JPH06260393A - Positioning device - Google Patents

Positioning device

Info

Publication number
JPH06260393A
JPH06260393A JP5047672A JP4767293A JPH06260393A JP H06260393 A JPH06260393 A JP H06260393A JP 5047672 A JP5047672 A JP 5047672A JP 4767293 A JP4767293 A JP 4767293A JP H06260393 A JPH06260393 A JP H06260393A
Authority
JP
Japan
Prior art keywords
height
stage
wafer
substrate
plane mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5047672A
Other languages
Japanese (ja)
Inventor
Toshitaka Kobayashi
敏孝 小林
Masahiro Tsunoda
正弘 角田
Suuyou Asai
枢容 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5047672A priority Critical patent/JPH06260393A/en
Publication of JPH06260393A publication Critical patent/JPH06260393A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To simultaneously use an optical focal point detector to control the height and the amount of inclination with high precision, by performing the length measuring of the height with a laser length measuring machine from the vertical direction of a substrate to be processed. CONSTITUTION:A top table 10 provided with a wafer 2 and a plane mirror 9 is moved upward and downward by a coarse Z-stage 13. The absolute height in the Z-direction is measured in a Z laser length measuring system 17 using the plane mirror 9. An optical focal position detector first causes a measuring light 21 to be reflected on the plane mirror 9, and calculates a reference phase by an interference fringe signal 25. Then, the measuring light 21 is reflected by a wafer 2 to perform a control for correcting the height in the Z-direction and the target value by the phase difference between the reference phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子製造のリソ
グラフィ工程に用いられる、露光装置や電子線描画装置
に関わり、特にウェーハ等の基板を載置して2次元移動
させると共に、この基板を所定の平面に対して傾斜させ
る機構を有する、特に高精度な位置決め精度が必要な位
置決め装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus and an electron beam drawing apparatus used in a lithographic process for manufacturing a semiconductor element, and particularly to placing a substrate such as a wafer and moving it two-dimensionally. The present invention relates to a positioning device having a mechanism for inclining with respect to a predetermined plane and requiring particularly high positioning accuracy.

【0002】[0002]

【従来の技術】半導体集積回路のフォトグラフィ工程に
おいて、縮小投影露光装置・所謂ステッパーが現在主流
となっている。この装置は、フォトマスクの原版である
レチクルに形成されたパターンを、投影レンズを介して
ウェーハ上のフォトレジスト層に露光するものであり、
一回の露光フィールドがウェーハサイズよりも小さいた
め、ウェーハを載置するステージを2次元的に移動さ
せ、ステップアンドリピート方式で露光する。従来より
この種の装置では、ウェーハの露光位置でフォーカスを
検出し、投影光学系の光軸方向のZ位置(垂直方向)を
制御する、オートフォーカス機構が必須のものである。
最近では、投影レンズの高解像化のために焦点深度が浅
くなり、ウェーハ面の凹凸,傾斜による露光領域内での
解像,線幅の均一性の低下が問題となってきた。このた
め、露光領域ごとにウェーハの水平位置を検出制御する
機構(レベリング機構)が提案されている。しかし、従
来は特願平2−14818号公報記載の如く、光学式焦点位置
検出器のみではなく、エア・マイクロメータ方式ギャッ
ブ検出器を併用していた。
2. Description of the Related Art Reduction projection exposure apparatuses, so-called steppers, are currently the mainstream in the photography process of semiconductor integrated circuits. This device exposes a pattern formed on a reticle, which is an original plate of a photomask, onto a photoresist layer on a wafer through a projection lens,
Since a single exposure field is smaller than the wafer size, the stage on which the wafer is placed is moved two-dimensionally and exposure is performed by the step-and-repeat method. Conventionally, in this type of apparatus, an autofocus mechanism that detects focus at the exposure position of the wafer and controls the Z position (vertical direction) in the optical axis direction of the projection optical system is essential.
In recent years, the depth of focus has become shallow due to the high resolution of the projection lens, and resolution and line width uniformity within the exposure area due to unevenness and inclination of the wafer surface have become a problem. Therefore, a mechanism (leveling mechanism) for detecting and controlling the horizontal position of the wafer for each exposure region has been proposed. However, conventionally, as described in Japanese Patent Application No. 2-14818, not only an optical focus position detector but also an air micrometer type gab detector is used together.

【0003】[0003]

【発明が解決しようとする課題】上記の従来例による光
学式焦点位置検出器は、高さを検出できるストロークが
10μmと短く、ウェーハの厚みむら50μmを吸収す
る事は不可能である。そのためエア・マイクロメータ方
式検出器にて、ウェーハをZステージにてレンズの正焦
点まで移動させ、そこから光学式焦点位置検出器にて、
高さ及び傾きを測定していた。エア・マイクロメータ方
式検出器は、ウェーハ傾き検出機能を持たせるため、ウ
ェーハ面に最低3ヶ所の微小ノズルから一定圧の気体を
噴射し、その背圧を検出し、各ノズルとウェーハ面との
間隔を平均して、ウェーハ面高さを検出するため、ノズ
ル下面とウェーハ面とのギャップを60μmしか設けら
れず、大きな異物が混入した場合、ウェーハ面に傷をつ
ける恐れがある。さらにワークエリアが狭くメンテナン
スが困難であり、エア・マイクロメータ方式検出器はシ
ステムが大きいため装置占有面積が大きく、調整時間も
長くかかった。又、エアの元圧変動により、高さ位置検
出誤差を生じた。本発明は、システムを小型化し、さら
に高精度にウェーハ面高さ及び傾きを検出し、位置決め
できる位置決め装置を提供することにある。
The optical focus position detector according to the conventional example described above has a short stroke capable of detecting height of 10 .mu.m and cannot absorb the unevenness of the wafer thickness of 50 .mu.m. Therefore, the wafer is moved to the positive focus of the lens on the Z stage with the air micrometer type detector, and from there the optical focus position detector is used.
Height and slope were measured. The air-micrometer type detector has a function to detect the wafer inclination, so that a gas with a constant pressure is jetted from at least three minute nozzles onto the wafer surface, and the back pressure is detected to detect the back pressure between each nozzle and the wafer surface. Since the height of the wafer surface is detected by averaging the intervals, the gap between the lower surface of the nozzle and the wafer surface can be set to only 60 μm, and if a large foreign matter is mixed in, the wafer surface may be damaged. Furthermore, the work area is small and maintenance is difficult, and the air-micrometer type detector has a large system, which occupies a large area and requires a long adjustment time. Further, the height position detection error occurred due to the fluctuation of the air source pressure. It is an object of the present invention to provide a positioning device that can downsize the system and detect and position the wafer surface height and inclination with high accuracy.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明においてはエア・マイクロメータ方式検出器
を廃止し、Zレーザ測長器により正焦点高さをZステー
ジを移動させながら測長し、露光領域とに光学式焦点検
出器によりウェーハの水平位置を検出制御したものであ
る。
In order to achieve the above object, in the present invention, the air micrometer type detector is abolished, and the Z laser length measuring device measures the normal focus height while moving the Z stage. In addition, the horizontal position of the wafer is detected and controlled by the optical focus detector in the exposure area.

【0005】[0005]

【作用】ウェーハをウェーハチャックに固定後、レーザ
測長器により正焦点高さをZステージを移動させながら
検出後、高さの位置決めを行う。次に、レーザ測長器に
て検出した基準面を、光学式焦点検出器にて測定し、こ
の結果を高さの基準とする。次にウェーハ面を光学式焦
点検出器にて検出し、基準面からの差を高さの測長値に
加算し、帰還制御を行うことにより、高精度にウェーハ
面高さ及び傾きを検出し、位置決めを行うことができ
る。
After the wafer is fixed to the wafer chuck, the normal focus height is detected by the laser length measuring device while moving the Z stage, and then the height is positioned. Next, the reference surface detected by the laser length measuring device is measured by the optical focus detector, and the result is used as the height reference. Next, the wafer surface is detected by an optical focus detector, the difference from the reference surface is added to the height measurement value, and feedback control is performed to detect the wafer surface height and tilt with high accuracy. , Can be positioned.

【0006】[0006]

【実施例】以下、本発明の実施例について、図1〜図3
に基づき説明する。
EXAMPLES Examples of the present invention will be described below with reference to FIGS.
It will be explained based on.

【0007】図1は、本発明の適用対策となる投影露光
装置の一構成例を示す概略図である。図1において投影
露光装置では、露光照明系6により出た露光光が、レテ
ィクル5のパターン及び縮小レンズ7を通して、ステー
ジ1上の固定されたウェーハに投影しパターンの転写が
行われる。このパターン転写を行うに際し、ステージ1
はレーザ測長系4により0.008μm の精度で位置計
測され、ある一定ピッチを繰り返し、サーボモータ等の
ステージ駆動機構3にて移動し、±0.02μmの精度
で位置決めされる。
FIG. 1 is a schematic diagram showing an example of the configuration of a projection exposure apparatus which is a countermeasure for applying the present invention. In the projection exposure apparatus shown in FIG. 1, the exposure light emitted from the exposure illumination system 6 is projected onto the fixed wafer on the stage 1 through the pattern of the reticle 5 and the reduction lens 7 to transfer the pattern. When performing this pattern transfer, the stage 1
Is measured by the laser measuring system 4 with an accuracy of 0.008 μm, repeated at a certain pitch, moved by the stage drive mechanism 3 such as a servomotor, and positioned with an accuracy of ± 0.02 μm.

【0008】図2は、一実施例を示す概念図である。ウ
ェーハ2を真空吸着にて固定するウェーハチャック8
と、ウェーハ2と同じ高さ及び傾きに調整された平面ミ
ラー9を備えたトップテーブル10は、粗Xステージ1
1と微動枠12の間に、1/50のテーパのMサビより
構成された粗Zステージ13を、DCモータ14を回転
させ送りネジ15にて出し入れする事により上下動作を
行う。この粗Zステージ13は、高さ方向精度±0.0
2μm 精度の、マグネセンサ等の原点センサ16を設
置し、Z方向の原点としている。Z方向の絶対高さは、
縮小レンズ7の横に設置したZレーザ測長系17にて測
定し、粗Zコントローラ18を通して制御を行う。光学
式焦点検出器は、レーザ18より放出したレーザを、プ
リズム19にて参照光20と測定光21に分割し、2枚
のミラー22に反射後、レンズ23にて集光しCCD2
4に入れる。CCD24にて干渉縞信号25を出力し、
FFT26にてスペクトルの最大位置検出27し、傾き
と高さ演算28を行う。傾きの目標値は、微Zコントロ
ーラ29にて微動枠12上に3本設置してある微Zピエ
ゾ30を駆動し、MGS(マグネセンサ)31にて移動
量を測定し、傾きの制御を行う。
FIG. 2 is a conceptual diagram showing an embodiment. Wafer chuck 8 for fixing the wafer 2 by vacuum suction
And the top table 10 provided with the plane mirror 9 adjusted to have the same height and inclination as the wafer 2 includes the rough X stage 1
A coarse Z stage 13 composed of a 1/50 taper M hook between the 1 and the fine movement frame 12 is rotated up and down by rotating the DC motor 14 and moving it with the feed screw 15. This coarse Z stage 13 has a height direction accuracy of ± 0.0
An origin sensor 16 such as a magnet sensor having a precision of 2 μm is installed to serve as an origin in the Z direction. The absolute height in the Z direction is
The measurement is performed by a Z laser length measuring system 17 installed beside the reduction lens 7, and control is performed through a coarse Z controller 18. In the optical focus detector, the laser emitted from the laser 18 is split into a reference light 20 and a measurement light 21 by a prism 19, reflected by two mirrors 22, and then condensed by a lens 23 to be collected by the CCD 2
Put in 4. The CCD 24 outputs the interference fringe signal 25,
The maximum position 27 of the spectrum is detected by the FFT 26, and the inclination and height calculation 28 is performed. As for the target value of the inclination, the fine Z controller 29 drives three fine Z piezos 30 installed on the fine movement frame 12, the movement amount is measured by the MGS (magnet sensor) 31, and the inclination is controlled. .

【0009】図3は、高さの制御法の制御ブロック図で
ある。高さの目標値32に対し、Zレーザ測長系17か
ら平面ミラー9までの距離が、Zレーザ現在値35とな
り、その値を基準とする光学式焦点検出器の測定光21
を、平面ミラー9に反射させ、その時の干渉縞信号25
より基準位相を算出する。次に、光学式焦点検出器の測
定光21をウェーハ2に反射させ、前記基準位相との位
相差38をDAC33に入れ、PID制御34を通して
DCモータ14を回転させ、送りネジ15により粗Zス
テージ12を移動させて、高さ目標値32になるまで繰
り返すことにより、高精度なウェーハ面高さの位置決め
を行うことができる。
FIG. 3 is a control block diagram of the height control method. With respect to the target value 32 of the height, the distance from the Z laser length measuring system 17 to the plane mirror 9 becomes the Z laser current value 35, and the measurement light 21 of the optical focus detector based on this value 35.
Is reflected by the plane mirror 9, and the interference fringe signal 25 at that time is reflected.
The reference phase is calculated from this. Next, the measurement light 21 of the optical focus detector is reflected on the wafer 2, the phase difference 38 from the reference phase is put in the DAC 33, the DC motor 14 is rotated through the PID control 34, and the coarse Z stage is set by the feed screw 15. By moving 12 and repeating it until the height target value 32 is reached, highly accurate wafer surface height positioning can be performed.

【0010】[0010]

【発明の効果】本発明によれば、エア・マイクロメータ
方式検出器を廃止でき、エアの元圧変動等による誤差を
生じることもなくなり、高精度にウェーハ面高さ及び傾
きの位置決めを行える効果がある。又、ウェーハ面上の
ワークエリアも広がり、メンテナンスもしやすくなる。
さらに、エア・マイクロメータユニットを廃止すること
により、装置の占有面積も小さくなり、装置の調整時間
も短くなる等の効果もある。
According to the present invention, the air-micrometer type detector can be eliminated, errors due to fluctuations in the original pressure of the air can be eliminated, and the wafer surface height and tilt can be accurately positioned. There is. In addition, the work area on the wafer surface is expanded and maintenance becomes easier.
Further, by eliminating the air-micrometer unit, the area occupied by the device can be reduced, and the adjustment time of the device can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の適用対象となる、投影露光装置の一構
成例を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing a configuration example of a projection exposure apparatus to which the present invention is applied.

【図2】本発明の一実施例を示す概念図である。FIG. 2 is a conceptual diagram showing an embodiment of the present invention.

【図3】本発明の制御ブロック図である。FIG. 3 is a control block diagram of the present invention.

【符号の説明】[Explanation of symbols]

1…ステージ、2…ウェーハ、3…サーボモータ(ステ
ージ駆動機構)、4…レーザ測長系、5…レティクル、
6…露光照明系、7…縮少レンズ、8…ウェーハチャッ
ク、9…平面ミラー、10…トップテーブル、11…粗
Xステージ、12…微動枠、13…粗Zステージ、14
…DCモータ、15…送りネジ、16…原点センサ、1
7…Zレーザ測長系、18…粗Zコントローラ、19…
プリズム、20…参照光、21…測定光、22…ミラ
ー、23…レンズ、24…CCD、25…干渉縞信号、
26…FFT、27…スペクトルの最大位置検出、28
…傾き,高さ演算、29…微Zコントローラ、30…微
Zピエゾ、31…マグネセンサ、32…高さ目標値、3
3…DAC、34…PID制御、35…Zレーザ現在
値、36…平面ミラー上での基準位相算出、37…ウェ
ーハ上での位相差算出、38…位相差。
1 ... Stage, 2 ... Wafer, 3 ... Servo motor (stage drive mechanism), 4 ... Laser length measurement system, 5 ... Reticle,
6 ... Exposure illumination system, 7 ... Reduction lens, 8 ... Wafer chuck, 9 ... Planar mirror, 10 ... Top table, 11 ... Coarse X stage, 12 ... Fine movement frame, 13 ... Coarse Z stage, 14
... DC motor, 15 ... Feed screw, 16 ... Origin sensor, 1
7 ... Z laser length measuring system, 18 ... Coarse Z controller, 19 ...
Prism, 20 ... Reference light, 21 ... Measuring light, 22 ... Mirror, 23 ... Lens, 24 ... CCD, 25 ... Interference fringe signal,
26 ... FFT, 27 ... Spectrum maximum position detection, 28
... Tilt, height calculation, 29 ... Fine Z controller, 30 ... Fine Z piezo, 31 ... Magnet sensor, 32 ... Height target value, 3
3 ... DAC, 34 ... PID control, 35 ... Z laser present value, 36 ... Reference phase calculation on plane mirror, 37 ... Phase difference calculation on wafer, 38 ... Phase difference.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被処理基板を保持するとともに、該基板を
予め定められた基準平面内で、2次元的に移動させるた
めのX,Yステージと、該X,Yステージに設けられ、
前記基準面とほぼ垂直方向に可動なZステージと、該Z
ステージに設けられ、該基板を前記基準面に対して、任
意の方向に傾斜可能なレベリングステージと、該基板の
傾斜量を検出する検出手段を有する装置において、被処
理基板の垂直方向よりレーザ測長器により、高さを測長
することを特徴とする位置決め装置。
1. An X, Y stage for holding a substrate to be processed and moving the substrate two-dimensionally within a predetermined reference plane, and the X, Y stage.
A Z stage movable in a direction substantially perpendicular to the reference plane, and the Z stage
In a device provided with a stage, which is capable of inclining the substrate in an arbitrary direction with respect to the reference plane, and a device for detecting an amount of inclination of the substrate, a laser measurement is performed from a vertical direction of the substrate to be processed. A positioning device characterized by measuring the height with a length gauge.
【請求項2】請求項1において、上記Zステージ上に、
被処理基板と同等の高さ及び傾きの平面ミラーを設け、
傾斜量検出装置において、該平面ミラーと被処理基板を
比較して、制御する手段を備えたことを特徴とする位置
決め装置。
2. The Z-stage according to claim 1, wherein
Provide a plane mirror with the same height and inclination as the substrate to be processed,
In a tilt amount detecting device, a positioning device comprising means for comparing and controlling the flat mirror and a substrate to be processed.
JP5047672A 1993-03-09 1993-03-09 Positioning device Pending JPH06260393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047672A JPH06260393A (en) 1993-03-09 1993-03-09 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047672A JPH06260393A (en) 1993-03-09 1993-03-09 Positioning device

Publications (1)

Publication Number Publication Date
JPH06260393A true JPH06260393A (en) 1994-09-16

Family

ID=12781764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047672A Pending JPH06260393A (en) 1993-03-09 1993-03-09 Positioning device

Country Status (1)

Country Link
JP (1) JPH06260393A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786131A (en) * 1993-09-13 1995-03-31 Nikon Corp Aligner
WO2003010803A1 (en) * 2001-07-26 2003-02-06 Seiko Epson Corporation Exposure device, exposure method, method of producing semiconductor device, electrooptic device, and electronic equipment
EP1439428A2 (en) * 2003-01-14 2004-07-21 ASML Netherlands B.V. Level sensor for lithographic apparatus
EP1674939A1 (en) * 2004-12-27 2006-06-28 ASML Netherlands BV Level sensor, lithographic apparatus and device manufacturing method
US7148494B2 (en) 2004-12-29 2006-12-12 Asml Netherlands B.V. Level sensor, lithographic apparatus and device manufacturing method
KR101109966B1 (en) * 2003-11-19 2012-02-24 뉴 인덱스 에이에스 Proximity Detector
WO2012050375A2 (en) * 2010-10-13 2012-04-19 주식회사 고영테크놀러지 Device for measuring and method for correcting same
JP2018045147A (en) * 2016-09-15 2018-03-22 キヤノン株式会社 Exposure equipment and production method of article

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786131A (en) * 1993-09-13 1995-03-31 Nikon Corp Aligner
WO2003010803A1 (en) * 2001-07-26 2003-02-06 Seiko Epson Corporation Exposure device, exposure method, method of producing semiconductor device, electrooptic device, and electronic equipment
JP4861605B2 (en) * 2001-07-26 2012-01-25 セイコーエプソン株式会社 Exposure equipment
JPWO2003010803A1 (en) * 2001-07-26 2004-11-18 セイコーエプソン株式会社 Exposure apparatus, exposure method, method of manufacturing semiconductor device, electro-optical device, and electronic apparatus
EP1439428A3 (en) * 2003-01-14 2009-05-13 ASML Netherlands B.V. Level sensor for lithographic apparatus
EP1439428A2 (en) * 2003-01-14 2004-07-21 ASML Netherlands B.V. Level sensor for lithographic apparatus
KR101109966B1 (en) * 2003-11-19 2012-02-24 뉴 인덱스 에이에스 Proximity Detector
EP1674939A1 (en) * 2004-12-27 2006-06-28 ASML Netherlands BV Level sensor, lithographic apparatus and device manufacturing method
US7148494B2 (en) 2004-12-29 2006-12-12 Asml Netherlands B.V. Level sensor, lithographic apparatus and device manufacturing method
WO2012050375A2 (en) * 2010-10-13 2012-04-19 주식회사 고영테크놀러지 Device for measuring and method for correcting same
WO2012050375A3 (en) * 2010-10-13 2012-06-28 주식회사 고영테크놀러지 Device for measuring and method for correcting same
US9250071B2 (en) 2010-10-13 2016-02-02 Koh Young Technology Inc. Measurement apparatus and correction method of the same
JP2018045147A (en) * 2016-09-15 2018-03-22 キヤノン株式会社 Exposure equipment and production method of article

Similar Documents

Publication Publication Date Title
JP3374413B2 (en) Projection exposure apparatus, projection exposure method, and integrated circuit manufacturing method
US6549271B2 (en) Exposure apparatus and method
US5502311A (en) Method of and apparatus for detecting plane position
US6287734B2 (en) Exposure method
JP3401769B2 (en) Exposure method, stage device, and exposure device
US9639008B2 (en) Lithography apparatus, and article manufacturing method
JP5386463B2 (en) Lithographic apparatus
US20090284722A1 (en) Method for monitoring focus on an integrated wafer
US5737063A (en) Projection exposure apparatus
JPH09237752A (en) Adjustment of projection optical system and projection aligner using it
JPH0257333B2 (en)
JPH1145846A (en) Scanning type exposure method and aligner
JP2000182955A (en) Servo control method and use in lithography projector
JPH06260393A (en) Positioning device
JPH09223650A (en) Aligner
US4601560A (en) Focus adjustment in an alignment and exposure apparatus
JP3218466B2 (en) Exposure method and apparatus
JPH10294257A (en) Method and apparatus for control of face position of substrate as well as method and apparatus for exposure
JP2001015422A (en) Projection exposing method, projection aligner and manufacture of device using the same
JPH10177950A (en) Stage equipment and projection optics equipment
JPH0786136A (en) Plane position setter
US6798516B1 (en) Projection exposure apparatus having compact substrate stage
JPH11168050A (en) Exposure method and exposure system
JPH09199573A (en) Positioning stage apparatus and aligner using the same
JPH10261567A (en) Projection aligner and optical characteristic measurement method of projection optical system