JPH07183254A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH07183254A
JPH07183254A JP5348019A JP34801993A JPH07183254A JP H07183254 A JPH07183254 A JP H07183254A JP 5348019 A JP5348019 A JP 5348019A JP 34801993 A JP34801993 A JP 34801993A JP H07183254 A JPH07183254 A JP H07183254A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
contact hole
contact
thickness
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5348019A
Other languages
Japanese (ja)
Other versions
JP2734968B2 (en
Inventor
Shinichi Kuwabara
愼一 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5348019A priority Critical patent/JP2734968B2/en
Publication of JPH07183254A publication Critical patent/JPH07183254A/en
Application granted granted Critical
Publication of JP2734968B2 publication Critical patent/JP2734968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form stable low-resistance contacts without lowering the element separating characteristics of the contacts by setting the ion implanting angle at a specific value or larger when the ion of an impurity is obliquely implanted into polycrystalline silicon in contact holes. CONSTITUTION:After forming contact holes through an insulating film 110 formed on a semiconductor substrate having a functional area, a first polycrystalline silicon layer 111 is formed on the entire surface of the semiconductor substrate coated with the film 110 by chemical vapor growth. Then the ion of an impurity is obliquely implanted into the silicon 111 at an angle equal to or wider than tan<-1> (2X(radius of contact hole-thickness of first polycrystalline silicon film)/(depth of contact hole). Then, after forming second polycrystalline silicon 112 by chemical vapor deposition, the first and second silicon layers 111 and 112 are etched off from the entire surface of the substrate except those in the contact holes. The thickness of the first silicon layer 111 is set at, for example, about <1/3 of the diameter of the contact holes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に関し、特にコンタクトの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing method, and more particularly to a contact manufacturing method.

【0002】[0002]

【従来の技術】従来、半導体装置におけるコンタクトを
形成する技術として、例えば、特開平2−281620
で提案されている半導体装置の製造方法がある。この従
来技術について図6、図7、図8、図9及び図10を参
照して説明する。NMOS型半導体装置において、まず
図6(a)の様に、P型半導体基板(301)上に素子
分離膜(LOCOS)(302)とNチャンネル型LD
Dトランジスターのソース・ドレイン領域であるN
散層(303)、N拡散層(304)とゲート絶縁膜
(ゲート酸化膜)(305)とゲート電極であるN
結晶シリコン(306)とシリコン酸化膜(307)の
上にリン珪酸ガラス(PSG)膜(308)を約1.5
μm化学気相成長により成長した層間膜(310)(こ
れは307と308をまとめたもの)を形成する。次に
図6(b)に示すように、ホトレジスト(309)を用
い約0.5μm半径のコンタクトホールをパターンニン
グする。
2. Description of the Related Art Conventionally, as a technique for forming a contact in a semiconductor device, for example, Japanese Patent Laid-Open No. 2-281620.
There is a method of manufacturing a semiconductor device proposed in. This conventional technique will be described with reference to FIGS. 6, 7, 8, 9 and 10. In the NMOS semiconductor device, first, as shown in FIG. 6A, a device isolation film (LOCOS) (302) and an N-channel LD are formed on a P-type semiconductor substrate (301).
N + diffusion layers (303) and N diffusion layers (304) which are source / drain regions of the D transistor, a gate insulating film (gate oxide film) (305), and N + polycrystalline silicon (306) which is a gate electrode. Approximately 1.5 phosphosilicate glass (PSG) film (308) is formed on the silicon oxide film (307).
An interlayer film (310) (this is a combination of 307 and 308) formed by μm chemical vapor deposition is formed. Next, as shown in FIG. 6B, a contact hole having a radius of about 0.5 μm is patterned by using a photoresist (309).

【0003】次に図7(c)に示すようにホトレジスト
(309)をマスクとして、層間膜(310)をプラズ
マエッチングによりN拡散層(303)が出るまでエ
ッチングする。次にホトレジストを除去した後、図7
(d)に示すように、第1の多結晶シリコン(311)
を化学気相成長により約0.2μmの厚さに成長する。
次に図8(e)及び(f)に示すように、コンタクト底
部及びコンタクト側面に入るように斜め回転イオン注入
する。次に図9(g)に示すように、化学気相成長によ
り第2の多結晶シリコン(312)の厚さを約0.5μ
m形成し、コンタクトホールを埋め込み、次に図9
(h)に示すように窒素中で900℃、20分の熱処理
を行い多結晶シリコンに注入された不純物を活性化させ
るとともに、多結晶シリコンに十分拡散する。次に図1
0(i)に示すようにエッチバックすることによりコン
タクトホール内に多結晶シリコンを残留形成し、埋め込
みコンタクトを得る。
Next, as shown in FIG. 7C, the interlayer film (310) is etched by plasma etching using the photoresist (309) as a mask until the N + diffusion layer (303) is exposed. Then, after removing the photoresist, FIG.
As shown in (d), the first polycrystalline silicon (311)
Is grown to a thickness of about 0.2 μm by chemical vapor deposition.
Next, as shown in FIGS. 8E and 8F, oblique rotation ion implantation is performed so as to enter the contact bottom portion and the contact side surface. Next, as shown in FIG. 9G, the thickness of the second polycrystalline silicon (312) is reduced to about 0.5 μm by chemical vapor deposition.
m, fill the contact hole, and then, as shown in FIG.
As shown in (h), heat treatment is performed in nitrogen at 900 ° C. for 20 minutes to activate the impurities implanted in the polycrystalline silicon and sufficiently diffuse into the polycrystalline silicon. Next in FIG.
By etching back as shown in 0 (i), polycrystalline silicon remains in the contact hole and a buried contact is obtained.

【0004】[0004]

【発明が解決しようとする課題】近年、半導体装置の高
集積化が進み、素子分離間隔が縮小されそれに伴い、コ
ンタクト間隔が縮小されてきている。上記コンタクトの
抵抗を低くする為に、コンタクト底部及びコンタクト側
面共に注入される斜め回転イオン注入法によるリンドー
プを行っている。この方法では、底面部に注入された不
純物が活性化及び後の熱処理により素子分離方向にも拡
散していき、コンタクト間の素子分離間隔が短くなる。
この時素子分離を挟んだコンタクト間で電位差が生じた
とき、コンタクト下のN層間で出来る寄生トランジス
ターが素子分離悪化による寄生トランジスターのしきい
ち電圧(VT2)低下により、電流リークが多くなると
いう問題があった。また、上記VT2低下を抑える為、
コンタクト部に注入する不純物注入量を少なくするとコ
ンタクト抵抗が高くなりすぎるという問題があった。
In recent years, as semiconductor devices have been highly integrated, the element separation intervals have been reduced and the contact intervals have been reduced accordingly. In order to reduce the resistance of the contact, phosphorus is doped by the oblique rotation ion implantation method in which both the contact bottom portion and the contact side surface are implanted. In this method, the impurities injected into the bottom surface are diffused in the element isolation direction by activation and subsequent heat treatment, and the element isolation interval between contacts is shortened.
At this time, when a potential difference occurs between the contacts across the element isolation, the parasitic transistor formed between the N + layers under the contact deteriorates the element isolation, resulting in a decrease in the threshold voltage (VT2) of the parasitic transistor, resulting in a large current leak. was there. Moreover, in order to suppress the above-mentioned VT2 decrease,
There is a problem that the contact resistance becomes too high when the amount of impurities injected into the contact portion is reduced.

【0005】特に、図10(i)に示したように、コン
タクトホールを多結晶シリコン層で埋め込んだ後に、タ
ングステンシリサイドやチタンシリサイドなど高融点金
属のケイ化物による配線層を被着した場合(図示せ
ず)、問題は重大なものとなる。すなわち、コンタクト
ホール内壁の第1の多結晶シリコン中に導入された不純
物は、その後の熱処理により前記高融点金属のケイ化物
中に拡散し、コンタクトホール内壁の第1の多結晶シリ
コンの不純物濃度が極端に低下して数10MΩという異
常な高抵抗を示すことがある。この現象を防止するため
に、コンタクトホール内壁の第1の多結晶シリコン中の
不純物をさらに高濃度にするよう導入する必要がある
が、この場合従来技術では特に素子分離特性VT2低下
の問題が深刻である。本発明は、素子分離特性を低下さ
せず、かつ安定な低抵抗コンタクトを形成する方法を提
供することを目的とする。
Particularly, as shown in FIG. 10 (i), when a wiring layer made of a silicide of a refractory metal such as tungsten silicide or titanium silicide is deposited after the contact hole is filled with a polycrystalline silicon layer (see FIG. (Not shown), the problem becomes serious. That is, the impurities introduced into the first polycrystalline silicon on the inner wall of the contact hole are diffused into the silicide of the refractory metal by the subsequent heat treatment, and the impurity concentration of the first polycrystalline silicon on the inner wall of the contact hole is reduced. It may drop extremely and show an abnormally high resistance of several tens of MΩ. In order to prevent this phenomenon, it is necessary to introduce impurities in the first polycrystalline silicon on the inner wall of the contact hole so as to have a higher concentration. In this case, however, the problem of deterioration of the element isolation characteristic VT2 is particularly serious in the conventional technique. Is. It is an object of the present invention to provide a method for forming a stable low resistance contact without deteriorating element isolation characteristics.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するためのもので、機能領域を有する半導体基板上に
形成された絶縁膜に、コンタクトホールを形成する工程
と、前記絶縁膜を有する半導体基板の全面に第1の多結
晶シリコン層を化学気相成長する工程と、不純物をta
−1(2×(コンタクト開口半径−第1の多結晶シリ
コン膜厚)/(コンタクトホールの深さ(絶縁膜の厚
さ))以上の角度で不純物を斜めイオン注入により第1
の多結晶シリコン中に注入する工程と、第2の多結晶シ
リコン化学気相成長する工程と、前記第1、2の多結晶
シリコンをコンタクトホール内を残し全面エッチする工
程を特徴とする半導体装置の製造方法であり、また、不
純物を斜めイオン注入する角度が、tan−1(2×コ
ンタクト開口半径−2×第1の多結晶シリコン膜厚)以
下であることを特徴とする半導体装置の製造方法であ
り、さらにまた、前記第1の多結晶シリコン層の厚さ
が、コンタクトホール直径の約1/3未満であることを
特徴とする半導体装置の製造方法である。
DISCLOSURE OF THE INVENTION The present invention is to solve the above-mentioned problems and comprises a step of forming a contact hole in an insulating film formed on a semiconductor substrate having a functional region, and a step of forming the insulating film. A step of performing chemical vapor deposition on the entire surface of the semiconductor substrate having the first polycrystalline silicon layer,
The impurity is obliquely ion-implanted at an angle of not less than n −1 (2 × (contact opening radius−first polycrystalline silicon film thickness) / (contact hole depth (insulating film thickness))
Of the first polycrystalline silicon, the step of implanting the second polycrystalline silicon into the polycrystalline silicon, the step of chemically vapor-depositing the second polycrystalline silicon, and the step of completely etching the first and second polycrystalline silicon while leaving the contact holes in the contact holes. And the angle at which the impurity is obliquely ion-implanted is tan −1 (2 × contact opening radius−2 × first polycrystalline silicon film thickness) or less. The method is also a method for manufacturing a semiconductor device, characterized in that the thickness of the first polycrystalline silicon layer is less than about 1/3 of the diameter of the contact hole.

【0007】[0007]

【作用】本発明においては、コンタクトホール内の多結
晶シリコンに対する不純物を斜めイオン注入する際、そ
のイオン注入角度をtan−1(2×(コンタクトホー
ル半径−多結晶ポリシリコンの厚さ)/コンタクトホー
ルの深さ)以上の角度で注入することによりコンタクト
ホール底部に不純物が注入されないものである。
In the present invention, when impurities are obliquely ion-implanted into polycrystalline silicon in a contact hole, the ion implantation angle is tan -1 (2 x (contact hole radius-polycrystalline polysilicon thickness) / contact). Impurities are not injected into the bottom of the contact hole by implanting at an angle equal to or greater than the depth of the hole).

【0008】[0008]

【実施例】本発明の実施例を図1、図2、図3及び図4
を用いて説明する。本発明をNMOS型半導体装置に適
用した場合、まず図1(a)の様に、P型半導体基板
(P型シリコン基板)(101)上に素子分離膜(LO
COS)(102)とNチャンネル型LDDトランジス
ターのソース・ドレイン領域であるN拡散層(10
3)、N拡散層(104)とゲート絶縁膜(ゲート酸
化膜)(105)とゲート電極であるN多結晶シリコ
ン(106)とシリコン酸化膜(107)の上にリン珪
酸ガラス(PSG)膜(108)を約1.0μm化学気
相成長により成長した層間膜(110)(107と10
8をまとめたもの)を形成する。
Embodiments of the present invention are shown in FIGS. 1, 2, 3 and 4.
Will be explained. When the present invention is applied to an NMOS type semiconductor device, first, as shown in FIG. 1A, an element isolation film (LO) is formed on a P type semiconductor substrate (P type silicon substrate) (101).
COS) (102) and the N + diffusion layer (10) which is the source / drain region of the N-channel LDD transistor.
3), N - diffusion layer (104), gate insulating film (gate oxide film) (105), N + polycrystalline silicon (106) which is a gate electrode, and silicon oxide film (107) on top of phosphosilicate glass (PSG). ) Interlayer film (110) (107 and 10) obtained by growing the film (108) by chemical vapor deposition of about 1.0 μm.
8 together).

【0009】次に、図1(b)に示すように、ホトレジ
スト(109)を用い約0.2μm半径のコンタクトホ
ールをパターンニングする。次に図2(c)に示すよう
にホトレジスト(109)をマスクとして、層間膜(1
10)をプラズマエッチングによりN拡散層(10
3)が出るまでエッチングする。次にホトレジストを除
去した後、図2(d)に示すように、第1の多結晶シリ
コン(111)を化学気相成長により約0.1μmの厚
さに成長する。この第1の多結晶シリコン(111)の
厚さは、コンタクトホール直径の約1/3未満が望まし
い。次に、図3(e)に示すようにN型不純物、例えば
リン(P)を斜め回転イオン注入し、コンタクトホール
開口部側面の多結晶シリコン(111)にリン(P)を
ドープする。
Next, as shown in FIG. 1B, a contact hole having a radius of about 0.2 μm is patterned using a photoresist (109). Next, as shown in FIG. 2C, the interlayer film (1) is formed by using the photoresist (109) as a mask.
10) by plasma etching of the N + diffusion layer (10
Etch until 3) appears. Next, after removing the photoresist, as shown in FIG. 2D, a first polycrystalline silicon (111) is grown to a thickness of about 0.1 μm by chemical vapor deposition. The thickness of the first polycrystalline silicon (111) is preferably less than about 1/3 of the contact hole diameter. Next, as shown in FIG. 3E, an N-type impurity such as phosphorus (P) is obliquely ion-implanted to dope the polycrystalline silicon (111) on the side surface of the contact hole opening with phosphorus (P).

【0010】ここで注入の角度だが、図5に示す様にコ
ンタクトホールの深さを(h)、コンタクトホール(開
口)半径を(r)、第1の多結晶シリコンの膜厚を
(a)とすると注入角度(θ)は tan−1(2r−2a)/h<θ<tan−1(2r
/h) の範囲とする。例えば、r=0.2μm、h=1.2μ
m、a=0.1μmの場合、tan−1(0.17)=
9.6度で行う。これにより、図3(f)に示すように
コンタクトホール底面部には注入されない分布となる。
なお、コンタクトホールの深さを(h)は「絶縁膜の厚
さ」と等しいものである。
Here, as to the implantation angle, as shown in FIG. 5, the depth of the contact hole is (h), the radius of the contact hole (opening) is (r), and the film thickness of the first polycrystalline silicon is (a). Then, the implantation angle (θ) is tan −1 (2r-2a) / h <θ <tan −1 (2r
/ H). For example, r = 0.2 μm, h = 1.2 μ
When m and a = 0.1 μm, tan −1 (0.17) =
Perform at 9.6 degrees. As a result, as shown in FIG. 3F, the distribution is such that the bottom surface of the contact hole is not injected.
The depth (h) of the contact hole is equal to the “thickness of the insulating film”.

【0011】次に、図4(i)及び(j)に示すよう
に、第2の多結晶シリコン(112)を約600nm成
長させた後エッチバックを行い、その後、不純物の活性
化の為、窒素中で850℃、30分の熱処理を行う。こ
れにより多結晶シリコン中にPが拡散し、埋め込みコン
タクトを得る。
Next, as shown in FIGS. 4 (i) and 4 (j), a second polycrystalline silicon (112) is grown to a thickness of about 600 nm and then etched back, and thereafter, for activation of impurities, Heat treatment is performed in nitrogen at 850 ° C. for 30 minutes. As a result, P diffuses into the polycrystalline silicon to obtain a buried contact.

【0012】[0012]

【発明の効果】本発明によれば、コンタクトホール内の
多結晶シリコンに対する不純物を斜めイオン注入する
際、角度をtan−1(2×(コンタクトホール半径−
多結晶ポリシリコンの厚さ)/コンタクトホールの深
さ)以上の角度で注入することによりコンタクトホール
底部に不純物が注入されない為、不純物の活性化の為の
熱処理、及び後工程の熱処理により基板に拡散した不純
物によるVT2の悪化を最小にすることができるという
効果を奏する。
According to the present invention, the angle is tan −1 (2 × (contact hole radius −
Impurities are not injected into the bottom of the contact hole by injecting at an angle of (polycrystalline polysilicon thickness) / contact hole depth) or more. Therefore, heat treatment for activating the impurities and heat treatment in the subsequent process are performed on the substrate. It is possible to minimize the deterioration of VT2 due to the diffused impurities.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例の工程の縦断面図。FIG. 1 is a vertical sectional view of a process of an embodiment of the present invention.

【図2】 本発明の実施例の工程の図1に続く縦断面
図。
FIG. 2 is a vertical cross-sectional view of the process of the embodiment of the present invention following FIG.

【図3】 本発明の実施例の工程の図2に続く縦断面
図。
FIG. 3 is a vertical cross-sectional view of the process of the embodiment of the present invention, following FIG. 2;

【図4】 本発明の実施例の工程の図3に続く縦断面
図。
FIG. 4 is a vertical cross-sectional view of the process of the embodiment of the present invention, following FIG.

【図5】 本発明の実施例のコンタクトホールの説明
図。
FIG. 5 is an explanatory diagram of a contact hole according to the embodiment of this invention.

【図6】 従来技術の工程の縦断面図。FIG. 6 is a vertical cross-sectional view of a conventional process.

【図7】 従来技術の工程の図6に続く縦断面図。FIG. 7 is a vertical cross-sectional view following FIG. 6 of the process of the related art.

【図8】 従来技術の工程の図7に続く縦断面図。FIG. 8 is a vertical cross-sectional view of the process of the related art, continuing from FIG. 7;

【図9】 従来技術の工程の図8に続く縦断面図。FIG. 9 is a vertical cross-sectional view following FIG. 8 of the process of the related art.

【図10】 従来技術の工程の図9に続く縦断面図。FIG. 10 is a vertical cross-sectional view of the process of the related art, continuing from FIG. 9;

【符号の説明】[Explanation of symbols]

101、301 P型シリコン基板 102、302 LOCOS 103、303 N拡散層 104、304 N拡散層 105、305 ゲート酸化膜 106、306 N多結晶ポリシリコン 107、307 シリコン酸化膜 108、308 PSG膜 109、309 ホトレジスト 110、310 層間膜 111、311 第1の多結晶シリコン 112、312 第2の多結晶シリコン101, 301 P-type silicon substrate 102, 302 LOCOS 103, 303 N + diffusion layer 104, 304 N diffusion layer 105, 305 Gate oxide film 106, 306 N + polycrystalline polysilicon 107, 307 Silicon oxide film 108, 308 PSG Films 109, 309 Photoresist 110, 310 Interlayer film 111, 311 First polycrystalline silicon 112, 312 Second polycrystalline silicon

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/08 331 9170−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 27/08 331 9170-4M

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機能領域を有する半導体基板上に形成さ
れた絶縁膜に、コンタクトホールを形成する工程と、前
記絶縁膜を有する半導体基板の全面に第1の多結晶シリ
コン層を化学気相成長する工程と、不純物をtan−1
(2×(コンタクト開口半径−第1の多結晶シリコン膜
厚)/(コンタクトホールの深さ)以上の角度で不純物
を斜めイオン注入により第1の多結晶シリコン中に注入
する工程と、第2の多結晶シリコン化学気相成長する工
程と、前記第1、2の多結晶シリコンをコンタクトホー
ル内を残し全面エッチする工程を特徴とする半導体装置
の製造方法。
1. A step of forming a contact hole in an insulating film formed on a semiconductor substrate having a functional region, and a chemical vapor deposition of a first polycrystalline silicon layer on the entire surface of the semiconductor substrate having the insulating film. Process and impurities tan −1
(2 × (contact opening radius−first polycrystalline silicon film thickness) / (contact hole depth)) Impurity is obliquely ion-implanted into the first polycrystalline silicon at an angle of not less than 2. A method of manufacturing a semiconductor device, comprising: a step of performing chemical vapor deposition of polycrystalline silicon, and a step of completely etching the first and second polycrystalline silicon, leaving a contact hole.
【請求項2】 不純物を斜めイオン注入する角度が、t
an−1(2×コンタクト開口半径−2×第1の多結晶
シリコン膜厚)以下であることを特徴とする請求項1に
記載の半導体装置の製造方法。
2. The angle at which the impurities are obliquely ion-implanted is t
The method of manufacturing a semiconductor device according to claim 1, wherein the value is not more than an −1 (2 × contact opening radius−2 × first polycrystalline silicon film thickness).
【請求項3】 第1の多結晶シリコン層の厚さが、コン
タクトホール直径の約1/3未満であることを特徴とす
る請求項1または2に記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the thickness of the first polycrystalline silicon layer is less than about 1/3 of the diameter of the contact hole.
JP5348019A 1993-12-24 1993-12-24 Method for manufacturing semiconductor device Expired - Fee Related JP2734968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5348019A JP2734968B2 (en) 1993-12-24 1993-12-24 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5348019A JP2734968B2 (en) 1993-12-24 1993-12-24 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH07183254A true JPH07183254A (en) 1995-07-21
JP2734968B2 JP2734968B2 (en) 1998-04-02

Family

ID=18394191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5348019A Expired - Fee Related JP2734968B2 (en) 1993-12-24 1993-12-24 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2734968B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995412B2 (en) 2002-04-12 2006-02-07 International Business Machines Corporation Integrated circuit with capacitors having a fin structure
CN103035514A (en) * 2012-05-16 2013-04-10 上海华虹Nec电子有限公司 Manufacture method for forming thick silicon oxide isolation layer in radio frequency (RF) laterally diffused metal oxide semiconductor (LDMOS)
US9559101B2 (en) 2012-06-22 2017-01-31 Samsung Electronics Co., Ltd. Semiconductor device with impurity-doped region and method of fabricating the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468222A (en) * 2010-11-16 2012-05-23 上海华虹Nec电子有限公司 Method for realizing source lined contact column in radio frequency LDMOS (laterally diffused metal oxide semiconductor) apparatus
CN103137540B (en) * 2011-11-29 2015-02-04 上海华虹宏力半导体制造有限公司 Manufacturing method of thick isolation dielectric medium layer structure of RFLDMOS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6995412B2 (en) 2002-04-12 2006-02-07 International Business Machines Corporation Integrated circuit with capacitors having a fin structure
CN103035514A (en) * 2012-05-16 2013-04-10 上海华虹Nec电子有限公司 Manufacture method for forming thick silicon oxide isolation layer in radio frequency (RF) laterally diffused metal oxide semiconductor (LDMOS)
US9559101B2 (en) 2012-06-22 2017-01-31 Samsung Electronics Co., Ltd. Semiconductor device with impurity-doped region and method of fabricating the same
US10332878B2 (en) 2012-06-22 2019-06-25 Samsung Electronics Co., Ltd. Semiconductor device with impurity-doped region and method of fabricating the same

Also Published As

Publication number Publication date
JP2734968B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
US4463493A (en) Method for making mask aligned narrow isolation grooves for a semiconductor device
US6365472B1 (en) Semiconductor device and method of manufacturing the same
US6750526B2 (en) Semiconductor device with trench isolation having reduced leak current
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
KR19980053140A (en) Manufacturing method of semiconductor device
US5675176A (en) Semiconductor device and a method for manufacturing the same
US6015726A (en) Semiconductor device and method of producing the same
KR100282710B1 (en) Method for manufacturing bipolar transistor and its structure
US6225663B1 (en) Semiconductor device having SOI structure and method of fabricating the same
JP2875380B2 (en) Semiconductor device and manufacturing method thereof
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
US20040164364A1 (en) Semiconductor device and its manufacturing method
JP2734968B2 (en) Method for manufacturing semiconductor device
JP3441259B2 (en) Semiconductor device
JPH07326595A (en) Manufacture of semiconductor device
JP2002299613A (en) Vertical field effect transistor and method for manufacturing semiconductor device
JP3264262B2 (en) Semiconductor device and manufacturing method thereof
KR0156156B1 (en) Method of fabricating semiconductor device
US5970347A (en) High performance mosfet transistor fabrication technique
JPH07273342A (en) Manufacture of thin film transistor
JPH07307465A (en) Semiconductor device and its manufacture
KR100351895B1 (en) Method for forming bitline in semiconductor device
KR100463956B1 (en) Transistor Formation Method of Semiconductor Device
JPH08130310A (en) Mos device and manufacture thereof
JP2705583B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees