JPH07183210A - Projection aligner - Google Patents

Projection aligner

Info

Publication number
JPH07183210A
JPH07183210A JP6160887A JP16088794A JPH07183210A JP H07183210 A JPH07183210 A JP H07183210A JP 6160887 A JP6160887 A JP 6160887A JP 16088794 A JP16088794 A JP 16088794A JP H07183210 A JPH07183210 A JP H07183210A
Authority
JP
Japan
Prior art keywords
projection
optical system
reticle
magnification
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6160887A
Other languages
Japanese (ja)
Other versions
JP2555274B2 (en
Inventor
Susumu Komoriya
進 小森谷
Hiroshi Nishizuka
弘 西塚
Shinya Nakagawa
慎也 中川
Hiroshi Maejima
央 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6160887A priority Critical patent/JP2555274B2/en
Publication of JPH07183210A publication Critical patent/JPH07183210A/en
Application granted granted Critical
Publication of JP2555274B2 publication Critical patent/JP2555274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Projection-Type Copiers In General (AREA)

Abstract

PURPOSE:To realize the pattern transfer with high precision by a method wherein the change in the focus position of a projection optical system due to the change in the atmospheric pressure or environmental air pressure of a projection exposure device is avoided to improve the dimensional precision and the alignment precision of a transfer pattern. CONSTITUTION:The projection aligner is composed of an illumination optical system 4, a reticle 5, a projection optical system for transferring the pattern of the reticle 5 to a semiconductor wafer 22 and an X-Y table 21 on which the semiconductor wafer 22 is mounted comprising a part of the projection optical system 7. In such a constitution, the title projection aligner including a movable lens 39 held by a movable lens supporter 40, a piezoelectric element 16 for moving vertically the movable lens 39 with respect to the reticle 5 through the intermediary of the supporter 40 and a controller 24 for controlling the piezoelectric element 16 by the signals from a barometer 23 for detecting the environmental air pressure can correct the change in magnification of the image of the semiconductor wafer 22 of the projection optical system 7 due to the change in the environmental air pressure by moving vertically the movable lens 39 with respect to the reticle 5 according to the environmental air pressure.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は環境気圧の変動に伴う投
影倍率、焦点位置の変動を防止して高精度なパターン投
影を可能にした投影露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection exposure apparatus capable of performing highly accurate pattern projection by preventing fluctuations in projection magnification and focus position due to fluctuations in environmental atmospheric pressure.

【0002】[0002]

【従来の技術】一般にIC、LSI等の半導体装置の製
造工程では、所謂フォトリソグラフィ技術が利用されて
おり、レチクルやフォトマスクのパターンを夫々写真技
術を用いてフォトマスク原板や半導体ウェーハ表面に転
写している。そして、近年では半導体装置の素子パター
ンの微細化、高集積化に伴って転写されるパターンのサ
イズもますます微小化される傾向にあり、したがってパ
ターン転写を行う光学系にも1:5、1:10等の微小
型の投影露光装置が多用されてきている(工業調査会発
行、電子材料1983年別冊、P97〜P104)。
2. Description of the Related Art Generally, a so-called photolithography technique is used in a manufacturing process of a semiconductor device such as an IC or an LSI, and a reticle or a photomask pattern is transferred onto a photomask original plate or a semiconductor wafer surface by using a photographic technique. is doing. In recent years, with the miniaturization of element patterns of semiconductor devices and the higher integration, the size of patterns to be transferred tends to become smaller and smaller. : Microprojection exposure apparatuses such as: 10 have been widely used (published by the Industrial Research Institute, Electronic Materials 1983, Supplement, P97 to P104).

【0003】[0003]

【発明が解決しようとする課題】ところで、この種の投
影露光装置を用いて本発明者が種々のパターン転写を行
ってきたところ、転写されるパターンの縮小倍率が日に
よって微小に変動し、かつこれと共に焦点位置も微小に
変動することが判明した。この変動は投影露光装置を設
置している作業所(クリーンルーム)内の温度、湿度を
一定に保っても、また光源の波長の安定化を確保しても
発生することが明らかとなった。
By the way, when the present inventor has carried out various pattern transfer using this type of projection exposure apparatus, the reduction ratio of the transferred pattern slightly changes depending on the day, and At the same time, it was found that the focus position also fluctuates slightly. It has been clarified that this variation occurs even if the temperature and humidity in the work room (clean room) where the projection exposure apparatus is installed are kept constant and the wavelength of the light source is stabilized.

【0004】このようなことから、本発明者が種々の実
験を繰り返して縮小(転写)倍率の変動原因について検
討したところ、次のような一つの結果を得ることができ
た。即ち、パターンの縮小率の変動を日毎に測定する一
方で、その日の大気圧を測定しこれらの相関を求めたと
ころ、図1に示す関係が求められた。図に示すグラフは
横軸に大気圧をとり縦軸に縮小率をとったもので、多数
のデータをプロット(図には一部のデータのみをプロッ
ト)することにより略1次式で示される相関、つまり大
気圧(P)と縮小変動率(M)は、M=Kp・P+Cp
で示される関係式を満足することが判明した。ここで、
Kp,Cpは光学系の特性により定まる定数である。ま
た、縮小率(M)は図1に示すようにパターン寸法13.
5mmに対する寸法変化量で定義されている。
From the above, when the present inventor repeatedly conducted various experiments and examined the cause of fluctuation of the reduction (transfer) magnification, the following one result could be obtained. That is, while the variation in the reduction ratio of the pattern was measured every day, the atmospheric pressure on that day was measured and the correlation between them was obtained, and the relationship shown in FIG. 1 was obtained. The graph shown in the figure shows the atmospheric pressure on the horizontal axis and the reduction rate on the vertical axis, and is represented by a substantially linear equation by plotting a large number of data (only some data are plotted in the figure). The correlation, that is, the atmospheric pressure (P) and the reduction fluctuation rate (M), is M = Kp · P + Cp
It was found that the relational expression shown by is satisfied. here,
Kp and Cp are constants determined by the characteristics of the optical system. The reduction ratio (M) is as shown in FIG.
It is defined by the amount of dimensional change with respect to 5 mm.

【0005】このことから、本発明者は縮小変動率と気
圧との関係についてさらに検討を加え、大気圧の変動に
伴うクリーンルーム(チャンバ)内の気圧変動と縮小率
変動およびそのときの焦点位置の変動について相関を求
めてみた。この結果、図2および図3に夫々示すように
クリーンルーム内の圧力と縮小率変動との間にも大気圧
と同様の相関が確認でき、また焦点変動の若干の幅はあ
るものの略同様の相関の存在が認められた。
From this, the present inventor further studied the relationship between the reduction variation rate and the atmospheric pressure, and the variation of the atmospheric pressure and the reduction rate variation in the clean room (chamber) due to the variation of the atmospheric pressure and the focus position at that time. I tried to find a correlation for fluctuations. As a result, as shown in FIG. 2 and FIG. 3, respectively, a correlation similar to the atmospheric pressure can be confirmed between the pressure in the clean room and the reduction rate variation, and the correlation is substantially the same although there is some range of the focus variation. The existence of

【0006】なお、クリーンルームは大気圧よりも若干
(略1mb)高圧に保つことにより大気中の塵埃がクリー
ンルーム内に侵入することを防止している。
The clean room is kept at a pressure slightly higher than the atmospheric pressure (approximately 1 mb) to prevent dust in the atmosphere from entering the clean room.

【0007】本発明の目的は、レチクル側において実質
的にテレセントリックな投影光学系を有する投影露光装
置において、投影光学系に対してガスの熱や圧力による
ストレスを与えることなく、大気圧または投影露光装置
の環境気圧の変動に起因する転写パターンの投影倍率の
変動を防止することにより、転写パターンの寸法精度お
よび合わせ精度を向上させ、高精度なパターン転写を実
現することにある。
An object of the present invention is to provide a projection exposure apparatus having a projection optical system that is substantially telecentric on the reticle side, without applying stress to the projection optical system due to heat or pressure of gas, and to atmospheric pressure or projection exposure. By preventing the variation of the projection magnification of the transfer pattern due to the variation of the atmospheric pressure of the apparatus, it is possible to improve the dimensional accuracy and the alignment accuracy of the transfer pattern and realize the highly accurate pattern transfer.

【0008】本発明の他の目的は、必要以上に複雑な構
成を必要とすることなく、大気圧または環境気圧の変動
に起因する転写パターンの投影倍率の変動を防止するこ
とが可能な投影露光装置を提供することにある。
Another object of the present invention is projection exposure capable of preventing a change in projection magnification of a transfer pattern due to a change in atmospheric pressure or environmental atmospheric pressure, without requiring an unnecessarily complicated structure. To provide a device.

【0009】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0010】[0010]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
以下のとおりである。
Of the inventions disclosed in the present application, a representative one will be briefly described below.
It is as follows.

【0011】すなわち、本発明の投影露光装置は、半導
体ウェーハが載置されるテーブルと、照明光学系と、所
望の転写パターンを有するレチクルと、第1および第2
のレンズ群からなり、少なくともレチクル側において実
質的にテレセントリックで、転写パターンを半導体ウェ
ーハの一主面に投影する投影光学系と、半導体ウェーハ
に対する転写パターンの投影倍率を調整する倍率調整機
構と、投影光学系の半導体ウェーハに対する焦点位置を
調整する焦点位置調整機構と、大気圧または投影露光装
置の環境気圧の変動を検出する気圧計と、気圧計によっ
て検出された大気圧または環境気圧の変動量に応じて、
投影光学系を構成する第1および第2のレンズ群のう
ち、レチクルに近い側の第2のレンズ群を光軸方向に変
位させることにより半導体ウェーハに対する転写パター
ンの投影倍率を調整する倍率調整機構を作動させる制御
部とを備えたものである。
That is, the projection exposure apparatus of the present invention includes a table on which a semiconductor wafer is placed, an illumination optical system, a reticle having a desired transfer pattern, and first and second.
A projection optical system that is substantially telecentric at least on the reticle side and projects the transfer pattern onto one main surface of the semiconductor wafer; and a magnification adjusting mechanism that adjusts the projection magnification of the transfer pattern onto the semiconductor wafer. A focus position adjustment mechanism that adjusts the focus position of the optical system with respect to the semiconductor wafer, a barometer that detects changes in the atmospheric pressure or the environmental pressure of the projection exposure apparatus, and a fluctuation amount of the atmospheric pressure or the environmental pressure detected by the barometer. Depending on,
A magnification adjusting mechanism for adjusting the projection magnification of the transfer pattern onto the semiconductor wafer by displacing the second lens group, which is closer to the reticle, of the first and second lens groups forming the projection optical system in the optical axis direction. And a control unit for operating the.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】(実施例1)図4および図5は本発明の一
実施例の投影露光装置を示す。図において、1は投影露
光装置の露光機本体であり、内部には光源2、コンデン
サレンズ3を有する照明光学系4と、この照明光学系4
により照明されるレチクル5等の転写パターン、および
これを投影結像するレンズ群6を有する投影光学系7を
備えている。また、詳細は省略するが、投影像のフォー
カス(焦点)設定やアライメント(平面位置)設定を行
うための光学系8も内装される。前記投影光学系7は図
5に拡大して示すように鏡筒9の上端のレチクル支持枠
10を取着し、また下端よりの位置をフレーム11に嵌
合している。前記レチクル支持枠10は図6の平面構造
のように2点P1 ,P2 において弾性リング板12に取
着され、かつこの弾性リング板12を介して2点P3
4 において前記鏡筒9に取着されており、これにより
弾性リング板12の弾性変形によってレチクル支持枠1
0は鏡筒9に対して光軸方向に微小移動できる。そし
て、周囲3点P5 ,P6 ,P7 においてレチクル支持枠
10と、鏡筒9に一体的に螺合させた調整ねじ13との
間にボール14,15を介して圧電素子16を光軸方向
に介在させている。この圧電素子16には所要の電極を
設けてリード線17を接続し、このリード線17を通じ
て通電を行うことにより、通電量に応じて光軸方向に伸
縮変形される。
(Embodiment 1) FIGS. 4 and 5 show a projection exposure apparatus according to an embodiment of the present invention. In the figure, reference numeral 1 denotes an exposure machine body of a projection exposure apparatus, an illumination optical system 4 having a light source 2 and a condenser lens 3 inside, and an illumination optical system 4
The projection optical system 7 has a transfer pattern of the reticle 5 and the like illuminated by the lens, and a lens group 6 for projecting and forming the transfer pattern. Further, although not described in detail, an optical system 8 for performing focus setting and alignment (planar position) setting of the projected image is also incorporated. As shown in the enlarged view of FIG. 5, the projection optical system 7 has a reticle support frame 10 at the upper end of a lens barrel 9 attached thereto, and a position from the lower end fitted into a frame 11. The reticle support frame 10 is two points P 1 as in the planar structure of Figure 6, the P 2 is attached to the elastic ring plate 12, and the elastic ring plate 12 two points P 3 via,
In P 4 are attached to the lens barrel 9, thereby the reticle support frame by elastic deformation of the elastic ring plate 12 1
0 can be finely moved with respect to the lens barrel 9 in the optical axis direction. Then, at three peripheral points P 5 , P 6 , and P 7 , the piezoelectric element 16 is moved through the balls 14 and 15 between the reticle support frame 10 and the adjusting screw 13 integrally screwed to the lens barrel 9. It is interposed in the axial direction. A predetermined electrode is provided on the piezoelectric element 16 and a lead wire 17 is connected to the piezoelectric element 16, and the lead wire 17 is energized to be expanded and contracted in the optical axis direction according to the amount of energization.

【0014】すなわち、本実施例の場合、レチクル支持
枠10,弾性リング板12,調整ねじ13,ボール1
4,15,圧電素子16,リード線17等によって倍率
調整機構が構成されている。
That is, in the case of this embodiment, the reticle support frame 10, the elastic ring plate 12, the adjusting screw 13, the ball 1 are used.
A magnification adjusting mechanism is constituted by 4, 15, the piezoelectric element 16, the lead wire 17, and the like.

【0015】また、前記レンズ群6を有する鏡筒9もフ
レーム11に対して光軸方向に移動できるように構成し
ており、これにはフレーム11側に設けてモータ18に
より軸転されるスクリュシャフト19と、鏡筒9側に設
けてこのスクリュシャフト19に螺合するスクリュナッ
ト20とからなる構体(焦点位置調整機構)が採用され
ており、スクリュシャフト19の軸転に伴ってレンズ群
6およびレチクル支持枠10は光軸方向に移動される。
The lens barrel 9 having the lens group 6 is also constructed so as to be movable in the optical axis direction with respect to the frame 11, and the screw is provided on the frame 11 side and is rotated by a motor 18. A structure (focus position adjusting mechanism) including a shaft 19 and a screw nut 20 provided on the lens barrel 9 side and screwed into the screw shaft 19 is adopted, and the lens group 6 is rotated along with the rotation of the screw shaft 19. The reticle support frame 10 is moved in the optical axis direction.

【0016】前記露光機本体1の下方には、X,Yテー
ブル21(テーブル)を配置し、このX,Yテーブル2
1上には前記レチクル5のパターンを縮小して投影する
半導体ウェーハ22を搭載している。
An X, Y table 21 (table) is arranged below the exposure machine main body 1, and the X, Y table 2 is provided.
A semiconductor wafer 22 for reducing and projecting the pattern of the reticle 5 is mounted on the substrate 1.

【0017】一方、露光機本体1およびX,Yテーブル
21を含む環境、通常ではクリーンルーム内の気圧を検
出する気圧計23をその近傍に配置し、かつこの気圧計
23の検出信号に基づいて前記圧電素子16および前記
モータ18を制御する制御部24を設けている。この制
御部24は投影倍率補正演算回路25、倍率ドライバ2
6、焦点位置補正演算回路27、焦点ドライバ28を有
し、前記気圧計23による環境気圧に応じて前記圧電素
子16およびモータ18への通電量を変化制御すること
ができる。
On the other hand, a barometer 23 for detecting the atmospheric pressure in the environment including the main body 1 of the exposure apparatus and the X, Y table 21, usually in a clean room, is arranged in the vicinity thereof, and based on the detection signal of the barometer 23, A control unit 24 that controls the piezoelectric element 16 and the motor 18 is provided. The control unit 24 includes a projection magnification correction calculation circuit 25 and a magnification driver 2
6. A focus position correction calculation circuit 27 and a focus driver 28 are provided, and it is possible to change and control the energization amount to the piezoelectric element 16 and the motor 18 according to the environmental pressure by the barometer 23.

【0018】以上の構成によれば、光学系8の作用によ
って通常のフォーカス設定やアライメント設定が行われ
るが、これと同時に気圧計23で環境気圧を検出する。
そして、この気圧が予定された気圧よりも低いと、空気
の密度が小さくなるためレンズ群6における実質的な焦
点距離が小さくなり、実質的な投影パターン像の投影倍
率が小さくなり、また焦点位置が小さくなる状態とな
る。このため、投影倍率補正演算回路25では、図1お
よび図2に示したような相関に基づいて、レンズ群6と
レチクル5との距離を減少させて同一の倍率が得られる
ような補正寸法を算出し、これに基づいて倍率ドライバ
26を作動させる。倍率ドライバ26の作用によって圧
電素子16には所要の電流が通電されこれに応じて圧電
素子16は短縮(または伸長)する。圧電素子16の短
縮に伴ってレチクル支持枠10は鏡筒9に対して下方へ
移動され、これによりレチクル5とレンズ群6との距
離、つまり気圧変化に対する実質的な投影倍率を一定に
保つことができる。さらに、これと同時に焦点位置補正
演算回路27が気圧に基づいて焦点位置の補正量を算出
し、焦点ドライバ28を作動させてモータ18を駆動す
ればレンズ群6は軸方向に移動され、前述の動作と共に
焦点位置を実質的に一定のものとする。気圧が予定圧よ
りも高い場合にはレチクル5やレンズ群6は前述と逆方
向に移動され、この場合にも実質的に倍率と焦点位置を
一定のものとする。
According to the above construction, the focus and alignment are normally set by the action of the optical system 8. At the same time, the atmospheric pressure is detected by the barometer 23.
When this atmospheric pressure is lower than the planned atmospheric pressure, the density of air becomes small, so that the substantial focal length in the lens group 6 becomes small, the projection magnification of the substantial projection pattern image becomes small, and the focal position Becomes smaller. For this reason, the projection magnification correction calculation circuit 25 reduces the distance between the lens group 6 and the reticle 5 based on the correlations shown in FIGS. It is calculated, and the magnification driver 26 is operated based on this. A desired current is applied to the piezoelectric element 16 by the action of the magnification driver 26, and the piezoelectric element 16 is shortened (or expanded) in response to this. As the piezoelectric element 16 is shortened, the reticle support frame 10 is moved downward with respect to the lens barrel 9, thereby maintaining a constant distance between the reticle 5 and the lens group 6, that is, a substantial projection magnification with respect to a change in atmospheric pressure. You can Further, at the same time, the focus position correction calculation circuit 27 calculates the correction amount of the focus position based on the atmospheric pressure, and activates the focus driver 28 to drive the motor 18, so that the lens group 6 is moved in the axial direction. The focus position is made substantially constant with the operation. When the atmospheric pressure is higher than the planned pressure, the reticle 5 and the lens group 6 are moved in the opposite direction to the above, and in this case as well, the magnification and the focus position are substantially constant.

【0019】この結果、大気圧はもとよりクリーンルー
ム等の投影露光装置の環境気圧の変化にもかかわらず投
影光学系におけるレチクル5、レンズ群6、半導体ウェ
ーハ22間の実質的な倍率と焦点位置を常に一定に保持
することができるので、投影倍率の変動を防いで倍率の
安定化を図り、高精度なパターン転写を達成することが
できる。投影倍率の安定化と共に焦点位置を最適位置に
設定して良好な投影パターンが得られることは言うまで
もない。
As a result, the substantial magnification and focus position between the reticle 5, the lens group 6 and the semiconductor wafer 22 in the projection optical system are always maintained in spite of the change in the atmospheric pressure as well as the environmental pressure of the projection exposure apparatus such as in a clean room. Since it can be held constant, it is possible to prevent fluctuations in projection magnification, stabilize magnification, and achieve highly accurate pattern transfer. It goes without saying that a good projection pattern can be obtained by stabilizing the projection magnification and setting the focus position to the optimum position.

【0020】(実施例2)図7は本発明の他の実施例を
示す。
(Embodiment 2) FIG. 7 shows another embodiment of the present invention.

【0021】図中、図4における実施例1と同一部分に
は同一符号を付している。本実施例では、投影光学系7
は、半導体ウェーハ22に近い側のレンズ群6(第1の
レンズ群)と、レチクル5に接近している移動レンズ3
9(第2のレンズ群)とで構成され、移動レンズ39は
移動レンズ支持体40に保持されることによって光軸方
向に変位自在にされている。鏡筒9と移動レンズ支持体
40の間には圧電素子16が、伸縮方向を光軸方向に一
致させた姿勢で介在されており、当該圧電素子16の伸
縮変形によって、移動レンズ39が光軸方向に駆動され
る構成となっている。
In the figure, the same parts as those in the first embodiment shown in FIG. 4 are designated by the same reference numerals. In this embodiment, the projection optical system 7
Is the lens group 6 (first lens group) on the side closer to the semiconductor wafer 22 and the moving lens 3 closer to the reticle 5.
9 (second lens group), the movable lens 39 is held by the movable lens support 40 so that it can be displaced in the optical axis direction. The piezoelectric element 16 is interposed between the lens barrel 9 and the movable lens support 40 in a posture such that the expansion / contraction direction coincides with the optical axis direction, and the expansion / contraction deformation of the piezoelectric element 16 causes the movable lens 39 to move along the optical axis. It is configured to be driven in the direction.

【0022】すなわち、本実施例の場合には、移動レン
ズ39,移動レンズ支持体40,圧電素子16等によっ
て倍率調整機構が構成されている。この圧電素子16に
は所要の電極を設けてリード線を接続し、このリード線
を通して通電を行うことにより、通電量に応じて光軸方
向に伸縮変形される。
That is, in the case of this embodiment, the moving lens 39, the moving lens support 40, the piezoelectric element 16 and the like constitute a magnification adjusting mechanism. A required electrode is provided on the piezoelectric element 16 and a lead wire is connected to the piezoelectric element 16, and electricity is applied through the lead wire, whereby the piezoelectric element 16 is expanded and contracted in the optical axis direction according to the amount of electricity.

【0023】一般に光束がパターン面に対して垂直に入
射するテレセントリックの投影光学系においては、レチ
クルの上下により倍率の補正を行うことが困難となる。
このようなテレセントリックな投影光学系においては、
レチクルに接近したレンズがあり、このレンズを光軸方
向に移動することにより、縮小率を変化させることが可
能である。気圧による縮小率変動は、気圧計23で気圧
を検出し、気圧に応じて移動レンズ39を光軸方向に移
動することにより、一定とすることができる。
Generally, in a telecentric projection optical system in which a light beam enters perpendicularly to the pattern surface, it becomes difficult to correct the magnification by moving the reticle up and down.
In such a telecentric projection optical system,
There is a lens close to the reticle, and the reduction ratio can be changed by moving this lens in the optical axis direction. The reduction rate variation due to the atmospheric pressure can be made constant by detecting the atmospheric pressure with the barometer 23 and moving the movable lens 39 in the optical axis direction according to the atmospheric pressure.

【0024】[0024]

【発明の効果】【The invention's effect】

(1).レチクル側において実質的にテレセントリックな光
学系を有する投影露光装置において、気圧計によって計
測される大気圧または投影露光装置の環境気圧の変動に
基づいて、投影光学系に設けられた倍率調整機構を作動
させることにより、当該大気圧または環境気圧の変動に
起因する転写パターンの倍率の変化を打ち消すように倍
率を調整した後、転写パターンの露光操作を行うので、
大気圧または投影露光装置の環境気圧の変動に起因する
転写パターンの投影倍率の変動を確実に防止できる。
(1) .In a projection exposure apparatus having a substantially telecentric optical system on the reticle side, the magnification provided in the projection optical system based on the fluctuation of the atmospheric pressure measured by a barometer or the environmental pressure of the projection exposure apparatus. By operating the adjustment mechanism, after adjusting the magnification so as to cancel the change in the magnification of the transfer pattern due to the fluctuation of the atmospheric pressure or the environmental pressure, the exposure operation of the transfer pattern is performed.
It is possible to reliably prevent the variation of the projection magnification of the transfer pattern due to the variation of the atmospheric pressure or the environmental pressure of the projection exposure apparatus.

【0025】また、投影光学系等の内部のガス圧や温度
を変化させる場合のように、投影光学系に対してガスの
熱や圧力によるストレスが作用せず、当該ストレスに起
因する投影光学系等の精度低下の懸念もない。
Further, as in the case of changing the gas pressure or temperature inside the projection optical system or the like, stress due to the heat or pressure of the gas does not act on the projection optical system, and the projection optical system is caused by the stress. There is no concern that accuracy will deteriorate.

【0026】この結果、転写パターンの寸法精度および
合わせ精度が向上し、高精度なパターン転写を実現する
ことが可能となる。
As a result, the dimensional accuracy and the alignment accuracy of the transfer pattern are improved, and highly accurate pattern transfer can be realized.

【0027】(2).鏡筒内等を加圧のために密閉構造にし
たり、加圧のための空気圧制御機器等を設ける必要がな
いので、必要以上に複雑な構成を必要とすることなく、
大気圧または環境気圧の変動に起因する転写パターンの
投影倍率の変動を防止することが可能となる。
(2) It is not necessary to provide a closed structure for pressurizing the inside of the lens barrel or to provide an air pressure control device for pressurizing, so that it does not require any more complicated structure than necessary. ,
It is possible to prevent a change in projection magnification of a transfer pattern due to a change in atmospheric pressure or environmental pressure.

【0028】以上、本発明者によってなされた発明を実
施例に基づき具体的に説明したが、本発明は前記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.

【0029】たとえば、圧力検出部は大気圧を検出して
もよく、この大気圧と、予め求められた投影露光装置の
環境(クリーンルーム)との圧力差から環境気圧を検出
してもよい。または、直接大気圧で制御するようにして
もよい。
For example, the pressure detecting section may detect the atmospheric pressure, or the atmospheric pressure may be detected from the pressure difference between this atmospheric pressure and the environment (clean room) of the projection exposure apparatus which is obtained in advance. Alternatively, it may be controlled directly by the atmospheric pressure.

【0030】なお、実施例1の圧電素子に変えて機械的
な伸縮機構を利用することができ、さらに、環境温度、
湿度の変化によっても倍率が変化されることもあるの
で、温度、湿度を検出し、これによって光学特性を制御
するようにしてもよい。
A mechanical expansion / contraction mechanism can be used in place of the piezoelectric element of the first embodiment.
Since the magnification may be changed due to the change in humidity, the temperature and humidity may be detected and the optical characteristics may be controlled accordingly.

【0031】(利用分野)以上の説明では主として本発
明者によってなされた発明をその利用分野である半導体
装置のフォトリソグラフィ技術に使用する縮小型の投影
露光装置に適用した場合について説明したが、これに限
定されるものではなく、たとえば等倍型の露光装置はも
とより、半導体製造技術以外の分野における投影露光装
置に適用できる。
(Field of Use) In the above description, the invention mainly made by the present inventor is applied to a reduction type projection exposure apparatus used in the photolithography technique of a semiconductor device which is the field of use thereof. However, the present invention is not limited to, but is applicable to a projection exposure apparatus in a field other than the semiconductor manufacturing technology, as well as an equal-size exposure apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】気圧と投影倍率、焦点位置の相関を説明するグ
ラフである。
FIG. 1 is a graph illustrating the correlation between atmospheric pressure, projection magnification, and focus position.

【図2】気圧と投影倍率、焦点位置の相関を説明するグ
ラフである。
FIG. 2 is a graph illustrating the correlation between atmospheric pressure, projection magnification, and focus position.

【図3】気圧と投影倍率、焦点位置の相関を説明するグ
ラフである。
FIG. 3 is a graph illustrating the correlation between atmospheric pressure, projection magnification, and focus position.

【図4】本発明の実施例1の全体構成図である。FIG. 4 is an overall configuration diagram of a first embodiment of the present invention.

【図5】図4の要部の拡大図である。5 is an enlarged view of a main part of FIG.

【図6】図4の要部の平面図である。FIG. 6 is a plan view of a main part of FIG.

【図7】本発明の実施例2の全体構成図である。FIG. 7 is an overall configuration diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 露光機本体 2 光源 4 照明光学系 5 レチクル 6 レンズ群 7 投影光学系 9 鏡筒 10 レチクル支持枠 11 フレーム 12 弾性リング板 16 圧電素子 18 モータ 19 スクリュシャフト 20 スクリュナット 21 X,Yテーブル 22 半導体ウェーハ 23 気圧計 24 制御部 39 移動レンズ 40 移動レンズ支持体 1 exposure machine main body 2 light source 4 illumination optical system 5 reticle 6 lens group 7 projection optical system 9 lens barrel 10 reticle supporting frame 11 frame 12 elastic ring plate 16 piezoelectric element 18 motor 19 screw shaft 20 screw nut 21 X, Y table 22 semiconductor Wafer 23 Barometer 24 Control unit 39 Moving lens 40 Moving lens support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前島 央 東京都千代田区丸の内1丁目5番1号 株 式会社日立製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor, Maojima, Central 5-1, Marunouchi, Chiyoda-ku, Tokyo Inside Hitachi, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウェーハが載置されるテーブル
と、 照明光学系と、 所望の転写パターンを有するレチクルと、 第1および第2のレンズ群からなり、少なくとも前記レ
チクル側において実質的にテレセントリックで、前記転
写パターンを前記半導体ウェーハの一主面に投影する投
影光学系と、 前記半導体ウェーハに対する前記転写パターンの投影倍
率を調整する倍率調整機構と、 前記投影光学系の前記半導体ウェーハに対する焦点位置
を調整する焦点位置調整機構と、 大気圧または投影露光装置の環境気圧の変動を検出する
気圧計と、 前記気圧計によって検出された前記大気圧または環境気
圧の変動量に応じて、前記投影光学系を構成する第1お
よび第2のレンズ群のうち、前記レチクルに近い側の前
記第2のレンズ群を光軸方向に変位させることにより前
記半導体ウェーハに対する前記転写パターンの投影倍率
を調整する倍率調整機構を作動させる制御部とを備えた
ことを特徴とする投影露光装置。
1. A table on which a semiconductor wafer is placed, an illumination optical system, a reticle having a desired transfer pattern, and first and second lens groups, and is substantially telecentric on at least the reticle side. A projection optical system for projecting the transfer pattern onto one main surface of the semiconductor wafer, a magnification adjusting mechanism for adjusting a projection magnification of the transfer pattern with respect to the semiconductor wafer, and a focus position of the projection optical system with respect to the semiconductor wafer. A focus position adjusting mechanism for adjusting, a barometer for detecting a change in the atmospheric pressure or the environmental pressure of the projection exposure apparatus, and the projection optical system according to the fluctuation amount of the atmospheric pressure or the environmental pressure detected by the barometer. Of the first and second lens groups that make up the second lens group closer to the reticle in the optical axis direction. Projection exposure apparatus characterized by comprising a control unit for operating the magnification adjusting mechanism for adjusting the projection magnification of the transfer pattern with respect to the semiconductor wafer by position.
JP6160887A 1994-07-13 1994-07-13 Projection exposure device Expired - Lifetime JP2555274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6160887A JP2555274B2 (en) 1994-07-13 1994-07-13 Projection exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6160887A JP2555274B2 (en) 1994-07-13 1994-07-13 Projection exposure device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59118315A Division JP2516194B2 (en) 1984-06-11 1984-06-11 Projection exposure method

Publications (2)

Publication Number Publication Date
JPH07183210A true JPH07183210A (en) 1995-07-21
JP2555274B2 JP2555274B2 (en) 1996-11-20

Family

ID=15724519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6160887A Expired - Lifetime JP2555274B2 (en) 1994-07-13 1994-07-13 Projection exposure device

Country Status (1)

Country Link
JP (1) JP2555274B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039189A1 (en) * 2000-11-10 2002-05-16 National Institute Of Advanced Industrial Science And Technology Pattern transfer device using pc projector
KR20030030869A (en) * 2001-10-11 2003-04-18 가부시키가이샤 어드밴테스트 Electron beam exposing method and exposure apparatus
JP2011014745A (en) * 2009-07-02 2011-01-20 Canon Inc Exposure method, exposure apparatus, and method of manufacturing device
US8900885B1 (en) 2013-05-28 2014-12-02 International Business Machines Corporation Wafer bonding misalignment reduction
JP2020046581A (en) * 2018-09-20 2020-03-26 株式会社Screenホールディングス Drawing apparatus and drawing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890538A (en) * 1972-12-29 1973-11-26
JPS58202449A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Reduce-projecting exposure device
JPS5994032A (en) * 1982-11-22 1984-05-30 Nippon Kogaku Kk <Nikon> Apparatus for measuring characteristics of image forming optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4890538A (en) * 1972-12-29 1973-11-26
JPS58202449A (en) * 1982-05-21 1983-11-25 Hitachi Ltd Reduce-projecting exposure device
JPS5994032A (en) * 1982-11-22 1984-05-30 Nippon Kogaku Kk <Nikon> Apparatus for measuring characteristics of image forming optical system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039189A1 (en) * 2000-11-10 2002-05-16 National Institute Of Advanced Industrial Science And Technology Pattern transfer device using pc projector
US6967708B1 (en) 2000-11-10 2005-11-22 National Institute Of Advanced Industrial Science And Technology Pattern transfer device using PC projector
KR20030030869A (en) * 2001-10-11 2003-04-18 가부시키가이샤 어드밴테스트 Electron beam exposing method and exposure apparatus
JP2011014745A (en) * 2009-07-02 2011-01-20 Canon Inc Exposure method, exposure apparatus, and method of manufacturing device
US8502961B2 (en) 2009-07-02 2013-08-06 Canon Kabushiki Kaisha Exposure method, exposure apparatus, and method of manufacturing device
US9329489B2 (en) 2009-07-02 2016-05-03 Canon Kabushiki Kaisha Exposure method, exposure apparatus, and method of manufacturing device
US8900885B1 (en) 2013-05-28 2014-12-02 International Business Machines Corporation Wafer bonding misalignment reduction
JP2020046581A (en) * 2018-09-20 2020-03-26 株式会社Screenホールディングス Drawing apparatus and drawing method

Also Published As

Publication number Publication date
JP2555274B2 (en) 1996-11-20

Similar Documents

Publication Publication Date Title
JP2516194B2 (en) Projection exposure method
JP3747566B2 (en) Immersion exposure equipment
US4825247A (en) Projection exposure apparatus
US4998821A (en) Projection apparatus
JPH11317367A (en) Stage equipment, method for driving stage, and aligner
US6699630B2 (en) Method and apparatus for exposure, and device manufacturing method
US4708465A (en) Exposure apparatus
US4778233A (en) Steering mirror
JPH0551170B2 (en)
JPH03198320A (en) Optical device for projection
JPH0794388A (en) Method and device for projection exposure
US6080517A (en) Method of projection exposure
JP2000036449A (en) Aligner
JP2555274B2 (en) Projection exposure device
JPS618922A (en) Projecting optical apparatus
JP2004158610A (en) Aligner and aligning method
JP2897345B2 (en) Projection exposure equipment
JP2001338860A (en) Exposure method and device manufacturing method
JP2625076B2 (en) Projection exposure method and apparatus
JPS6022319A (en) Semiconductor exposure apparatus
JPH11258498A (en) Projective lens and scanning exposure device
JP2001015422A (en) Projection exposing method, projection aligner and manufacture of device using the same
JPH06140305A (en) Projection aligner
JPH06260393A (en) Positioning device
JP2840314B2 (en) Projection exposure equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term