JPH0718438A - Electrostatic chuck device - Google Patents

Electrostatic chuck device

Info

Publication number
JPH0718438A
JPH0718438A JP14648693A JP14648693A JPH0718438A JP H0718438 A JPH0718438 A JP H0718438A JP 14648693 A JP14648693 A JP 14648693A JP 14648693 A JP14648693 A JP 14648693A JP H0718438 A JPH0718438 A JP H0718438A
Authority
JP
Japan
Prior art keywords
substrate
insulator
electrostatic chuck
chuck device
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14648693A
Other languages
Japanese (ja)
Inventor
Hiroshi Doi
浩志 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP14648693A priority Critical patent/JPH0718438A/en
Publication of JPH0718438A publication Critical patent/JPH0718438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Jigs For Machine Tools (AREA)

Abstract

PURPOSE:To provide an electrostatic chuck device capable of eliminating a temp. difference in a substrate to be treated with plasma. CONSTITUTION:The substrate supporting face of a flat electrode 1 is covered with an insulating material 2, and a rugged face 5 is formed on the surface of the insulating material 2. The density of the recessed surface 5b, the density of the protrusion surface 5a or the depth of the recessed surface 5b in the formed rugged face 5 are changed in the surface of insulating material to distribute the electrostatic attraction to be exerted on the substrate. Reciprocity is established between the trend in the distribution of electrostatic attraction and that in the temp. distribution in the substrate by plasma treatment, and the temp. distribution is uniformized in the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、高周波プラズマ処理
装置の基板ホルダーとされる静電チャック装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck device used as a substrate holder for a high frequency plasma processing apparatus.

【0002】[0002]

【従来の技術】高周波プラズマ処理装置としては、スパ
ッタリング装置、プラズマCVD装置、ドライエッチン
グ装置等が従来より知られている。
2. Description of the Related Art As a high frequency plasma processing apparatus, a sputtering apparatus, a plasma CVD apparatus, a dry etching apparatus and the like have been conventionally known.

【0003】これらの装置において、処理の対象とされ
る基板(半導体ウエハー等)は、装置内に設置した基板
ホルダーに支持され、処理に際してはプラズマにさらさ
れることになり、基板自体の温度が通常約200℃前後
に上昇する。このような、処理中の温度上昇を避ける必
要がある場合には、基板ホルダーを水で冷却するなどの
方法により、基板を冷却することが行なわれている。
In these apparatuses, a substrate (semiconductor wafer or the like) to be processed is supported by a substrate holder installed in the apparatus and exposed to plasma during processing, so that the temperature of the substrate itself is usually high. It rises around 200 ° C. When it is necessary to avoid such a temperature rise during processing, the substrate is cooled by a method such as cooling the substrate holder with water.

【0004】基板の冷却効率を良くする為には、基板ホ
ルダーと基板の密着性を良くすることが必要で、その手
段としては基板の縁部をクランプする方法や、静電吸着
力を利用して密着を図る方法が知られている。基板の縁
部をクランプする方法はクランプ部分がデバイス製造か
ら除外されることになって不利なことから、静電吸着力
を利用した基板チャック手段が多用される傾向にある。
In order to improve the cooling efficiency of the substrate, it is necessary to improve the adhesion between the substrate holder and the substrate. As a means therefor, a method of clamping the edge of the substrate or an electrostatic attraction force is used. There is a known method for achieving close contact with each other. Since the method of clamping the edge portion of the substrate is disadvantageous because the clamped portion is excluded from the device manufacturing, there is a tendency that the substrate chuck means utilizing electrostatic attraction force is frequently used.

【0005】前記静電吸着力を利用した静電チャック装
置には図7に示したような構造のものが知られている。
図中、31が基板、32が電極、33が絶縁物、34が
高圧電源(1〜2KV)である。基板支持面35が絶縁
物33で覆われており(以下の実施例も含めて、絶縁物
33は厚く示されているが、実際は数100ミクロンの
厚さである。)、高電圧印加により、絶縁物33の表面
に誘導される静電気によって、基板31を静電吸着する
構成となっている。
An electrostatic chuck device utilizing the electrostatic attraction force has a structure as shown in FIG.
In the figure, 31 is a substrate, 32 is an electrode, 33 is an insulator, and 34 is a high voltage power source (1 to 2 KV). The substrate support surface 35 is covered with an insulator 33 (the insulator 33 is shown thick in the following examples as well, but is actually several hundreds of microns thick), and by applying a high voltage, The substrate 31 is electrostatically attracted by the static electricity induced on the surface of the insulator 33.

【0006】[0006]

【発明が解決しようとする課題】前記のような静電チャ
ック装置を備えた高周波プラズマ処理装置において、処
理中の基板内で温度差が生じる問題点があった。
In the high frequency plasma processing apparatus equipped with the electrostatic chuck device as described above, there is a problem that a temperature difference occurs in the substrate being processed.

【0007】前記静電チャック装置は、基板に働く静電
吸着力は全面に亘ってほぼ均一であり、また、基板支持
面の温度も全面に亘ってほぼ均一であるのに対して、基
板の温度上昇の原因となるイオンの入射分布は、プラズ
マの密度分布に従っている為で、基板側から見て、プラ
ズマ密度の濃い部分と対向する部分で温度が高く、プラ
ズマ密度の淡い部分と対向する部分で温度が低くなると
いう温度分布となっていた。
In the electrostatic chuck device, the electrostatic attraction force acting on the substrate is substantially uniform over the entire surface, and the temperature of the substrate supporting surface is also substantially uniform over the entire surface. The incident distribution of ions that causes the temperature rise follows the density distribution of the plasma. Therefore, when viewed from the substrate side, the temperature is high at the portion facing the portion with a high plasma density and the portion facing the portion with a light plasma density. There was a temperature distribution where the temperature became low at.

【0008】前記プラズマの密度分布は、電極構造等の
放電空間の諸条件によって形成され、例えば円盤状の対
向電極間では、その周縁部に沿ってプラズマの密度が濃
くなる傾向で、これに対して、静電チャックされた基板
も、縁部が中心部に比べて高い温度となる温度分布とな
っていた。
The density distribution of the plasma is formed depending on various conditions of the discharge space such as the electrode structure. For example, between disk-shaped counter electrodes, the plasma density tends to increase along the peripheral edge thereof. The electrostatic chucked substrate also has a temperature distribution in which the edge portion has a higher temperature than the central portion.

【0009】プラズマ処理中の基板にこのような温度分
布が生ずると、基板内における処理の均一性も損なわれ
ることになり、基板の大口径化(半導体ウエハーの場
合)が進行している現状において、大きな問題となって
いる。
When such a temperature distribution is generated in the substrate during plasma processing, the uniformity of processing in the substrate is also impaired, and in the present situation where the substrate has a larger diameter (in the case of a semiconductor wafer). , Has become a big problem.

【0010】この発明は、このような問題点に鑑みてな
されたもので、基板に温度差が生じないようにできる静
電チャック装置を提供することを目的としている。
The present invention has been made in view of the above problems, and an object thereof is to provide an electrostatic chuck device capable of preventing a temperature difference between substrates.

【0011】[0011]

【課題を解決する為の手段】前記の目的を達成するこの
発明の静電チャック装置の一つは、平板状の電極の基板
支持面が絶縁物で覆われており、絶縁物の表面に誘導し
た静電気によって、基板支持面上の基板が静電吸着され
る構成とした静電チャック装置において、前記電極の基
板支持面を覆った絶縁物の表面が凹凸面としてあり、凸
面又は凹面の密度が絶縁物表面内で変化させてあること
を特徴としている。
One of the electrostatic chuck devices of the present invention that achieves the above-mentioned object is that a substrate supporting surface of a flat plate-shaped electrode is covered with an insulating material and is guided to the surface of the insulating material. In the electrostatic chuck device configured to electrostatically attract the substrate on the substrate supporting surface by the static electricity, the surface of the insulator covering the substrate supporting surface of the electrode is an uneven surface, and the density of the convex surface or the concave surface is The feature is that it is changed in the surface of the insulator.

【0012】前記の凹凸面は、絶縁物の表面中央に穴を
設けると共に、その周囲に複数の環状スリットを同心円
状に設けたり、絶縁物の表面に複数のスリットを縦横に
設けることによって形成することができる。凸面又は凹
面の密度を変化させる為に、前記各スリットの幅或いは
間隔を変化させる。
The concavo-convex surface is formed by forming a hole in the center of the surface of the insulator and providing a plurality of annular slits concentrically around the hole, or by providing a plurality of slits on the surface of the insulator vertically and horizontally. be able to. In order to change the density of the convex surface or the concave surface, the width or interval of each slit is changed.

【0013】また、この発明の別の静電チャック装置
は、平板状の電極の基板支持面が絶縁物で覆われてお
り、絶縁物の表面に誘導した静電気によって、基板支持
面上の基板が静電吸着される構成とした静電チャック装
置において、前記電極の基板支持面を覆った絶縁物の表
面に凹部が設けてあり、該凹部の深さが絶縁物表面内で
変化させてあることを特徴としている。
Further, according to another electrostatic chuck device of the present invention, the substrate supporting surface of the flat plate-like electrode is covered with an insulator, and the substrate on the substrate supporting surface is removed by the static electricity induced on the surface of the insulator. In an electrostatic chuck device configured to be electrostatically attracted, a recess is provided on the surface of an insulator covering the substrate supporting surface of the electrode, and the depth of the recess is changed within the surface of the insulator. Is characterized by.

【0014】前記凹部も、絶縁物の表面に複数のスリッ
トを縦横に設けたり、絶縁物の表面中央に穴を設け、か
つその周囲に複数の環状スリットを同心円状に設けるこ
とによって形成することができる。
The recess may also be formed by providing a plurality of slits vertically and horizontally on the surface of the insulating material, or by providing a hole at the center of the surface of the insulating material and by providing a plurality of annular slits around the hole in a concentric shape. it can.

【0015】[0015]

【作用】この発明の静電チャックによれば、凸面又は凹
面の密度の変化によって基板と接する吸着面を変化させ
て、結果として、基板に対する静電吸着面分布を与える
ことができる。
According to the electrostatic chuck of the present invention, the attraction surface in contact with the substrate can be changed by changing the density of the convex surface or the concave surface, and as a result, the electrostatic attraction surface distribution can be given to the substrate.

【0016】また、凹部の深さを変化させた場合も同様
で、絶縁物の表面に誘導される静電気量を変化させて、
結果として、基板に対する静電吸着力分布を与えること
ができる。
The same applies when the depth of the recess is changed, and the amount of static electricity induced on the surface of the insulator is changed to
As a result, it is possible to provide the electrostatic attraction force distribution on the substrate.

【0017】従って、このようにして得られる静電吸着
面分布又は静電吸着力分布と、プラズマ処理中に基板に
与えられる温度分布との間に相反する傾向を与えること
によって、処理中の基板の温度を、基板面内において均
一にすることが可能である。
Therefore, by giving a contradictory tendency between the electrostatic adsorption surface distribution or electrostatic adsorption force distribution thus obtained and the temperature distribution given to the substrate during plasma processing, the substrate being processed is processed. It is possible to make the temperature uniform in the plane of the substrate.

【0018】[0018]

【実施例】以下、プラズマ処理中の基板内の温度分布
が、基板の縁部において高く、中心部において低くなる
場合に好適な実施例について説明する。
EXAMPLE An example suitable for the case where the temperature distribution inside the substrate during plasma processing is high at the edge of the substrate and low at the center will be described below.

【0019】図1(a) および(b) は第1の実施例を示し
たもので、円板状とした電極1が絶縁物2(例えばポリ
イミド樹脂)で覆われており、絶縁物2の上側表面の中
央部に穴3を設けると共に、穴3の周囲に複数の環状ス
リット4a、4aを同心円状に設けて、表面を凹凸面5
としてある。前記環状スリット4aは、夫々の幅が変化
させてあり、電極1の中心から縁部に向って、次第に狭
い幅としてある。この結果、凹凸面5における凸面5a
の密度が電極1の中心から縁部に向って次第に高い密度
となるようにしてある。
FIGS. 1 (a) and 1 (b) show a first embodiment, in which a disk-shaped electrode 1 is covered with an insulator 2 (for example, polyimide resin), A hole 3 is provided in the center of the upper surface, and a plurality of annular slits 4a, 4a are provided concentrically around the hole 3 so that the surface has an uneven surface 5.
There is. The width of each of the annular slits 4a is changed, and the width is gradually narrowed from the center of the electrode 1 toward the edge portion. As a result, the convex surface 5a of the uneven surface 5
Is gradually increased from the center of the electrode 1 toward the edge.

【0020】上記実施例の静電チャック装置は図2に示
したように、真空処理室6内に、対向電極7と対向させ
て設置されるもので、前記凹凸面5で構成された基板支
持面に半導体ウエハーなどの基板8を支持し、電極間隙
9に生成させたプラズマを介して基板8の表面処理が行
なわれる。処理の際には図2に示したように、電極1と
基板8の間に電位差Eを与えることにより(リアクティ
ブイオンエッチングに見られるように、プラズマの生成
によって基板8にセルフバイアス電圧を生じさせて、実
質的に電位差が生じた状態とする場合もある。)、絶縁
物2の表面に静電気を誘導し、基板8との間で静電吸着
力を発生させて、基板8を絶縁物2の表面へ密着させる
ものである。電極1および絶縁物2は、真空処理室6の
壁を貫通するようにして設置した冷却構造体10と一体
的に構成されるもので、冷却構造体10を介して電極1
および絶縁物2が冷却されており、従って絶縁物2に密
着させた基板8も冷却されるものである。
As shown in FIG. 2, the electrostatic chuck device of the above-mentioned embodiment is installed in the vacuum processing chamber 6 so as to face the counter electrode 7, and the substrate support composed of the uneven surface 5 is provided. The substrate 8 such as a semiconductor wafer is supported on the surface, and the surface treatment of the substrate 8 is performed through the plasma generated in the electrode gap 9. At the time of processing, as shown in FIG. 2, by applying a potential difference E between the electrode 1 and the substrate 8 (as seen in reactive ion etching, a self-bias voltage is generated on the substrate 8 by generation of plasma). In some cases, a potential difference is substantially generated.), Static electricity is induced on the surface of the insulator 2, and an electrostatic attraction force is generated between the insulator 8 and the substrate 8 to make the substrate 8 an insulator. It is made to adhere to the surface of 2. The electrode 1 and the insulator 2 are integrally configured with a cooling structure 10 installed so as to penetrate the wall of the vacuum processing chamber 6, and the electrode 1 and the insulator 2 are interposed via the cooling structure 10.
Also, the insulator 2 is cooled, and thus the substrate 8 that is in close contact with the insulator 2 is also cooled.

【0021】プラズマ処理中の基板8内の温度分布が、
基板8の縁部において高く、中心部において低くなる場
合に、実施例の静電チャック装置では、基板8との間で
静電吸着力が作用する凸面5aの密度が電極1の中心か
ら縁部に向って高い密度としてあり、基板8と絶縁物2
の間の熱伝導度が、中心から縁部に向って次第に高くし
てあるので、熱伝導度の分布と前記基板内のプラズマ側
から供給される熱量の分布が逆の傾向となる。この結
果、基板8内の温度分布を均一にすることが可能であ
る。
The temperature distribution in the substrate 8 during plasma processing is
In the electrostatic chuck device of the embodiment, when the edge of the substrate 8 is high and the center of the electrode 8 is low, the density of the convex surface 5 a on the substrate 8 on which the electrostatic adsorption force acts is from the center of the electrode 1 to the edge. It has a high density toward the substrate 8 and the insulator 2
Since the thermal conductivity between the two is gradually increased from the center toward the edge, the distribution of the thermal conductivity and the distribution of the amount of heat supplied from the plasma side in the substrate tend to be opposite. As a result, it is possible to make the temperature distribution in the substrate 8 uniform.

【0022】図3は前記電極1を、半円板状の電極1
a、1bに分割した実施例で、絶縁物2は電極1a、1
bを並べた状態で覆っている。絶縁物2の上側表面に設
けた穴3および複数の環状スリット4a、4aは図1の
実施例と同様である。
In FIG. 3, the electrode 1 is replaced by a semi-disc shaped electrode 1.
In the embodiment divided into a and 1b, the insulator 2 has electrodes 1a and 1b.
It covers in the state where b is arranged. The hole 3 and the plurality of annular slits 4a, 4a provided on the upper surface of the insulator 2 are the same as those in the embodiment of FIG.

【0023】この実施例では、電極1aと電極1bの間
に電位差Eを与えて、絶縁物2と基板8の間に静電吸着
力を得ることができる。両者の間の熱伝導度の分布は前
記と同様であり、従って、基板8内の温度分布を均一に
することが可能である。
In this embodiment, a potential difference E can be applied between the electrodes 1a and 1b to obtain an electrostatic attraction force between the insulator 2 and the substrate 8. The distribution of thermal conductivity between the two is the same as that described above, and therefore the temperature distribution within the substrate 8 can be made uniform.

【0024】次に図4(a)(b)は第3の実施例を示したも
のであり、前記と同様に電極1が絶縁物2で覆われてお
り、絶縁物2の上側表面の中央に穴3を設けると共に、
穴3の周囲に複数の環状スリット4b、4bを同心円状
に設けて、表面を凹凸面5としてある。前記環状スリッ
ト4b、4bは、前記実施例と異なり、互いに同一の幅
としてあり、隣接する環状スリットとの間隔が、電極1
の中心から縁部に向って次第に広くしてある。この結
果、凹凸面5における凸面5aの密度が電極1の中心か
ら縁部に向って次第に高い密度となるようにしてある。
Next, FIGS. 4 (a) and 4 (b) show a third embodiment in which the electrode 1 is covered with the insulator 2 as in the above, and the center of the upper surface of the insulator 2 is shown. With hole 3 in the
A plurality of annular slits 4b and 4b are concentrically provided around the hole 3 to form the surface as the uneven surface 5. Unlike the above embodiment, the annular slits 4b and 4b have the same width, and the distance between the adjacent annular slits is equal to that of the electrode 1
The width gradually increases from the center to the edge. As a result, the density of the convex surfaces 5a on the uneven surface 5 is gradually increased from the center of the electrode 1 toward the edge.

【0025】また、図5(a)(b)は第4の実施例を示した
もので、電極1が絶縁物2で覆われており、絶縁物2の
上側表面に、スリット4c、4dを縦横に設けて、表面
を凹凸面5としてある。前記縦横のスリット4c、4d
は、夫々、電極1の中心から縁部に向って、幅を次第に
狭くしてある。この結果、凹凸面5における凸面5aの
密度が電極1の中心から縁部に向って、次第に高い密度
となるようにしてある。
5 (a) and 5 (b) show a fourth embodiment in which the electrode 1 is covered with an insulator 2, and slits 4c, 4d are formed on the upper surface of the insulator 2. It is provided vertically and horizontally, and the surface is the uneven surface 5. The vertical and horizontal slits 4c and 4d
Respectively, the width is gradually narrowed from the center of the electrode 1 toward the edge. As a result, the density of the convex surface 5a on the uneven surface 5 is gradually increased from the center of the electrode 1 toward the edge portion.

【0026】図4および図5に示した実施例でも、基板
8と絶縁物2の間の熱伝導度の分布と、プラズマ処理中
の基板8内の温度分布を逆の傾向とすることができ、基
板8内の温度分布を均一にすることが可能である。
Also in the embodiment shown in FIGS. 4 and 5, the distribution of the thermal conductivity between the substrate 8 and the insulator 2 and the temperature distribution in the substrate 8 during the plasma processing can be made to have opposite tendencies. It is possible to make the temperature distribution in the substrate 8 uniform.

【0027】次に図6(a)(b)は、絶縁物2の上側表面に
設けた凹部の深さを変化させた実施例を示したものであ
る。即ち、円板状の電極1が絶縁物2で覆われており、
絶縁物2の上側表面に、スリット4e、4fを縦横に設
けて、表面内に凹部5bを分布させてある。前記スリッ
ト4e、4fは、その深さが、電極1の中心から縁部に
向って、次第に浅くしてある。
Next, FIGS. 6A and 6B show an embodiment in which the depth of the concave portion provided on the upper surface of the insulator 2 is changed. That is, the disk-shaped electrode 1 is covered with the insulator 2,
On the upper surface of the insulator 2, slits 4e and 4f are provided vertically and horizontally, and recesses 5b are distributed in the surface. The depths of the slits 4e and 4f are gradually reduced from the center of the electrode 1 toward the edge.

【0028】この実施例でも、絶縁物2の上側に支持し
た基板に対する静電吸着力は、電極1の中心から縁部に
向って、次第に強くなるので、熱伝導度においても同様
の傾向となり、プラズマ処理中に、縁部側が高い温度と
なる基板の温度分布を均一にすることが可能である。
Also in this embodiment, the electrostatic attraction force with respect to the substrate supported on the upper side of the insulator 2 gradually increases from the center of the electrode 1 toward the edge portion, so that the same tendency is observed in the thermal conductivity. It is possible to make the temperature distribution of the substrate having a high temperature on the edge side uniform during the plasma processing.

【0029】以上、プラズマ処理中の基板内の温度分布
が基板の縁部において高く、中心部において低くなる場
合に好適な実施例について説明したが、基板内の温度分
布が逆の場合には、前記実施例の環状スリット、又はス
リットの幅、間隔或いは深さの変化を実施例と逆の関係
とするなど、基板内の温度分布の傾向に応じて、変化さ
せて実施することができる。
The preferred embodiment has been described above in which the temperature distribution in the substrate during plasma processing is high at the edge of the substrate and low at the center, but when the temperature distribution in the substrate is opposite, The annular slit of the above-described embodiment, or the width, interval, or depth of the slit may be changed in accordance with the tendency of the temperature distribution in the substrate, such as by making the relationship inverse to that of the embodiment.

【0030】[0030]

【発明の効果】以上に説明したようにこの発明によれ
ば、基板と、該基板と接する絶縁物の間の熱伝導度を変
化させて、プラズマ側から受ける熱量の分布を相殺する
ことにより、基板内の温度分布を均一にできるので、基
板内におけるプラズマ処理を均一にできる効果がある。
As described above, according to the present invention, the thermal conductivity between the substrate and the insulator in contact with the substrate is changed to cancel the distribution of the amount of heat received from the plasma side. Since the temperature distribution in the substrate can be made uniform, there is an effect that plasma processing in the substrate can be made uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) はこの発明の第1実施例の一部平面図、
(b) は同じく第1実施例の断面図である。
FIG. 1 (a) is a partial plan view of a first embodiment of the present invention,
(b) is a sectional view of the first embodiment.

【図2】この発明の実施例の使用状態を示す概略断面図
である。
FIG. 2 is a schematic cross-sectional view showing a usage state of the embodiment of the present invention.

【図3】この発明の第2実施例の断面図である。FIG. 3 is a sectional view of a second embodiment of the present invention.

【図4】(a) はこの発明の第3実施例の一部平面図、
(b) は同じく第3実施例の断面図である。
FIG. 4 (a) is a partial plan view of a third embodiment of the present invention,
(b) is a sectional view of the third embodiment.

【図5】(a) はこの発明の第4実施例の一部平面図、
(b) は同じく第4実施例の断面図である。
FIG. 5 (a) is a partial plan view of a fourth embodiment of the present invention,
(b) is a sectional view of the fourth embodiment.

【図6】(a) はこの発明の第5実施例の一部平面図、
(b) は同じく第5実施例の断面図である。
FIG. 6 (a) is a partial plan view of a fifth embodiment of the present invention,
(b) is a sectional view of the fifth embodiment.

【図7】(a) 、(b) は従来の静電チャック装置の断面図
である。
7A and 7B are cross-sectional views of a conventional electrostatic chuck device.

【符号の説明】[Explanation of symbols]

1、1a、1b 電極 2 絶縁物 3 穴 4a、4b 環状スリット 4c、4d、4e、4f スリット 5 凹凸面 5a 凸面 5b 凹部 6 真空処理室 7 対向電極 8 基板 9 対向間隙 10 冷却構造体 1, 1a, 1b Electrode 2 Insulator 3 Hole 4a, 4b Annular slit 4c, 4d, 4e, 4f Slit 5 Uneven surface 5a Convex surface 5b Recess 6 Vacuum processing chamber 7 Counter electrode 8 Substrate 9 Counter gap 10 Cooling structure

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/68 R ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H01L 21/68 R

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 平板状の電極の基板支持面が絶縁物で覆
われており、絶縁物の表面に誘導した静電気によって、
基板支持面上の基板が静電吸着される構成とした静電チ
ャック装置において、前記電極の基板支持面を覆った絶
縁物の表面が凹凸面としてあり、凸面の密度が絶縁物表
面内で変化させてあることを特徴とする静電チャック装
1. A substrate supporting surface of a flat plate-shaped electrode is covered with an insulator, and static electricity induced on the surface of the insulator causes
In an electrostatic chuck device configured to electrostatically attract a substrate on a substrate supporting surface, the surface of the insulator covering the substrate supporting surface of the electrode is an uneven surface, and the density of the convex surface changes within the insulator surface. The electrostatic chuck device characterized in that
【請求項2】 平板状の電極の基板支持面が絶縁物で覆
われており、絶縁物の表面に誘導した静電気によって、
基板支持面上の基板が静電吸着される構成とした静電チ
ャック装置において、前記電極の基板支持面を覆った絶
縁物の表面が凹凸面としてあり、凹面の密度が絶縁物表
面内で変化させてあることを特徴とする静電チャック装
2. The flat plate-shaped electrode supporting surface of the substrate is covered with an insulator, and static electricity induced on the surface of the insulator causes
In an electrostatic chuck device configured to electrostatically adsorb a substrate on a substrate supporting surface, the surface of the insulator covering the substrate supporting surface of the electrode is an uneven surface, and the density of the concave surface changes within the surface of the insulator. The electrostatic chuck device characterized in that
【請求項3】 凹凸面は、絶縁物の表面の中央に穴を設
けると共に、中央の穴の周囲に複数の環状スリットを同
心円状に設けて形成した請求項1又は2に記載の静電チ
ャック装置
3. The electrostatic chuck according to claim 1, wherein the uneven surface is formed by forming a hole in the center of the surface of the insulator and providing a plurality of annular slits concentrically around the hole in the center. apparatus
【請求項4】 環状スリットの幅が、電極の中心から周
縁に向って次第に狭く又は次第に広くしてある請求項3
記載の静電チャック装置
4. The width of the annular slit is gradually narrowed or widened from the center of the electrode toward the peripheral edge.
Described electrostatic chuck device
【請求項5】 環状スリットの間隔が、電極の中心から
周縁に向って次第に広く又は狭くしてある請求項3記載
の静電チャック装置
5. The electrostatic chuck device according to claim 3, wherein the interval between the annular slits is gradually widened or narrowed from the center of the electrode toward the peripheral edge.
【請求項6】 凹凸面は、絶縁物の表面に複数のスリッ
トを縦横に設けて形成した請求項1又は2に記載の静電
チャック装置
6. The electrostatic chuck device according to claim 1, wherein the uneven surface is formed by forming a plurality of slits on the surface of an insulating material in the vertical and horizontal directions.
【請求項7】 スリットの幅が、電極の中心から周縁に
向って次第に広く又は次第に狭くしてある請求項5記載
の静電チャック装置
7. The electrostatic chuck device according to claim 5, wherein the width of the slit is gradually widened or gradually narrowed from the center of the electrode toward the peripheral edge.
【請求項8】 平板状の電極の基板支持面が絶縁物で覆
われており、絶縁物の表面に誘導した静電気によって、
基板支持面上の基板が静電吸着される構成とした静電チ
ャック装置において、前記電極の基板支持面を覆った絶
縁物の表面に凹部が設けてあり、該凹部の深さが絶縁物
表面内で変化させてあることを特徴とする静電チャック
装置
8. A substrate supporting surface of a flat plate-shaped electrode is covered with an insulator, and static electricity induced on the surface of the insulator causes
In an electrostatic chuck device configured to electrostatically attract a substrate on a substrate supporting surface, a recess is provided on the surface of an insulator covering the substrate supporting surface of the electrode, and the depth of the recess is the surface of the insulator. Electrostatic chuck device characterized in that it is changed in
【請求項9】 凹部は、縦横に設けた複数のスリット又
は同心円状に設けた複数の環状スリットと中央の穴で形
成した請求項8記載の静電チャック装置
9. The electrostatic chuck device according to claim 8, wherein the concave portion is formed by a plurality of slits provided vertically and horizontally or a plurality of annular slits provided concentrically and a central hole.
【請求項10】 凹部の深さは、電極の中心から周縁に
向って、次第に浅く又は次第に深くしてある請求項8記
載の静電チャック装置
10. The electrostatic chuck device according to claim 8, wherein the depth of the recess is gradually shallower or deeper from the center of the electrode toward the peripheral edge.
JP14648693A 1993-06-17 1993-06-17 Electrostatic chuck device Pending JPH0718438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14648693A JPH0718438A (en) 1993-06-17 1993-06-17 Electrostatic chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14648693A JPH0718438A (en) 1993-06-17 1993-06-17 Electrostatic chuck device

Publications (1)

Publication Number Publication Date
JPH0718438A true JPH0718438A (en) 1995-01-20

Family

ID=15408726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14648693A Pending JPH0718438A (en) 1993-06-17 1993-06-17 Electrostatic chuck device

Country Status (1)

Country Link
JP (1) JPH0718438A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656093A (en) * 1996-03-08 1997-08-12 Applied Materials, Inc. Wafer spacing mask for a substrate support chuck and method of fabricating same
US5777838A (en) * 1995-12-19 1998-07-07 Fujitsu Limited Electrostatic chuck and method of attracting wafer
US5810933A (en) * 1996-02-16 1998-09-22 Novellus Systems, Inc. Wafer cooling device
US5885469A (en) * 1996-11-05 1999-03-23 Applied Materials, Inc. Topographical structure of an electrostatic chuck and method of fabricating same
EP0993024A3 (en) * 1998-09-29 2002-07-17 Ngk Insulators, Ltd. Electrostatic chuck
WO2002065510A1 (en) * 2000-12-22 2002-08-22 Asm America, Inc. Susceptor pocket profile to improve process performance
US6482747B1 (en) 1997-12-26 2002-11-19 Hitachi, Ltd. Plasma treatment method and plasma treatment apparatus
JP2003249542A (en) * 2001-12-20 2003-09-05 Nikon Corp Substrate holder, aligner, and method of manufacturing device
EP1396879A1 (en) * 2001-05-31 2004-03-10 Shin-Etsu Handotai Co., Ltd Method of fabricating semiconductor wafer and susceptor used therefor
US6709267B1 (en) 2002-12-27 2004-03-23 Asm America, Inc. Substrate holder with deep annular groove to prevent edge heat loss
JP2006032461A (en) * 2004-07-13 2006-02-02 Canon Inc Electrostatic attraction device and electron source manufacturing device
US7033445B2 (en) 2001-12-27 2006-04-25 Asm America, Inc. Gridded susceptor
US7227619B2 (en) * 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007142455A (en) * 2000-04-27 2007-06-07 Shin Etsu Handotai Co Ltd Device for process of fabricating semiconductor device
US7248456B2 (en) 2003-01-29 2007-07-24 Kyocera Corporation Electrostatic chuck
JP2007198967A (en) * 2006-01-27 2007-08-09 Orion Mach Co Ltd Temperature-conditioning type environment tester of plate
EP1594161A4 (en) * 2003-02-03 2008-10-22 Octec Inc Plasma processing apparatus, electrode plate for plasma processing apparatus, and electrode plate manufacturing method
JP2009076919A (en) * 1998-05-20 2009-04-09 Akt Kk Multifunctional chamber for substrate treatment system
JP2009520452A (en) * 2005-11-30 2009-05-21 ラム リサーチ コーポレーション Method for determining target mesa configuration of electrostatic chuck
US7646580B2 (en) 2005-02-24 2010-01-12 Kyocera Corporation Electrostatic chuck and wafer holding member and wafer treatment method
US7718007B2 (en) 2005-03-17 2010-05-18 Tokyo Electron Limited Substrate supporting member and substrate processing apparatus
JP2010135851A (en) * 2003-12-05 2010-06-17 Tokyo Electron Ltd Electrostatic chuck
WO2010055441A3 (en) * 2008-11-12 2010-07-08 Lam Research Corporation Improved substrate temperature control by using liquid controlled multizone substrate support
JP2010157776A (en) * 2010-04-14 2010-07-15 Fujitsu Semiconductor Ltd Electrostatic chuck
JP2010177701A (en) * 2010-04-14 2010-08-12 Fujitsu Semiconductor Ltd Electrostatic chuck
JP2011114238A (en) * 2009-11-27 2011-06-09 Canon Inc Substrate holding device, exposure device using the same, and device manufacturing method
TWI392043B (en) * 2005-03-17 2013-04-01 Tokyo Electron Ltd A substrate holding member and a substrate processing apparatus
KR101310109B1 (en) * 2011-06-13 2013-09-23 주식회사 엠와이에스 Electrostatic Chuck formed pad in edge of ceramic body
JP2014195047A (en) * 2013-02-28 2014-10-09 Tokyo Electron Ltd Mounting table and plasma processing device
US9359672B2 (en) 2005-01-18 2016-06-07 Asm America, Inc. Reaction system for growing a thin film
KR20180012698A (en) * 2016-07-27 2018-02-06 램 리써치 코포레이션 Substrate support with increasing areal density and corresponding method of fabricating
JP2018098497A (en) * 2016-11-29 2018-06-21 ラム リサーチ コーポレーションLam Research Corporation Substrate support having area between mesas of different depth and corresponding temperature dependent processing method
CN110504205A (en) * 2018-05-16 2019-11-26 应用材料公司 High temperature electrostatic sucker
KR20200004940A (en) * 2018-07-04 2020-01-15 삼성디스플레이 주식회사 Electrostatic chuck unit and thin film depositing apparatus using the same
JP2020070488A (en) * 2018-10-30 2020-05-07 キヤノントッキ株式会社 Electrostatic chuck system, film deposition device, adsorption method, film deposition method, and electronic device manufacturing method
US10872803B2 (en) 2017-11-03 2020-12-22 Asm Ip Holding B.V. Apparatus and methods for isolating a reaction chamber from a loading chamber resulting in reduced contamination
US10872804B2 (en) 2017-11-03 2020-12-22 Asm Ip Holding B.V. Apparatus and methods for isolating a reaction chamber from a loading chamber resulting in reduced contamination
JP2021520634A (en) * 2018-04-04 2021-08-19 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck with sealing surface
JP2021527962A (en) * 2018-06-22 2021-10-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated How to minimize wafer backside damage in semiconductor wafer processing

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777838A (en) * 1995-12-19 1998-07-07 Fujitsu Limited Electrostatic chuck and method of attracting wafer
US5810933A (en) * 1996-02-16 1998-09-22 Novellus Systems, Inc. Wafer cooling device
US5656093A (en) * 1996-03-08 1997-08-12 Applied Materials, Inc. Wafer spacing mask for a substrate support chuck and method of fabricating same
US5885469A (en) * 1996-11-05 1999-03-23 Applied Materials, Inc. Topographical structure of an electrostatic chuck and method of fabricating same
US6482747B1 (en) 1997-12-26 2002-11-19 Hitachi, Ltd. Plasma treatment method and plasma treatment apparatus
JP2009076919A (en) * 1998-05-20 2009-04-09 Akt Kk Multifunctional chamber for substrate treatment system
EP0993024A3 (en) * 1998-09-29 2002-07-17 Ngk Insulators, Ltd. Electrostatic chuck
JP2007142455A (en) * 2000-04-27 2007-06-07 Shin Etsu Handotai Co Ltd Device for process of fabricating semiconductor device
US6840767B2 (en) 2000-12-22 2005-01-11 Asm America, Inc. Susceptor pocket profile to improve process performance
US6634882B2 (en) 2000-12-22 2003-10-21 Asm America, Inc. Susceptor pocket profile to improve process performance
US6729875B2 (en) 2000-12-22 2004-05-04 Asm America, Inc. Susceptor pocket profile to improve process performance
WO2002065510A1 (en) * 2000-12-22 2002-08-22 Asm America, Inc. Susceptor pocket profile to improve process performance
EP1396879A4 (en) * 2001-05-31 2006-09-27 Shinetsu Handotai Kk Method of fabricating semiconductor wafer and susceptor used therefor
EP1396879A1 (en) * 2001-05-31 2004-03-10 Shin-Etsu Handotai Co., Ltd Method of fabricating semiconductor wafer and susceptor used therefor
JP2003249542A (en) * 2001-12-20 2003-09-05 Nikon Corp Substrate holder, aligner, and method of manufacturing device
US7033445B2 (en) 2001-12-27 2006-04-25 Asm America, Inc. Gridded susceptor
US6709267B1 (en) 2002-12-27 2004-03-23 Asm America, Inc. Substrate holder with deep annular groove to prevent edge heat loss
US7457098B2 (en) 2003-01-29 2008-11-25 Kyocera Corporation Electrostatic chuck
US7248456B2 (en) 2003-01-29 2007-07-24 Kyocera Corporation Electrostatic chuck
EP1594161A4 (en) * 2003-02-03 2008-10-22 Octec Inc Plasma processing apparatus, electrode plate for plasma processing apparatus, and electrode plate manufacturing method
US7585386B2 (en) 2003-02-03 2009-09-08 Octec Inc. Plasma processing apparatus, electrode plate for plasma processing apparatus, and electrode plate manufacturing method
US7922862B2 (en) 2003-02-03 2011-04-12 Octec Inc. Plasma processing apparatus, electrode plate for plasma processing apparatus, and electrode plate manufacturing method
JP2010135851A (en) * 2003-12-05 2010-06-17 Tokyo Electron Ltd Electrostatic chuck
US7227619B2 (en) * 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006032461A (en) * 2004-07-13 2006-02-02 Canon Inc Electrostatic attraction device and electron source manufacturing device
US10468291B2 (en) 2005-01-18 2019-11-05 Asm America, Inc. Reaction system for growing a thin film
US9359672B2 (en) 2005-01-18 2016-06-07 Asm America, Inc. Reaction system for growing a thin film
US7646580B2 (en) 2005-02-24 2010-01-12 Kyocera Corporation Electrostatic chuck and wafer holding member and wafer treatment method
TWI392043B (en) * 2005-03-17 2013-04-01 Tokyo Electron Ltd A substrate holding member and a substrate processing apparatus
US7718007B2 (en) 2005-03-17 2010-05-18 Tokyo Electron Limited Substrate supporting member and substrate processing apparatus
JP2012231157A (en) * 2005-11-30 2012-11-22 Lam Research Corporation Method of determining target mesa configuration of electrostatic chuck
JP2009520452A (en) * 2005-11-30 2009-05-21 ラム リサーチ コーポレーション Method for determining target mesa configuration of electrostatic chuck
JP2007198967A (en) * 2006-01-27 2007-08-09 Orion Mach Co Ltd Temperature-conditioning type environment tester of plate
WO2010055441A3 (en) * 2008-11-12 2010-07-08 Lam Research Corporation Improved substrate temperature control by using liquid controlled multizone substrate support
JP2011114238A (en) * 2009-11-27 2011-06-09 Canon Inc Substrate holding device, exposure device using the same, and device manufacturing method
JP2010177701A (en) * 2010-04-14 2010-08-12 Fujitsu Semiconductor Ltd Electrostatic chuck
JP2010157776A (en) * 2010-04-14 2010-07-15 Fujitsu Semiconductor Ltd Electrostatic chuck
KR101310109B1 (en) * 2011-06-13 2013-09-23 주식회사 엠와이에스 Electrostatic Chuck formed pad in edge of ceramic body
JP2014195047A (en) * 2013-02-28 2014-10-09 Tokyo Electron Ltd Mounting table and plasma processing device
KR20220125205A (en) 2016-07-27 2022-09-14 램 리써치 코포레이션 Substrate support with increasing areal density and corresponding method of fabricating
KR20180012698A (en) * 2016-07-27 2018-02-06 램 리써치 코포레이션 Substrate support with increasing areal density and corresponding method of fabricating
JP2018098497A (en) * 2016-11-29 2018-06-21 ラム リサーチ コーポレーションLam Research Corporation Substrate support having area between mesas of different depth and corresponding temperature dependent processing method
US11626313B2 (en) 2017-11-03 2023-04-11 Asm Ip Holding B.V. Apparatus and methods for isolating a reaction chamber from a loading chamber resulting in reduced contamination
US10872804B2 (en) 2017-11-03 2020-12-22 Asm Ip Holding B.V. Apparatus and methods for isolating a reaction chamber from a loading chamber resulting in reduced contamination
US10872803B2 (en) 2017-11-03 2020-12-22 Asm Ip Holding B.V. Apparatus and methods for isolating a reaction chamber from a loading chamber resulting in reduced contamination
JP2021520634A (en) * 2018-04-04 2021-08-19 ラム リサーチ コーポレーションLam Research Corporation Electrostatic chuck with sealing surface
JP2020013983A (en) * 2018-05-16 2020-01-23 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High temperature electrostatic chuck
US11133212B2 (en) 2018-05-16 2021-09-28 Applied Materials, Inc. High temperature electrostatic chuck
CN110504205A (en) * 2018-05-16 2019-11-26 应用材料公司 High temperature electrostatic sucker
CN110504205B (en) * 2018-05-16 2023-07-21 应用材料公司 High-temperature electrostatic chuck
JP2021527962A (en) * 2018-06-22 2021-10-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated How to minimize wafer backside damage in semiconductor wafer processing
KR20200004940A (en) * 2018-07-04 2020-01-15 삼성디스플레이 주식회사 Electrostatic chuck unit and thin film depositing apparatus using the same
JP2020070488A (en) * 2018-10-30 2020-05-07 キヤノントッキ株式会社 Electrostatic chuck system, film deposition device, adsorption method, film deposition method, and electronic device manufacturing method

Similar Documents

Publication Publication Date Title
JPH0718438A (en) Electrostatic chuck device
KR100857747B1 (en) Plasma confinement by use of preferred rf return path
US6188564B1 (en) Method and apparatus for compensating non-uniform wafer processing in plasma processing chamber
JP3114739U (en) Gas distribution plate electrode of plasma reactor
US6723214B2 (en) Apparatus for improved power coupling through a workpiece in a semiconductor wafer processing system
KR100635845B1 (en) Electrostatic chuck and its manufacturing method
KR100625712B1 (en) Electrostatic wafer clamp having low particulate contamination of wafers
KR100735937B1 (en) Substrate supporting member and substrate processing apparatus
KR20010013344A (en) Electrostatic support assembly having an integral ion focus ring
KR20000023474A (en) Electrostatic chuck
JPH0338345B2 (en)
KR20200005398A (en) electrostatic chuck and plasma processing apparatus including the same
JPH0922934A (en) Device and method to concentrate plasma on substrate during processing
KR910009321B1 (en) Dry etching apparatus
JPH02268430A (en) Plasma processor
JPH0727959B2 (en) Wafer holding mechanism
KR20230090718A (en) Electrostatic chuck including upper plate and substrate processing apparatus including the same
WO2019058918A1 (en) Wafer supporting device
TWI836422B (en) System for etching with a plasma
JPH06232083A (en) Electrode plate for plasma etching
KR20070099964A (en) Electronic static chuck
JP3273980B2 (en) Double-sided simultaneous etching equipment
JPH0663107B2 (en) Parallel plate type dry etching device
KR200211876Y1 (en) Electrostatic Chuck for Wafer Fixation
KR100252207B1 (en) The lower electrode plate of semiconductor etching device