JP2862088B2 - Plasma generator - Google Patents

Plasma generator

Info

Publication number
JP2862088B2
JP2862088B2 JP1013518A JP1351889A JP2862088B2 JP 2862088 B2 JP2862088 B2 JP 2862088B2 JP 1013518 A JP1013518 A JP 1013518A JP 1351889 A JP1351889 A JP 1351889A JP 2862088 B2 JP2862088 B2 JP 2862088B2
Authority
JP
Japan
Prior art keywords
plasma
electrode
frequency
cathode
cathode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1013518A
Other languages
Japanese (ja)
Other versions
JPH02195631A (en
Inventor
實 菅原
剛 内藤
雅敏 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP1013518A priority Critical patent/JP2862088B2/en
Publication of JPH02195631A publication Critical patent/JPH02195631A/en
Application granted granted Critical
Publication of JP2862088B2 publication Critical patent/JP2862088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体素子の製造工程の一つであるドライ
エッチング及びCVD等に用いられるプラズマ発生装置に
関するものである。
Description: BACKGROUND OF THE INVENTION The present invention relates to a plasma generator used for dry etching, CVD, and the like, which are one of the steps of manufacturing a semiconductor device.

[従来の技術] 第7図に於いて従来のプラズマ発生装置について説明
する。
[Prior Art] A conventional plasma generator will be described with reference to FIG.

高周波電源1に直流遮断用のコンデンサ8を介して接
続された平板電極(カソード電極)2と、該平板電極2
に相対して接地電位にある対向電極(アノード電極)3
が設置されている。前記カソード電極2、アノード電極
3は真空容器4に収納され、カソード電極2は絶縁材5
により真空容器4と絶縁されている。
A plate electrode (cathode electrode) 2 connected to a high-frequency power supply 1 via a DC blocking capacitor 8;
Electrode (anode electrode) 3 at ground potential relative to
Is installed. The cathode electrode 2 and the anode electrode 3 are housed in a vacuum vessel 4, and the cathode electrode 2 is made of an insulating material 5.
Is insulated from the vacuum container 4.

該真空容器4には反応性ガスを導入する導入系6と真
空容器4内の圧力を一定に保つ為の排気系7が設けられ
ている。
The vacuum vessel 4 is provided with an introduction system 6 for introducing a reactive gas and an exhaust system 7 for keeping the pressure inside the vacuum vessel 4 constant.

被処理物、例えばシリコンウェーハ9は、通常前記カ
ソード電極2上に載置される。
An object to be processed, for example, a silicon wafer 9 is usually mounted on the cathode electrode 2.

前記両電極2,3間に高周波電力、例えば13.56MHzを印
加して両電極間にプラズマを発生させるとプラズマ内の
電子と正イオンの移動速度の大きな違いにより、高周波
電力を印加した側(カソード電極2側)に陰極降下(セ
ルフバイアス)が発生する。この陰極降下で反応性ガス
イオンは加速されて被処理物9に垂直に入射し、垂直方
向のエッチングが進行する。
When a high-frequency power, for example, 13.56 MHz is applied between the two electrodes 2 and 3 to generate plasma between the two electrodes, a large difference in the moving speed of electrons and positive ions in the plasma causes the high-frequency power to be applied (cathode). A cathode drop (self-bias) occurs on the electrode 2 side). The reactive gas ions are accelerated by the drop of the cathode and vertically incident on the object 9 to be processed, whereby the etching in the vertical direction proceeds.

[発明が解決しようとする課題] 斯かる装置によりエッチング処理を行う場合、エッチ
ング速度を決定する主な要素として陰極降下電圧(イオ
ンエネルギ)と被処理物に入射するイオンの数(イオン
密度=プラズマ密度)がある。
[Problems to be Solved by the Invention] When an etching process is performed by such an apparatus, the cathode fall voltage (ion energy) and the number of ions (ion density = plasma) incident on the object to be processed are main factors that determine the etching rate. Density).

エッチング速度を増大させる為には、前記イオンエネ
ルギ、プラズマ密度のうち特にプラズマ密度を増大させ
なければならないが、プラズマ密度を増大させるには印
加した高周波電力を増加すればよい。
In order to increase the etching rate, it is necessary to particularly increase the plasma density among the ion energy and the plasma density. To increase the plasma density, it is sufficient to increase the applied high frequency power.

然し、この高周波電力を増加した場合、必然的に陰極
降下電圧(イオンエネルギ)も増加する。
However, when the high-frequency power is increased, the cathode drop voltage (ion energy) naturally increases.

従って、前記した被処理物が半導体素子製造の為のウ
ェーハである場合、従来のものではエッチング速度を増
大させるとイオンエネルギも増加し、更にイオンエネル
ギが必要以上に増加すると、ウェーハの表面に被膜した
マスク、更にはエッチング層下の層、或は母材に損傷を
与えるという問題があった。
Therefore, in the case where the object to be processed is a wafer for manufacturing a semiconductor device, in the conventional case, if the etching rate is increased, the ion energy increases, and if the ion energy further increases, a film is formed on the surface of the wafer. There is a problem that a damaged mask, a layer under the etching layer, or a base material may be damaged.

本発明は斯かる実情に鑑み、マスク、被エッチング層
下の損傷を防止しつつ且つエッチング速度の高速化を実
現する為のプラズマ発生装置を提供しようとするもので
ある。
The present invention has been made in view of the above circumstances, and has as its object to provide a plasma generator for preventing damage under a mask and a layer to be etched and realizing a high etching rate.

[課題を解決する為の手段] 本発明は、高周波カソード電極に対向させて接地電位
としたアノード電極を設け、該アノード電極に対向させ
て直流カソード電極を設け、前記アノード電極の少なく
とも直流カソード電極と対峙する部分に所要数の孔を設
け、前記高周波カソード電極とアノード電極間に高周波
電力を印加して放電させ、前記直流カソード電極とアノ
ード電極間に直流電力を印加いて放電させる様構成した
ことを特徴とするものである。
[Means for Solving the Problems] According to the present invention, an anode electrode having a ground potential is provided so as to face a high-frequency cathode electrode, and a DC cathode electrode is provided so as to face the anode electrode. A required number of holes are provided in a portion facing the high-frequency cathode electrode and the anode electrode to discharge by applying high-frequency power between the high-frequency cathode electrode and the anode electrode, and discharge by applying DC power between the DC cathode electrode and the anode electrode. It is characterized by the following.

[作用] 高周波カソード電極とアノード電極との間には高周波
プラズマが発生し、直流カソード電極とアノード電極と
の間には直流プラズマが発生する。この両プラズマを多
数の孔を設けた接地電位にあるアノード電極で分離する
ことで高周波プラズマは直流プラズマに対し正の電位を
有しており、直流プラズマの電子はアノード電極の孔を
通って高周波プラズマ内に取込まれ、高周波プラズマの
密度を高める。又、高周波カソード電極の陰極降下電圧
は主に高周波電力によって決定され、直流プラズマから
の電子の取込によって陰極降下電圧即ちイオンエネルギ
には大きく影響を及ぼさない。
[Operation] A high-frequency plasma is generated between the high-frequency cathode electrode and the anode electrode, and a DC plasma is generated between the DC cathode electrode and the anode electrode. The high frequency plasma has a positive potential with respect to the DC plasma by separating the two plasmas at the anode electrode at the ground potential provided with a large number of holes. It is taken into the plasma and increases the density of the high-frequency plasma. The cathode drop voltage of the high-frequency cathode electrode is mainly determined by high-frequency power, and does not significantly affect the cathode drop voltage, that is, ion energy, by taking in electrons from the DC plasma.

[実 施 例] 以下、図面を参照しつつ本発明の一実施例を説明す
る。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は該実施例の基本構成図であり、第2図は第1
図に対応した電極位置とその間に発生するプラズマの電
位分布を示したものである。
FIG. 1 is a diagram showing the basic configuration of the embodiment, and FIG.
FIG. 3 shows the electrode positions corresponding to the figure and the potential distribution of plasma generated therebetween.

高周波カソード電極11と直流カソード電極12を対峙さ
せ配置し、両電極11,12の間にアノード電極13を配設す
る。該アノード電極13は、多数の孔を穿設した多孔板、
或はメッシュ状の板である。
A high-frequency cathode electrode 11 and a DC cathode electrode 12 are arranged to face each other, and an anode electrode 13 is arranged between the electrodes 11 and 12. The anode electrode 13 is a perforated plate having a large number of holes,
Or a mesh-like plate.

前記高周波カソード電極11を直流遮断用コンデンサ8
を介して高周波電源1に接続し、前記直流カソード電極
12は抵抗14を介して直流電源15の−側に接続する。該直
流電源15の+側及び前記アノード電極13は接地電位とす
る。
The high frequency cathode electrode 11 is connected to a DC blocking capacitor 8
Connected to the high-frequency power source 1 via the DC cathode electrode
12 is connected to the negative side of the DC power supply 15 via the resistor 14. The + side of the DC power supply 15 and the anode electrode 13 are set to the ground potential.

上記構成に於いて、高周波カソード電極11とアノード
電極13との間、直流カソード電極12とアノード電極13と
の間にそれぞれ高周波電力、直流電力を印加することに
より、それぞれの電極間に高周波プラズマ16、直流プラ
ズマ17が発生する。
In the above-described configuration, high-frequency power and DC power are applied between the high-frequency cathode electrode 11 and the anode electrode 13 and between the DC cathode electrode 12 and the anode electrode 13, respectively. , DC plasma 17 is generated.

而して、前記した電極間のプラズマ電位分布は、第2
図の如くなる。即ち、アノード電極13は接地電位とな
り、直流カソード電極12の近傍及び高周波カソード電極
11の近傍にはそれぞれV1,V2の陰極降下が生ずる。又、
直流プラズマ17の電極近傍を除く空間にはは−VP1のプ
ラズマ電位が、高周波プラズマ16の電極近傍を除く空間
には+VP2のプラズマ電位が生ずる。
Thus, the above-mentioned plasma potential distribution between the electrodes is the second
It looks like the figure. That is, the anode electrode 13 becomes the ground potential, and the vicinity of the DC cathode electrode 12 and the high-frequency cathode electrode
A cathode drop of V 1 and V 2 occurs near 11 respectively. or,
Plasma potential of -V P1 is in a space excluding the electrode near the direct current plasma 17, the space excluding the electrode near the high-frequency plasma 16 generated plasma potential of + V P2.

従って、第2図の様な電位分布が形成されたプラズマ
空間では、直流プラズマ17内の電子は常にVP1+VP2なる
加速電界によって加速され、アノード電極13を通って高
周波プラズマ16内に供給される。この供給された電子に
より、高周波プラズマ16のプラズマ密度は高周波電力の
みによるプラズマ密度より高密度を達成できる。又、高
周波側の陰極降下電圧V2は高周波電力が支配的であり、
プラズマ密度が上昇しても略一定である。而して、プラ
ズマ密度は直流電源15によって印加する直流電力を制御
することにより制御でき、イオンエネルギは高周波電力
によって支配される陰極降下(セルフアイアス)によっ
て決定されるので高周波電力を制御することによりで
き、結局、プラズマ密度、イオンエネルギは個々に独立
して制御することができる。尚、アノード電極13の孔の
分布状態を変化させることによりプラズマ密度の空間分
布を調整することができる。
Therefore, in the plasma space in which the potential distribution as shown in FIG. 2 is formed, the electrons in the DC plasma 17 are always accelerated by the accelerating electric field of VP1 + VP2 and supplied to the high-frequency plasma 16 through the anode electrode 13. You. With the supplied electrons, the plasma density of the high-frequency plasma 16 can be higher than the plasma density using only the high-frequency power. Also, the high-frequency power is dominant for the cathode drop voltage V 2 on the high frequency side,
It is substantially constant even when the plasma density increases. Thus, the plasma density can be controlled by controlling the DC power applied by the DC power supply 15, and the ion energy is determined by the cathode fall (self-ias) governed by the RF power, so that the RF power is controlled. As a result, the plasma density and ion energy can be controlled individually and independently. The spatial distribution of the plasma density can be adjusted by changing the distribution state of the holes of the anode electrode 13.

第3図は、本発明の他の実施例を示すものであり、上
記実施例中直流カソード電極12を所謂ホロー電極18と
し、効率よくプラズマが発生する様にしたものである。
FIG. 3 shows another embodiment of the present invention, in which the direct current cathode electrode 12 is a so-called hollow electrode 18 in the above embodiment so that plasma is generated efficiently.

該ホロー電極18には多数の穴19を掘設し、該穴19の部
分でホロー陰極放電を発生させるものである。
A number of holes 19 are dug in the hollow electrode 18 to generate a hollow cathode discharge in the hole 19.

前記穴19の形状としては、グロー放電の陰極降下の厚
みの2倍が、該穴19の直径より僅かに小さい程度が最適
であり、穴の深さについては、直径の2倍程度かそれ以
上とするのが好ましい。
The shape of the hole 19 is optimally such that twice the thickness of the cathode drop of the glow discharge is slightly smaller than the diameter of the hole 19, and the depth of the hole is about twice the diameter or more. It is preferred that

更に、ホロー電極18とした場合、掘設した穴19の分布
を変えることによりプラズマ密度の分布を変えることが
可能である。穴19の均一分布では、周辺のプラズマ密度
が高く、ウェーハ9のエッチング速度は周辺に於いて大
きいが(曲線A)、穴分布を中心を密にすることで均一
化(曲線B)することができる。
Further, when the hollow electrode 18 is used, it is possible to change the distribution of the plasma density by changing the distribution of the dug holes 19. In the uniform distribution of the holes 19, the peripheral plasma density is high and the etching rate of the wafer 9 is high in the periphery (curve A). However, the hole distribution can be made uniform by making the center dense (curve B). it can.

尚、第5図は前記ホロー電極18を用い、高周波電力を
一定とした場合の直流放電電流に対するエッチング速度
の関係を示すので、直流放電電流を変えることでエッチ
ング速度を制御することができることが分る。
FIG. 5 shows the relationship between the DC discharge current and the etching rate when the high-frequency power is constant using the hollow electrode 18, and it can be seen that the etching rate can be controlled by changing the DC discharge current. You.

尚、前記ホロー電極18の形状は、穴19に代え溝として
もよいことは勿論である。
The hollow electrode 18 may of course be a groove instead of the hole 19.

第6図は第3の実施例を示すものである。アノード電
極20を一端面のみ開口する筒形状とし、その円筒壁21の
同一円周上に多数の孔22(又はスリット)を穿設し、こ
れら孔22に対峙させリング状の直流カソード23を配設し
たものであり、該リング状の直流カソード23は内周面に
穴19を穿設し、ホロー電極としてある。
FIG. 6 shows a third embodiment. The anode electrode 20 is formed in a cylindrical shape having only one end surface opened, and a large number of holes 22 (or slits) are formed on the same circumference of the cylindrical wall 21, and a ring-shaped DC cathode 23 is arranged to face the holes 22. The ring-shaped DC cathode 23 has a hole 19 formed in the inner peripheral surface thereof to serve as a hollow electrode.

高周波カソード電極23はアノード電極20の開口部に底
面と対峙して配設してある。
The high-frequency cathode electrode 23 is provided at the opening of the anode electrode 20 so as to face the bottom surface.

アノード電極20と高周波カソード電極24との間に高周
波電力を印加することにより、アノード電極20の内部に
高周波プラズマが発生し、更にアノード電極20と直流カ
ソード電極23との間に直流電力を印加することにより、
アノード電極20と直流カソード電極23との間に直流プラ
ズマが発生し、直流プラズマ内の電子は孔22を通って高
周波プラズマ内に供給される。
By applying a high-frequency power between the anode electrode 20 and the high-frequency cathode electrode 24, a high-frequency plasma is generated inside the anode electrode 20, and a DC power is further applied between the anode electrode 20 and the DC cathode electrode 23. By doing
DC plasma is generated between the anode electrode 20 and the DC cathode electrode 23, and electrons in the DC plasma are supplied to the high-frequency plasma through the holes 22.

尚、第3の実施例に於いて、孔22を複数列、該孔22に
対向させて直流カソード電極24を複数設けてもよく、こ
の場合に於いて、各直流カソード電極24の放電電流を変
えることで供給する電子の数、高周波プラズマ内のプラ
ズマ密度の空間分布をそれぞれ制御することが可能とな
る。又、前記直流カソード23の凹部は連続した溝であっ
てもよい。
In the third embodiment, a plurality of rows of holes 22 may be provided, and a plurality of DC cathode electrodes 24 may be provided so as to face the holes 22. In this case, the discharge current of each DC cathode electrode 24 is reduced. By changing them, it becomes possible to control the number of electrons to be supplied and the spatial distribution of the plasma density in the high-frequency plasma, respectively. Further, the concave portion of the DC cathode 23 may be a continuous groove.

[発明の効果] 以上述べた如く本発明によれば、プラズマドライエッ
チングに於けるエッチング速度を決定する要因であるイ
オンエネルギ、プラズマ密度を個別に制御し得るので、
イオンエネルギを最適な値に保ちつつ、プラズマ密度を
増大させることができ、被処理物の非エッチング部に損
傷を与えることなくエッチング速度を増加させ得るとい
う優れた効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, ion energy and plasma density, which are factors that determine the etching rate in plasma dry etching, can be individually controlled.
The plasma density can be increased while keeping the ion energy at the optimum value, and an excellent effect that the etching rate can be increased without damaging the non-etched portion of the object to be processed is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例を示す基本構成図、第2
図は該実施例でのプラズマ電位分布を示す線図、第3図
は第2の実施例の基本構成図、第4図はエッチング速度
分布を示す線図、第5図は直流放電電流とエッチング速
度を示す線図、第6図は第3の実施例を示す基本構成
図、第7図は従来例を示す基本構成図である。 11,24は高周波カソード電極、12,23は直流カソード電
極、13,20はアノード電極、18はホロー電極、19は穴、2
2は孔を示す。
FIG. 1 is a basic structural diagram showing a first embodiment of the present invention, and FIG.
FIG. 3 is a diagram showing a plasma potential distribution in the embodiment, FIG. 3 is a diagram showing a basic configuration of the second embodiment, FIG. 4 is a diagram showing an etching rate distribution, and FIG. FIG. 6 is a basic configuration diagram showing a third embodiment, and FIG. 7 is a basic configuration diagram showing a conventional example. 11, 24 are high-frequency cathode electrodes, 12, 23 are DC cathode electrodes, 13, 20 are anode electrodes, 18 is hollow electrodes, 19 is holes, 2
2 indicates a hole.

フロントページの続き (56)参考文献 特開 昭60−195939(JP,A) 特開 昭61−2328(JP,A) 特開 昭62−120479(JP,A) (58)調査した分野(Int.Cl.6,DB名) H05H 1/46 H01L 21/3065 H01L 21/205Continuation of the front page (56) References JP-A-60-195939 (JP, A) JP-A-61-2328 (JP, A) JP-A-62-120479 (JP, A) (58) Fields investigated (Int) .Cl. 6 , DB name) H05H 1/46 H01L 21/3065 H01L 21/205

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高周波カソード電極に対向させて接地電位
としたアノード電極を設け、該アノード電極に対向させ
て直流カソード電極を設け、前記アノード電極の少なく
とも直流カソード電極と対峙する部分に所要数の孔を設
け、前記高周波カソード電極とアノード電極間に高周波
電力を印加して放電させ、前記直流カソード電極とアノ
ード電極間に直流電力を印加して放電させる様構成した
ことを特徴とするプラズマ発生装置。
An anode electrode having a ground potential is provided opposite to a high-frequency cathode electrode, and a DC cathode electrode is provided opposite to the anode electrode. A plasma generating apparatus characterized in that holes are provided, high-frequency power is applied between the high-frequency cathode electrode and the anode electrode to discharge, and DC power is applied and discharged between the DC cathode electrode and the anode electrode. .
【請求項2】前記直流カソード電極に凹部を設けてホロ
ー電極とした請求項1項記載のプラズマ発生装置。
2. The plasma generator according to claim 1, wherein a concave portion is provided in said DC cathode electrode to form a hollow electrode.
【請求項3】直流カソード電極に設けた凹部の分布状態
を変化させプラズマ密度の空間分布を変化させた請求項
第2項記載のプラズマ発生装置。
3. The plasma generator according to claim 2, wherein the distribution state of the concave portions provided on the DC cathode electrode is changed to change the spatial distribution of the plasma density.
【請求項4】アノード電極の孔分布状態を変化させプラ
ズマ密度の空間分布を変化させた請求項第1項記載のプ
ラズマ発生装置。
4. The plasma generator according to claim 1, wherein the spatial distribution of the plasma density is changed by changing the hole distribution state of the anode electrode.
【請求項5】高周波カソード電極とアノード電極間に印
加する高周波電力及び直流カソード電極とアノード電極
間に印加する直流電力の少なくとも一方を独立して制御
する様にした請求項第1項記載のプラズマ発生装置。
5. The plasma according to claim 1, wherein at least one of high-frequency power applied between the high-frequency cathode electrode and the anode electrode and DC power applied between the DC cathode electrode and the anode electrode are independently controlled. Generator.
JP1013518A 1989-01-23 1989-01-23 Plasma generator Expired - Lifetime JP2862088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013518A JP2862088B2 (en) 1989-01-23 1989-01-23 Plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013518A JP2862088B2 (en) 1989-01-23 1989-01-23 Plasma generator

Publications (2)

Publication Number Publication Date
JPH02195631A JPH02195631A (en) 1990-08-02
JP2862088B2 true JP2862088B2 (en) 1999-02-24

Family

ID=11835376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013518A Expired - Lifetime JP2862088B2 (en) 1989-01-23 1989-01-23 Plasma generator

Country Status (1)

Country Link
JP (1) JP2862088B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829469B2 (en) * 2006-12-11 2010-11-09 Tokyo Electron Limited Method and system for uniformity control in ballistic electron beam enhanced plasma processing system
KR100978859B1 (en) * 2008-07-11 2010-08-31 피에스케이 주식회사 Apparatus for generating hollow cathode plasma and apparatus for treating a large area substrate by hollow cathode plasma
JP5212346B2 (en) * 2009-12-11 2013-06-19 株式会社デンソー Plasma generator

Also Published As

Publication number Publication date
JPH02195631A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
US6076483A (en) Plasma processing apparatus using a partition panel
JP2748886B2 (en) Plasma processing equipment
US5605637A (en) Adjustable dc bias control in a plasma reactor
JP2501948B2 (en) Plasma processing method and plasma processing apparatus
JP3122601B2 (en) Plasma film forming method and apparatus therefor
US6167835B1 (en) Two chamber plasma processing apparatus
US20030054647A1 (en) Plasma processing method
US6380684B1 (en) Plasma generating apparatus and semiconductor manufacturing method
KR980012066A (en) Plasma processing equipment
JPH07176399A (en) Plasma processing device
JPH08264296A (en) Reactive ion etching inductively reinforced
JP4307628B2 (en) Flat plate gas introduction device for CCP reaction vessel
US4340461A (en) Modified RIE chamber for uniform silicon etching
JP2000156370A (en) Method of plasma processing
JP2000311890A (en) Plasma etching method and device
US4810322A (en) Anode plate for a parallel-plate reactive ion etching reactor
JP4340348B2 (en) Plasma generator
JP2002009043A (en) Etching device and manufacturing method of semiconductor device using it
JP2862088B2 (en) Plasma generator
EP0209109B1 (en) Method of and apparatus for forming film by utilizing low-temperature plasma
JPH08319588A (en) Plasma etching device
JP2775274B2 (en) Plasma generator
KR100501823B1 (en) Method of plasma generation and apparatus thereof
JP2574838B2 (en) Al sputter etching equipment
JP2569816B2 (en) Dry etching equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11