JPH0338345B2 - - Google Patents

Info

Publication number
JPH0338345B2
JPH0338345B2 JP62155530A JP15553087A JPH0338345B2 JP H0338345 B2 JPH0338345 B2 JP H0338345B2 JP 62155530 A JP62155530 A JP 62155530A JP 15553087 A JP15553087 A JP 15553087A JP H0338345 B2 JPH0338345 B2 JP H0338345B2
Authority
JP
Japan
Prior art keywords
electrode
current density
discharge
uniformity
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62155530A
Other languages
Japanese (ja)
Other versions
JPS644481A (en
Inventor
Minoru Sugawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15553087A priority Critical patent/JPS644481A/en
Publication of JPS644481A publication Critical patent/JPS644481A/en
Publication of JPH0338345B2 publication Critical patent/JPH0338345B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、プラズマプロセス用電極の構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an electrode for plasma processing.

(従来技術とその問題点) 第1図は従来用いられている2枚の平行平板電
極を用いたプラズマエツチング装置の基本構成で
ある。高周波電源7aに接続された平面電極1b
と、これに相対して接地電位にある対向電極1a
が設置されている。反応性ガスを導入する導入系
8と、エツチングチヤンバ9内の圧力を一定に保
つための排気系6とから成る。高周波電源7aに
接続される電極1bは絶縁部材3により真空容器
5と絶縁されている。また、この電極1bに直接
接触された空洞形部4に外部から冷却水10を流
すことにより冷却される。被処理物2は通常、高
周波電源7aに接続された下部電極1b上に配置
される。この電極1bは、直流遮断用コンデンサ
ー7bを介して高周波電源7aに接続されてい
る。これら相対向する電極1a,1b間に放電を
発生させるが、この場合電子と正イオンとの間の
移動度と大きな違いにより電極表面に接して陰極
降下が発生する。この陰極降下部で加速された反
応性ガスイオンは電極及び被処理物2に垂直に入
射し、その方向にエツチングが進行する。
(Prior art and its problems) FIG. 1 shows the basic configuration of a conventional plasma etching apparatus using two parallel plate electrodes. Planar electrode 1b connected to high frequency power source 7a
and a counter electrode 1a at ground potential opposite to this.
is installed. It consists of an introduction system 8 for introducing reactive gas and an exhaust system 6 for keeping the pressure inside the etching chamber 9 constant. The electrode 1b connected to the high frequency power source 7a is insulated from the vacuum container 5 by an insulating member 3. Further, cooling water 10 is allowed to flow from the outside into the hollow portion 4 that is in direct contact with the electrode 1b, thereby cooling the electrode 1b. The object to be processed 2 is usually placed on a lower electrode 1b connected to a high frequency power source 7a. This electrode 1b is connected to a high frequency power source 7a via a DC blocking capacitor 7b. A discharge is generated between these opposing electrodes 1a and 1b, but in this case, cathode drop occurs in contact with the electrode surface due to the large difference in mobility between electrons and positive ions. The reactive gas ions accelerated in this cathode descending section are perpendicularly incident on the electrode and the object to be processed 2, and etching progresses in that direction.

この種装置を用いて得た被処理物2のエツチン
グ(或いはデボジシヨン)速度の処理物表面上で
の面内均一性を、約±5%以内に保つことは極め
て困難なことである。これは、放電用電極1a,
1bと被処理物2の直径がほぼ等しく選んである
ため、電極端部に生起するいわゆる端効果によ
り、あるいは気圧の領域によつては被処理物2の
面の中心部近傍などでのエツチングの低下がみら
れるからである。これらの成因としては、これら
の部分での電流密度の低下、あるいは充分な反応
性ラジカルの補給が行われないことが原因と考え
られる。これら不均一性を補う方法としては、被
処理物2に同心円状にガードリングを設ける手法
などが行われている。ガードリングを用いて端効
果を取り除く事に一応の成功は得ているが、端効
果以外の原因による不均一性を補うことはできな
い上に、放電容器が大きくなるので、経済性の面
からも望ましくない。また、利用される放電容器
は多種多様であるので、端効果の中央部以外にも
多種多様な不均一性がみられるので、これらすべ
ての不均一性を同時に補う方法が得られない限
り、均一性の格段の向上は望まれない。
It is extremely difficult to maintain the in-plane uniformity of the etching (or deposition) rate of the workpiece 2 on the surface of the workpiece 2 within about ±5% using this type of apparatus. This is the discharge electrode 1a,
1b and the workpiece 2 are selected to be approximately equal in diameter, the so-called end effect occurring at the electrode end or, depending on the atmospheric pressure region, etching may occur near the center of the surface of the workpiece 2. This is because a decline is seen. This is thought to be due to a decrease in current density in these parts or insufficient replenishment of reactive radicals. As a method of compensating for these non-uniformities, a method of providing concentric guard rings on the object 2 to be processed is used. Although we have achieved some success in removing edge effects using guard rings, it is not possible to compensate for non-uniformity caused by causes other than edge effects, and it also increases the size of the discharge vessel, so it is not economically viable. Undesirable. In addition, since there are a wide variety of discharge vessels used, a wide variety of non-uniformities can be seen in areas other than the center of the end effect. A drastic improvement in sexuality is not desired.

(発明の目的) 本発明は、以上のような従来技術では到達が不
可能であつた、如何なる面内不均一性に対しても
対処できるような平行平板放電用電極を提供する
ものである。
(Objective of the Invention) The present invention provides an electrode for parallel plate discharge that can deal with any in-plane non-uniformity that has not been possible with the conventional techniques as described above.

(発明の原理) この目的を達成するために、本発明では被処理
物表面においてエツチング(或いはデポジシヨ
ン)の低下している部分の電流密度を増加させる
ために、対向電極上で対応する部分に凹部を設
け、その凹部内に電流を集中させることにより、
被処理物面上での電流密度を増加させるものであ
る。
(Principle of the Invention) In order to achieve this object, in the present invention, in order to increase the current density in the part where etching (or deposition) is reduced on the surface of the object to be processed, a recess is formed in the corresponding part on the counter electrode. By providing a hole and concentrating the current in the recess,
This increases the current density on the surface of the workpiece.

また同じ電極は、同一電力入力で大きい電流が
得られる電極構造なので被処理物のダメージを増
やすことなく、エツチング(或いはデポジシヨ
ン)レートの増加に対する要請にも対処できる電
極構造になつている。このようにして得られる放
電電流密度は面内均一性を高めることにより、エ
ツチング(或いはデポジシヨン)レートの面内均
一性を格段に向上(約±3%かそれ以内)させる
ことができる。
Furthermore, since the same electrode has an electrode structure that allows a large current to be obtained with the same power input, it has an electrode structure that can meet the demands for increasing the etching (or deposition) rate without increasing damage to the object to be processed. By increasing the in-plane uniformity of the discharge current density obtained in this way, the in-plane uniformity of the etching (or deposition) rate can be significantly improved (about ±3% or less).

(発明の構成) 以下添付図面に基づいて、本発明の実施例を説
明する。
(Structure of the Invention) Examples of the present invention will be described below based on the accompanying drawings.

例 1 穴あき型電極 第2図はこの構造の実施例に係る電極構造図で
あり、4吋ウエハーに適合する寸法として描いて
ある。この図は円形電極で、円の中心に対し対称
な構造であり、電極の半分のみを示してある。こ
の図の例では、半径7mm、深さ15mmの穴を、円板
の外周では多く、内側に向うに従つて少なく配置
して描いてある。すなわち電極表面上で単位表面
積に対する穴の部分の面積の比が、外側さら内側
に向つて小さくなる様に、穴の数を配置してあ
る。この例は、電極の外周部の放電電流密度が高
く、中心部に向かつて電流密度が低くなるような
電極構造である。穴の寸法、すなわち半径と深さ
がガスの種類と使用ガス圧によつて最適な寸法が
あり、第2図の例はアルゴン気圧0.01〜0.1Torr
の領域で動作可能なものである。穴の部分に、い
わゆるホロー陰極放電を発生させて使用するもの
であるので、冷陰極グロー放電の陰極降下の厚み
の2倍が、この穴の直径より僅か小さい程度が最
適である。穴の深さについては、穴の深さが穴の
直径の2倍程度かそれ以上にすれば、安定なホロ
ー陰極放電が得られる。
Example 1 Perforated Electrode FIG. 2 is a diagram of an electrode structure according to an embodiment of this structure, and is drawn with dimensions suitable for a 4-inch wafer. This figure shows a circular electrode, with a structure symmetrical about the center of the circle, and only half of the electrode is shown. In the example shown in this figure, holes with a radius of 7 mm and a depth of 15 mm are drawn, with more holes on the outer periphery of the disk and fewer holes toward the inside. That is, the number of holes is arranged so that the ratio of the area of the hole to the unit surface area on the electrode surface decreases from the outside toward the inside. This example has an electrode structure in which the discharge current density is high at the outer periphery of the electrode, and the current density decreases toward the center. The hole dimensions, i.e. radius and depth, have optimal dimensions depending on the type of gas and the gas pressure used.
It is possible to operate in the area of Since a so-called hollow cathode discharge is generated and used in the hole, it is optimal that twice the thickness of the cathode fall of the cold cathode glow discharge is slightly smaller than the diameter of the hole. Regarding the depth of the hole, if the depth of the hole is about twice or more than the diameter of the hole, stable hollow cathode discharge can be obtained.

上に述べた構造の電極を第1図に示した対向電
極1aとして用い、被処理物2を設置する電極1
bと平行に配置する。これら両電極1a,1bの
間隔は、使用ガスに対する電子の平均自由行程の
数倍程度が最適である。この間隔より狭くする
と、穴あき電極上の電流分布が直接に被処理物2
の面上の電流に影響を及ぼし、面上における電流
分布に小さな凹凸を生じさせる。一方、間隔を広
くしすぎると穴あき電極の効果がマスクされてし
まう。
The electrode having the structure described above is used as the counter electrode 1a shown in FIG. 1, and the electrode 1 on which the object to be treated 2 is placed
Place it parallel to b. The optimal distance between these electrodes 1a and 1b is approximately several times the mean free path of electrons with respect to the gas used. If the interval is narrower than this, the current distribution on the perforated electrode will directly affect the workpiece 2.
affects the current on the surface, causing small irregularities in the current distribution on the surface. On the other hand, if the spacing is too wide, the effect of the perforated electrodes will be masked.

例 2 溝切り型電極 例1の穴のかわりに溝を切りその溝内にホロー
陰極放電を形成させる形式の電極構造である。第
3図に示した例は、直径4吋の円形電極の電極周
辺部に円心円状に4本の溝を切つた形状のもので
ある。溝の幅を7mm、深さ30mmにした例である。
アルゴンガスで、ガス圧0.01〜0.1Torrで安定な
ホロー陰極放電が得られている。
Example 2 Grooved Electrode This is an electrode structure in which a groove is cut in place of the hole in Example 1 and a hollow cathode discharge is formed within the groove. The example shown in FIG. 3 has a circular electrode with a diameter of 4 inches, with four grooves cut in a circular pattern around the electrode. This is an example in which the width of the groove is 7 mm and the depth is 30 mm.
Stable hollow cathode discharge has been obtained with argon gas at a gas pressure of 0.01 to 0.1 Torr.

第4図に示した例は、円形電極の全面に溝を切
つた場合で、溝と溝の間を仕切つている側壁の厚
みを周辺では1mmにし、内側では2mmに選んだ例
である。第3図の例は、第4図の例に比べて周辺
部と中央部の電流密度比を大きく選んだものであ
る。
The example shown in Figure 4 is an example in which grooves are cut across the entire surface of a circular electrode, and the thickness of the side wall separating the grooves is 1 mm at the periphery and 2 mm at the inner side. In the example shown in FIG. 3, the current density ratio between the peripheral part and the central part is selected to be larger than that in the example shown in FIG.

本発明の電極では、平板型電極の表面に凹部を
設け、その凹部にホロー陰極放電を発生させるも
のである。この放電形態は直流でも、R・F・周
波数でも利用できる。凹部にホロー陰極放電が発
生すると、平板状の電極に比べて電流密度が10倍
程度に上昇することを利用し、穴または溝などの
凹部の配置を任意に設定することにより、その電
極面上での電流密度分布を任意に設定することが
できる。この型の電極を対向電極として用いるこ
とにより、被処理物の電極上での電流分布を、そ
の電極の電流分布と類似の分布とすることができ
る。
In the electrode of the present invention, a concave portion is provided on the surface of the flat electrode, and a hollow cathode discharge is generated in the concave portion. This discharge form can be used with direct current or R/F/frequency. Taking advantage of the fact that when a hollow cathode discharge occurs in a recess, the current density increases approximately 10 times compared to a flat electrode, by arbitrarily setting the arrangement of recesses such as holes or grooves, it is possible to The current density distribution at can be set arbitrarily. By using this type of electrode as a counter electrode, the current distribution on the electrode of the object to be processed can be made similar to the current distribution of the electrode.

凹部にホロー陰極放電を形成させるのに最適な
隙間d(穴の場合は直径、溝の場合は溝の幅)と
気圧pとの積があり、この積pdは放電の相似則
に従つている。この電極面上での電流密度分布に
よつて支配される空間的な領域は、この電極面か
らの距離がこのガスに対する電子の平均自由行程
の数倍程度以内である。
There is a product of the optimal gap d (diameter in the case of a hole, width of the groove in the case of a groove) and atmospheric pressure p to form a hollow cathode discharge in the recess, and this product pd follows the law of similarity of discharge. . The spatial region dominated by the current density distribution on the electrode surface has a distance from the electrode surface that is within several times the mean free path of electrons with respect to the gas.

(発明の効果) (a) 一般的な効果 本発明では、エツチング、デポジシヨンなど
被処理物面上の電流密度分布の高い均一度を得
るために、対向電極上の電流密度分布を設定す
る。これにより、エツチングレート、デポジシ
ヨンレートの面内均一性を±3%以内に向上さ
せることができる。
(Effects of the Invention) (a) General Effects In the present invention, the current density distribution on the counter electrode is set in order to obtain a high uniformity of the current density distribution on the surface of the object to be processed such as etching or deposition. Thereby, the in-plane uniformity of etching rate and deposition rate can be improved within ±3%.

(b) 具体的な目的に対する効果 従来用いられたガードリングを用いる方式な
どでは、装置が大型化することと、複雑な形の
電流密度分布の不均一性を補うことができな
い。それに対し、本発明の場合は電極寸法は被
処理物の寸法かそれより僅か大きい程度で、ま
た電極端での不均一、中心部での不均一、その
他如何なる不均一の場合でも、対向電極面上で
の溝または穴の部分の比率を変えることにより
均一性を向上することができる。
(b) Effects on specific objectives Conventionally used methods such as using a guard ring cannot compensate for the increased size of the device and the non-uniformity of the complex current density distribution. In contrast, in the case of the present invention, the electrode size is the same as the size of the object to be processed or slightly larger than that, and even in the case of non-uniformity at the electrode end, non-uniformity in the center, or any other non-uniformity, the opposing electrode surface Uniformity can be improved by varying the proportions of the grooves or holes on the top.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来形式のプラズマエツチング装置の
概略系統図、第2図は本発明電極の実施例として
穴を配置した例を示す平面図及び断面図、第3図
と第4図は本発明電極の他の実施例として溝を切
り込んだ構造例を示す平面図及び断面図である。 1a……対向電極、1b……平面電極、2……
被処理物、3……絶縁部材、4……空洞形部、5
……真空容器、6……排気系、7a……高周波電
源、7b……直流遮断用コンデンサ、8……導入
系、9……エツチングチヤンバ、10……冷却
水。
FIG. 1 is a schematic system diagram of a conventional plasma etching apparatus, FIG. 2 is a plan view and a sectional view showing an example of the arrangement of holes as an example of the electrode of the present invention, and FIGS. 3 and 4 are the electrodes of the present invention. FIG. 7 is a plan view and a cross-sectional view showing an example of a structure in which grooves are cut as another example. 1a... Counter electrode, 1b... Planar electrode, 2...
Object to be processed, 3...Insulating member, 4...Cavity shaped part, 5
. . . Vacuum container, 6 . . . Exhaust system, 7a . . . High frequency power supply, 7b .

Claims (1)

【特許請求の範囲】 1 プラズマプロセス装置用の平行平板型放電用
電極において、 2枚の電極の間の放電電流密度の均一性を高め
るために、一方の電極表面に、該電極表面の単位
面積当たりの凹部の面積の比が放電電流密度の小
さい部分から大きい部分に向かつて小さくなるよ
うな寸法の多数の穴または同心円状の溝が設けら
れたことを特徴とする平行平板型放電用電極。
[Claims] 1. In a parallel plate discharge electrode for a plasma processing device, in order to improve the uniformity of discharge current density between the two electrodes, a unit area of the electrode surface is provided on the surface of one electrode. A parallel plate type discharge electrode characterized in that a large number of holes or concentric grooves are provided with dimensions such that the area ratio of the concave portions in contact decreases from a portion with a low discharge current density to a portion with a high discharge current density.
JP15553087A 1987-06-24 1987-06-24 Parallel-plate discharge electrode Granted JPS644481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15553087A JPS644481A (en) 1987-06-24 1987-06-24 Parallel-plate discharge electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15553087A JPS644481A (en) 1987-06-24 1987-06-24 Parallel-plate discharge electrode

Publications (2)

Publication Number Publication Date
JPS644481A JPS644481A (en) 1989-01-09
JPH0338345B2 true JPH0338345B2 (en) 1991-06-10

Family

ID=15608084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15553087A Granted JPS644481A (en) 1987-06-24 1987-06-24 Parallel-plate discharge electrode

Country Status (1)

Country Link
JP (1) JPS644481A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0266941A (en) * 1988-08-31 1990-03-07 Nec Corp Etching apparatus
US5248371A (en) * 1992-08-13 1993-09-28 General Signal Corporation Hollow-anode glow discharge apparatus
US5472565A (en) * 1993-11-17 1995-12-05 Lam Research Corporation Topology induced plasma enhancement for etched uniformity improvement
WO2000034979A1 (en) * 1998-12-07 2000-06-15 E.I. Du Pont De Nemours And Company Hollow cathode array for plasma generation
US6528947B1 (en) 1999-12-06 2003-03-04 E. I. Du Pont De Nemours And Company Hollow cathode array for plasma generation
JP4717186B2 (en) * 2000-07-25 2011-07-06 株式会社アルバック Sputtering equipment
JP4472372B2 (en) 2003-02-03 2010-06-02 株式会社オクテック Plasma processing apparatus and electrode plate for plasma processing apparatus
US7785672B2 (en) 2004-04-20 2010-08-31 Applied Materials, Inc. Method of controlling the film properties of PECVD-deposited thin films
US8083853B2 (en) 2004-05-12 2011-12-27 Applied Materials, Inc. Plasma uniformity control by gas diffuser hole design
EP1789605A2 (en) * 2004-07-12 2007-05-30 Applied Materials, Inc. Plasma uniformity control by gas diffuser curvature
US8097082B2 (en) * 2008-04-28 2012-01-17 Applied Materials, Inc. Nonplanar faceplate for a plasma processing chamber
KR101092879B1 (en) * 2009-04-06 2011-12-12 한국과학기술원 Substrate treatment apparatus, substrate treatment method, preliminary electrode structure, measuring electrode structure, and process electrode structure
US9190289B2 (en) * 2010-02-26 2015-11-17 Lam Research Corporation System, method and apparatus for plasma etch having independent control of ion generation and dissociation of process gas
DE102010030608B4 (en) * 2010-06-28 2012-04-05 Von Ardenne Anlagentechnik Gmbh Device for plasma-assisted processing of substrates
US9967965B2 (en) 2010-08-06 2018-05-08 Lam Research Corporation Distributed, concentric multi-zone plasma source systems, methods and apparatus
JP5702968B2 (en) 2010-08-11 2015-04-15 東京エレクトロン株式会社 Plasma processing apparatus and plasma control method
US10283325B2 (en) 2012-10-10 2019-05-07 Lam Research Corporation Distributed multi-zone plasma source systems, methods and apparatus
JP7138551B2 (en) * 2018-11-30 2022-09-16 株式会社アルバック Sputtering method and sputtering apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273719A (en) * 1985-09-27 1987-04-04 Hitachi Ltd Dry etching apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6273719A (en) * 1985-09-27 1987-04-04 Hitachi Ltd Dry etching apparatus

Also Published As

Publication number Publication date
JPS644481A (en) 1989-01-09

Similar Documents

Publication Publication Date Title
JPH0338345B2 (en)
US4600464A (en) Plasma etching reactor with reduced plasma potential
JP3266163B2 (en) Plasma processing equipment
KR100252210B1 (en) Dry etching facility for manufacturing semiconductor devices
US5006220A (en) Electrode for use in the treatment of an object in a plasma
US4342901A (en) Plasma etching electrode
JP2927211B2 (en) Wafer processing equipment
US5413673A (en) Plasma processing apparatus
JP2002246370A (en) Focus ring and plasma processor
JPH0718438A (en) Electrostatic chuck device
US6167835B1 (en) Two chamber plasma processing apparatus
US4461237A (en) Plasma reactor for etching and coating substrates
JP4433614B2 (en) Etching equipment
US4340461A (en) Modified RIE chamber for uniform silicon etching
JPH0358171B2 (en)
US4810322A (en) Anode plate for a parallel-plate reactive ion etching reactor
JPS5841658B2 (en) dry etching equipment
US5502355A (en) Plasma processing apparatus for producing high density plasma
JPH0922934A (en) Device and method to concentrate plasma on substrate during processing
US4554047A (en) Downstream apparatus and technique
JP3812966B2 (en) Plasma processing apparatus and plasma processing method
JPH02198138A (en) Electrode plate of parallel plate type dry etching apparatus
JP2862088B2 (en) Plasma generator
JPH0922798A (en) Electrode for high-frequency discharge and high-frequency plasma substrate processing device
JPS6032972B2 (en) Etching device