refrigerant
JP2000283568A (en) Refrigerating device and control method therefor
JP3178192B2 (en) Refrigeration cycle control device
JPH09324955A (en) Refrigerating device
JP3298225B2 (en) Air conditioner
JP2010085014A (en) Refrigerating device
JPH1054628A (en) Degree-of-superheat detecting device of refrigerating unit, and refrigerating unit using the device
JP3641849B2 (en) refrigerator
JPH08233378A (en) Air conditioner
JP2002195700A (en) Refrigeration cycle device
JP3511708B2 (en) Operation control unit for air conditioner
JPH07190526A (en) Refrigerating cycle equipment using nonazeotropic mixture refrigerant
JPH0566503B2 (en)
JPH10332211A (en) Air conditioner
JPH10300248A (en) Refrigerating cycle apparatus
JPH08136064A (en) Air conditioner
JPH07103596A (en) Air-conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080920

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090920

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100920

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees