JPS58202449A - Reduce-projecting exposure device - Google Patents

Reduce-projecting exposure device

Info

Publication number
JPS58202449A
JPS58202449A JP57084787A JP8478782A JPS58202449A JP S58202449 A JPS58202449 A JP S58202449A JP 57084787 A JP57084787 A JP 57084787A JP 8478782 A JP8478782 A JP 8478782A JP S58202449 A JPS58202449 A JP S58202449A
Authority
JP
Japan
Prior art keywords
substrate
reduction
lens
reticle
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57084787A
Other languages
Japanese (ja)
Other versions
JPH0328809B2 (en
Inventor
Yoshio Kawamura
河村 喜雄
Akihiro Takanashi
高梨 明紘
Shinji Kuniyoshi
伸治 国吉
Toshishige Kurosaki
利栄 黒崎
Tsuneo Terasawa
恒男 寺澤
Sumio Hosaka
純男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57084787A priority Critical patent/JPS58202449A/en
Publication of JPS58202449A publication Critical patent/JPS58202449A/en
Publication of JPH0328809B2 publication Critical patent/JPH0328809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Abstract

PURPOSE:To correct automatically a reducing magnification error, by measuring a mark on a substrate through a reduce-projecting lens and a reticle, operating the reducing magnification error, and moving slightly the reduce-projecting lens in the optical axis direction. CONSTITUTION:A pattern on a reticle 22 being an original picture is illuminated by condensing the illuminating light from a light source by a condensing lens 21, and is reduce-projected onto a substrate 24 through a reducing lens 23. The shaded portion in the figure shows a reference member of an immovable state. The substrate 24 is installed on a moving base constituted of a Z moving base 30 being movable in the optical axis direction and an XY moving base 31 being movable on the plane falling at a right angle with the optical axis, and is provided with an automatic focusing mechanism so that the substrate 24 face is always held at a focal position where an image is formed by the reducing lens 23. A relative position of the substrate 24 can be derived by an operating circuit 35 by measuring a position of the moving base by a laser measuring meter 39.

Description

【発明の詳細な説明】 本発明は、半導体素子の創造工程で使用される縮小投影
露光装置の改良に係り、特に、この種の装置において寸
法精度が厳しく要求される高精度な半導体素子作成時に
生じる縮小陪率娯差全自動的に補正する手段に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvement of a reduction projection exposure apparatus used in the process of creating semiconductor devices, and particularly in the production of high-precision semiconductor devices in which dimensional accuracy is strictly required in this type of device. The present invention relates to a means for fully automatically correcting the reduction ratio difference that occurs.

従来の縮小投影露光装置は、第3図に原理構成を示した
ような光学系を基本として、原画42のパターンを縮小
レンズ43を用いて、基板44の上に投影している。縮
小レンズ43と基板44との距離tas縮小レンズ43
と原画42との距離Ibとすると光学系内の屈折率分布
が一定である限り縮小培率mはm = a / b 、
焦点距離fは1/f=1/a+1/bで表わされる。従
来の縮小投影露光装置においては上述距離aとbとが固
定されているため、原ui42から基板44に至るまで
の光学系の光路内の媒体物の条件が変わつ九りなどして
屈折率の分布が変化すると、光学系上の上述距離a、b
が屈折率の関数となり、変化して縮小@軍mが変わって
しまい、基板44上に投影されるパターンの寸法精度が
劣化する欠点があったつしたがって、本発明の目的は、
縮小投影光学系内の媒体物の屈折率分布等の変化により
縮小倍率誤差を生じて原画から基板上に縮小投影される
パターンの絶対寸法精度が劣化することを防ぎ、常に、
高f!111fな絶対寸法の半導体素子を自動的に作る
ことを可能ならしめる縮小投影露光装置を提供すること
にある。
A conventional reduction projection exposure apparatus is based on an optical system whose principle configuration is shown in FIG. 3, and projects the pattern of an original image 42 onto a substrate 44 using a reduction lens 43. Distance between reduction lens 43 and substrate 44 tas reduction lens 43
and the distance Ib from the original image 42, as long as the refractive index distribution within the optical system is constant, the reduction factor m is m = a / b,
The focal length f is expressed as 1/f=1/a+1/b. In the conventional reduction projection exposure apparatus, since the distances a and b are fixed, the refractive index changes as the conditions of the medium in the optical path of the optical system from the original ui 42 to the substrate 44 change. When the distribution of changes, the above-mentioned distances a and b on the optical system change.
is a function of the refractive index, and as a result, the reduction @ m changes, which has the drawback of deteriorating the dimensional accuracy of the pattern projected onto the substrate 44. Therefore, the object of the present invention is to
This prevents deterioration of the absolute dimensional accuracy of the pattern reduced and projected from the original onto the substrate due to reduction magnification errors caused by changes in the refractive index distribution of the medium in the reduction projection optical system, and always
High f! It is an object of the present invention to provide a reduction projection exposure apparatus that makes it possible to automatically produce a semiconductor element having an absolute size of 111f.

上記目的全達成するために本発明では、基板上のマーク
を縮小投影レンズとレティクルとを通して計測し、縮小
倍率誤差を演算して、縮小投影レンズを光軸方向に微動
させることによって自動的に縮小倍率誤差を補正するよ
うに縮小投影露光装置を構成したことを特徴としている
In order to achieve all of the above objectives, the present invention measures marks on a substrate through a reduction projection lens and a reticle, calculates a reduction magnification error, and automatically reduces the marks by slightly moving the reduction projection lens in the optical axis direction. The present invention is characterized in that the reduction projection exposure apparatus is configured to correct magnification errors.

以下、本発明の一実施例を第2図により説明する。An embodiment of the present invention will be described below with reference to FIG.

原画であるレティクル22上のパターンを光源(図示し
ていない)からの照明光をコンデンサレンズ21で集光
して照明し、縮小レンズ23全通して基板24上に縮小
投影させる。第2図内で斜線を付した部分は、固定され
て不動状態の基準部材である。
A pattern on a reticle 22, which is an original image, is illuminated by condensing illumination light from a light source (not shown) using a condenser lens 21, and is reduced and projected onto a substrate 24 through a reduction lens 23. The shaded portion in FIG. 2 is a fixed and immovable reference member.

基板24け光軸方向に可動なZ移動台3oと光軸と直角
な平面内で可動なXY移動台31とで構成される移動台
上に設置され、縮小レンズ23により結像される焦点位
置に基板24面が常に保持されるように、特公昭55−
18043号で示したような、自動焦点機構が具備され
ている。基板24の相対位置は、移動台の位置をレーザ
測長計39で測長し、演算回路35で求めることができ
る。
The substrate 24 is installed on a movable stage composed of a Z movable stage 3o movable in the optical axis direction and an XY movable stage 31 movable within a plane perpendicular to the optical axis, and the focal position imaged by the reduction lens 23. To ensure that the 24th side of the board is always held,
An autofocus mechanism as shown in No. 18043 is provided. The relative position of the substrate 24 can be determined by measuring the position of the movable base with a laser length measuring meter 39 and using an arithmetic circuit 35.

縮小レンズ23は、光軸方向のみに可動なように基準部
材に対して案内部材32で支持され、駆動モータ33に
よって光軸方向に微動でき、その微動着は、例えば、差
動コイル34によって測長され、レンズ上下制御回路3
8に帰還される。
The reduction lens 23 is supported by a guide member 32 relative to a reference member so as to be movable only in the optical axis direction, and can be moved slightly in the optical axis direction by a drive motor 33. The fine movement is, for example, measured by a differential coil 34. Lens vertical control circuit 3
He will be returned on 8th.

ここで、縮小倍率の測定方法について、第1図(尋、 
(b)、 (C)を用いて述べる。
Here, regarding the method of measuring the reduction magnification, see Figure 1 (Hiron,
This will be explained using (b) and (C).

この縮小投影露光袋vItはコンデンサレンズ1、レテ
ィクル2、縮小投影レンズ3、基板4、および第1のパ
ターン検出器5、第2のパターン検出器6から構成され
ている。原画であるレティクル2上には所定の間隔L(
第1図(b)参照)を隔てた位置に正方形の光透過性の
窓7.8が設けられている。第1図(b)は上述の窓7
.8の拡大図を示したものである。基板4上のマーク9
を縮小レンズ3およびレティクル2の窓7t−通して見
るとマーク9′のようになり、また、基板4を所定距離
tだけ移動して窓8から見るとマーク9#のようになる
(第1図(b)参照)。
This reduction projection exposure bag vIt is composed of a condenser lens 1, a reticle 2, a reduction projection lens 3, a substrate 4, a first pattern detector 5, and a second pattern detector 6. A predetermined interval L (
A square light-transmissive window 7.8 is provided at a position separated by a distance (see FIG. 1(b)). FIG. 1(b) shows the window 7 mentioned above.
.. 8 shows an enlarged view of No. 8. Mark 9 on board 4
When viewed through the reduction lens 3 and the window 7t of the reticle 2, it becomes a mark 9', and when the substrate 4 is moved by a predetermined distance t and viewed from the window 8, it becomes a mark 9# (first (See figure (b)).

パターン検出器5けレティクル2の窓7内におけるマー
ク9′の位置を、またパターン検出器6けレティクル2
の窓8内におけるマーク9″の位置を各々測長すること
ができ、2つのマーク9′と9”との相対距離がレティ
クル2の窓7と8との間隔りに比べてずれている量ΔL
t−演算することができる。
The position of the mark 9' in the window 7 of the pattern detector 5-piece reticle 2, and the pattern detector 6-piece reticle 2
The position of each mark 9'' within the window 8 of the reticle 2 can be measured, and the amount by which the relative distance between the two marks 9' and 9'' deviates compared to the distance between the windows 7 and 8 of the reticle 2 can be measured. ΔL
t-operation is possible.

今、縮小投影光学系の縮小倍率をm(m<1)とすると
、を二mLとなるように、基板4のマーク9倉移動した
にもかかわらすΔLだけ大きくずれたとすると、t=(
m+Δm)(L+ΔL)なる関係を満す。
Now, if the reduction magnification of the reduction projection optical system is m (m<1), and even though the mark on the board 4 has been moved by 9 spaces, it has shifted by ΔL so that 2 mL becomes 2 mL. Then, t=(
The following relationship is satisfied: m+Δm)(L+ΔL).

Δmだけ縮小f1!*m差となり、光学系によって縮小
しすぎていることになる。
Reduce f1 by Δm! * m difference, which means that the optical system has reduced the image too much.

一方、第1図(C)に示したように、縮小投影光学系に
おいて、レティクル2と縮小レンズ3との間隔すがΔm
だけ大きくなっている時には、上述のようにマーク9f
:tだけ移動させた時に、ΔL/Δb−ybなる関係t
−満すΔLだけ、マーク9′と9#とがずれることにな
る。
On the other hand, as shown in FIG. 1(C), in the reduction projection optical system, the distance between the reticle 2 and the reduction lens 3 is Δm.
, the mark 9f is larger as described above.
: When moved by t, the relationship t becomes ΔL/Δb-yb
- Marks 9' and 9# are shifted by ΔL.

従って、第1%第2のパターン検出器5.6で検出され
たマーク9の位置ずれ量ΔLからΔb=ΔL−b/Lな
る関係を満す量だけ縮小レンズ3とレティクル2との相
対距離を狭くすれば縮小倍率誤差Δmが零になる。ΔL
が負の値の時はΔmだけ縮小レンズ3とレティクル2と
の間隔を大きくすれば良い。
Therefore, the relative distance between the reduction lens 3 and the reticle 2 is determined by the amount that satisfies the relationship Δb=ΔL−b/L from the positional deviation amount ΔL of the mark 9 detected by the 1% second pattern detector 5.6. If Δm is narrowed, the reduction magnification error Δm becomes zero. ΔL
When is a negative value, it is sufficient to increase the distance between the reduction lens 3 and the reticle 2 by Δm.

実施例としては、1/10縮小投影露光装置の場合とし
て、m = 0.1 、  f==49.2m a==
54.127m。
As an example, in the case of a 1/10 reduction projection exposure apparatus, m=0.1, f==49.2m a==
54.127m.

b =541.27m、 t=10sm なる値となる
。この時、Δm=0.000001rlO−’%)だけ
大きい縮小倍率誤差があると、Lo = 100■のパ
ターンは、Lo (m+Δm)から(1抛rO01μm
)の寸法となり0.1μmだけ小さな寸法誤差を生じて
しまう。このような状態を第1、第2のパターン検出器
5.6で測定すると、長さt=10wxはL十ΔL=t
/(m+Δm)。
The values are b = 541.27m and t = 10sm. At this time, if there is a reduction magnification error as large as Δm=0.000001rlO-'%), the pattern of Lo = 100■ will change from Lo (m+Δm) to (1rO01μm
), resulting in a small dimensional error of 0.1 μm. When such a state is measured by the first and second pattern detectors 5.6, the length t=10wx is L+ΔL=t
/(m+Δm).

l=100mに対してΔL=1μm大きく検出される。ΔL=1 μm is detected larger than l=100 m.

この際、Δb=5.4nm  だけ縮小レンズ3とレテ
ィクル2との間隔を狭くすれば、縮小倍率誤差は消える
ことになる。
At this time, if the distance between the reduction lens 3 and the reticle 2 is narrowed by Δb=5.4 nm, the reduction magnification error will disappear.

以上述べたことから判るように、所定間隔り離れたレテ
ィクル2上から縮小レンズ3を通して所定量tだけ移動
した基板4上のマーク9の位置ずれ量ΔLを測定するだ
けで、縮小11!r率誤差が求まり、Δb=ΔL−b/
Lなる関係を満すように縮小レンズ3とレティクル2と
の間隔を微調することにより、縮小倍率誤差が補正でき
る。
As can be seen from the above description, by simply measuring the displacement amount ΔL of the mark 9 on the substrate 4 that has been moved by a predetermined amount t from the reticle 2 at a predetermined distance through the reduction lens 3, the reduction is 11! The r rate error is found, Δb=ΔL−b/
By finely adjusting the distance between the reduction lens 3 and the reticle 2 so as to satisfy the relationship L, the reduction magnification error can be corrected.

ところで、従来の縮小投影露光装置では、一度正確にレ
ティクル2と縮小レンズ3との距離すを固定すれば、縮
小培率は変化することはなかった。
By the way, in the conventional reduction projection exposure apparatus, once the distance between the reticle 2 and the reduction lens 3 is accurately fixed, the reduction ratio does not change.

しかし、近年、半導体素子の高精度化に併って原画、つ
まりレティクル2面に事項が付着することを防ぐため、
レティクル2をカバーガラスでおおったり、縮小レンズ
3と基板4との間に空気以外の媒体物を介在させて作動
させる縮小投影露光装置が開発されている。このように
、縮小投影光学系に空気以外の媒体物を介在させる場合
、その媒体物の屈折率やその媒体物の厚さが一定値を保
つ限りにおいては、一度、屈折率の異なることによって
生じる縮小倍率誤差を修正すれば良いのであるが、通常
は、媒体物の屈折率や厚さを一定に保持fることは極め
て困難であり、そのために縮小@率誤差を生じてしまう
ことになる。
However, in recent years, with the increasing precision of semiconductor devices, in order to prevent matters from adhering to the original image, that is, the two sides of the reticle,
Reduction projection exposure apparatuses have been developed that operate by covering the reticle 2 with a cover glass or interposing a medium other than air between the reduction lens 3 and the substrate 4. In this way, when a medium other than air is interposed in the reduction projection optical system, as long as the refractive index and thickness of the medium remain constant, the difference in refractive index Although it is possible to correct the reduction magnification error, it is usually extremely difficult to maintain the refractive index and thickness of the medium constant, which results in a reduction magnification error.

そこで、本発明では、上述したような、縮小露光光学系
の間に任意の屈折率や厚さの媒体物が存在しても、常に
上述したようなパターン検出器5゜6を用いて縮小倍率
誤差を検出し、補正することを可能とする点に特徴があ
る。
Therefore, in the present invention, even if a medium with an arbitrary refractive index or thickness is present between the reduction exposure optical system as described above, the reduction magnification is always determined by using the pattern detector 5.6 as described above. The feature is that it allows errors to be detected and corrected.

ここで、第2図の実施例にもどって本発明をさらに詳細
に説明する。パターン検出器25はレティクル22、縮
小レンズ23全通して、基板24上のマーク29の位m
t検出し、検出信号は検出回路37、演算回路36に送
られ、レンズ上下制御回路38によって、モータ33等
の駆動系により、縮小レンズ23が光軸方向に微動され
ることになる。
The present invention will now be described in more detail by returning to the embodiment shown in FIG. The pattern detector 25 passes through the reticle 22 and the reduction lens 23, and detects the mark 29 on the substrate 24.
t is detected, the detection signal is sent to the detection circuit 37 and the calculation circuit 36, and the reduction lens 23 is slightly moved in the optical axis direction by the lens vertical control circuit 38 and a drive system such as the motor 33.

任意の屈折率や厚さの媒体物は、図示していないが、レ
ティクル22と縮小レンズ23および基板24との間の
どこに存在していても、本発明の機能が生かされる。
Although not shown, a medium having an arbitrary refractive index or thickness may be present anywhere between the reticle 22, the reduction lens 23, and the substrate 24, and the functions of the present invention can be utilized.

なお、本発明の実施例では、基板4 (24)上の1つ
のマーク9 (29)を所定距離tだけ移動させ、レテ
ィクル2 (22)のLだけ禰れた窓7,8に対する位
置を計測しているが、基板4(24)上のマーク9#−
t1所定距Vatだけ離れた2つのマークを、同時にパ
ターン検出することも可能である。また、同時にパター
ン検出し、そのレティクル2 (22)の窓7.8に対
するずれ量ΔLを測長せず、所定の2つの窓7.8の決
められた位置に基板4 (24)上のマーク9が合うよ
うに、縮小レンズ3 (23)を−E下動させて制御す
ることも応用例として考えられる。さらに、レティクル
2 (22)上の2ケ所の窓7.8の位置は、所定の距
4Lさえ判れば、任意の場所で良く、2つのパターン検
出器5.6の原点の精度が良ければ、基板4r24)上
のマーク9をレティクル2 (22)上の窓7.8に対
して検出せず、パターン検出器5.6の原点に対して検
出しても良い。
In the embodiment of the present invention, one mark 9 (29) on the substrate 4 (24) is moved by a predetermined distance t, and the position of the reticle 2 (22) relative to the windows 7 and 8 extending by L is measured. However, mark 9#- on board 4 (24)
It is also possible to detect patterns of two marks separated by a predetermined distance Vat at the same time. In addition, the pattern is detected at the same time, and the mark on the substrate 4 (24) is placed at the predetermined position of the two predetermined windows 7.8 without measuring the amount of deviation ΔL of the reticle 2 (22) with respect to the window 7.8. As an example of application, it may be possible to control the reduction lens 3 (23) by moving it downward by -E so that the angle 9 is aligned. Furthermore, the positions of the two windows 7.8 on the reticle 2 (22) may be any location as long as the predetermined distance 4L is known, and if the origins of the two pattern detectors 5.6 have good accuracy, The mark 9 on the substrate 4r24) may not be detected with respect to the window 7.8 on the reticle 2 (22), but may be detected with respect to the origin of the pattern detector 5.6.

また、パターン検出器5,6は独立に2金膜けなくても
、1台のパターン検出器を所定距離りだけ移動させ、あ
るいは、そのような機能や検出範囲を1台のパターン検
出器に4たせることも可能である。
In addition, even if the pattern detectors 5 and 6 do not have to be coated independently, one pattern detector can be moved a predetermined distance, or such functions and detection ranges can be integrated into one pattern detector. It is also possible to increase the number by 4.

本発明の実施例では、縮小レンズ3 (23)とレティ
クル2 (22)との相対間隔調整を縮小レンズ3 (
23)を上下させることで達しているが、両者の相対距
離t−調整すれば良すのであるから、縮小レンズ3 (
23)と同様に、光軸方向のみに可動な公知の案内駆動
手段でレティクル2 (22) を上下することで目的
を達することも可能である。
In the embodiment of the present invention, the relative distance adjustment between the reduction lens 3 (23) and the reticle 2 (22) is performed by adjusting the relative distance between the reduction lens 3 (23) and the reticle 2 (22).
23), but since it is sufficient to adjust the relative distance t between the two,
23), it is also possible to achieve the objective by moving the reticle 2 (22) up and down using a known guide drive means that is movable only in the optical axis direction.

なお、縮小@率の調整によって、結像面の最適焦点位置
までの距離aが変わり、それに伴って縮小倍率も若干変
わるが、通常、縮小レンズ3 (23)は、テレセント
リックな結像光学レンズを用りるため距離aの変化によ
る縮小倍率誤差や焦点ボケはわずかである。従って、先
ず、媒体物が変化した際には、基板4(24)上のマー
ク9(29)への焦点合わせを行なった後に、上述の方
法で、縮小培率誤差の補正を行ない、さらに、高精胚な
補正を必要とする場合には、再度、焦点合わせt行なっ
た後、縮小倍率の補正を繰返せば良いことは、容易に考
えられるう また、本発明の応用例としては、基板の付着にパターン
検出器全設置して、原画であるレティクルの所定間隔の
マークを計測して、縮小陪4を調整することも、既述の
縮小倍率誤差を補正する方法を縮小投影レンズを介して
逆さに考えれば、容易に類推できる。
Note that by adjusting the reduction @ ratio, the distance a to the optimum focus position of the imaging plane changes, and the reduction magnification changes slightly accordingly, but normally the reduction lens 3 (23) is a telecentric imaging optical lens. Because of this, the reduction magnification error and defocus due to changes in distance a are slight. Therefore, when the medium changes, first, after focusing on the mark 9 (29) on the substrate 4 (24), the reduction magnification error is corrected by the method described above, and further, If correction for a highly fertile embryo is required, it is easy to think that it is sufficient to repeat the correction of the reduction magnification after focusing again. It is also possible to install all the pattern detectors on the attachment of the reticle, measure marks at predetermined intervals on the original reticle, and adjust the reduction magnification. If you think about it upside down, you can easily make an analogy.

本発明によれば、投影霧光光学系の距離の変動や、任意
の屈折率や厚さの媒体物が介在すること等により生じる
、基板上に縮小投影される原画パターンの縮小倍率誤差
を検出し、自動的に補正することができるので、従来よ
りさらに高精度な半導体素子を本発明の縮小投影露光装
置で製造できることになる。
According to the present invention, the reduction magnification error of the original pattern projected onto the substrate, which is caused by a change in the distance of the projection fog light optical system or the presence of a medium having an arbitrary refractive index or thickness, is detected. However, since it can be automatically corrected, it is possible to manufacture semiconductor elements with higher precision than conventional ones using the reduction projection exposure apparatus of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、 (b)、 (C)は本発明の詳細な説
明するための説明図であって、同図(旬は縮小投影露光
装置とパターン検出器との概略構成図、同図(b)は原
画であるレティクル上の窓から見た基板上のマークの模
式図、同図(C)は縮小倍率誤差説明用の光学系の模式
図、第2図は本発明による縮小投影露光装置の実施例の
概略構成図、第3図は縮小投影光学系の原理説明図であ
る。 1.21・・・コンデンサレンズ、2,22.42・・
・レティクル、3.23.43・・・縮小レンズ、4゜
24.44・・・基板、5,6.25・・・パターン検
出器、7.8・・・窓、9.9’ 、9“、29・・・
パターン、30・・・2移動台、31・・・XY移動台
、32・・・案内部材、33・・・駆動モータ、34・
・・差動コイル、35.36・・・演算回路、37・・
・検出回路、38・・・¥ 1 目 第 2 口 vJ3  図 第1頁の続き 0発 明 者 寺澤恒男 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 [相]発 明 者 保坂純男 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内
FIGS. 1(a), 1(b), and 1(C) are explanatory diagrams for explaining the present invention in detail. Figure (b) is a schematic diagram of the mark on the substrate seen from the window on the reticle, which is the original image, Figure (C) is a schematic diagram of the optical system for explaining the reduction magnification error, and Figure 2 is the reduction projection according to the present invention. A schematic configuration diagram of an embodiment of the exposure apparatus, and FIG. 3 is a diagram explaining the principle of the reduction projection optical system. 1.21... Condenser lens, 2, 22. 42...
・Reticle, 3.23.43... Reducing lens, 4°24.44... Board, 5, 6.25... Pattern detector, 7.8... Window, 9.9', 9 ", 29...
pattern, 30...2 moving base, 31...XY moving base, 32... guide member, 33... drive motor, 34...
...Differential coil, 35.36...Arithmetic circuit, 37...
・Detection circuit, 38...¥ 1 Item 2 Entrance vJ3 Continuation of figure 1 page 0 Inventor Tsuneo Terasawa 1-280 Higashikoigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory Inventor Sumio Hosaka Kokubunji Hitachi, Ltd. Central Research Laboratory, 1-280 Koigakubo, Ichihigashi

Claims (1)

【特許請求の範囲】[Claims] 1、原画であるレティクル上のパターンを基板上に縮小
投影するための縮小レンズと、上記レティクルと上記縮
小レンズとを通して上記基板上に設けられた所定のパタ
ーンの位rItを検出する九め所定の距離だけ間隔を設
けて設置された第1と第2とのパターン検出器と、上記
基板上に設けられた上記所定のパターンを上記第1のパ
ターン検出器で検出した時の上記基板の第1の位置と上
記第2のパターン検出器で検出した時の上記基板の第2
の位置とを計測し演算する回路と、上記基板の上記第1
の位置と第2の位置とから演算決定さ′れる相対距離値
によって上記縮小レンズを用いて投影される原画パター
ンの縮小倍率鎮差を演算し、上記相対距離値が所定直に
なるように上記縮小レンズの位置と上記原画の位置との
相対間隔を微動するための微動機構とを具備し、上記縮
小培5s誤差を自動的に補正するように構成してなるこ
とを特徴とする縮小投影露光装置。
1. A reduction lens for reducing and projecting the original pattern on the reticle onto the substrate, and a predetermined lens for detecting the position rIt of the predetermined pattern provided on the substrate through the reticle and the reduction lens. first and second pattern detectors installed with a distance apart; and a first pattern detector on the substrate when the first pattern detector detects the predetermined pattern provided on the substrate. and the second position of the substrate when detected by the second pattern detector.
a circuit for measuring and calculating the position of the first circuit on the substrate;
The reduction magnification difference of the original image pattern to be projected using the reduction lens is calculated based on the relative distance value calculated and determined from the position and the second position. Reduction projection exposure comprising a fine movement mechanism for slightly adjusting the relative distance between the position of the reduction lens and the position of the original image, and configured to automatically correct the reduction 5s error. Device.
JP57084787A 1982-05-21 1982-05-21 Reduce-projecting exposure device Granted JPS58202449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57084787A JPS58202449A (en) 1982-05-21 1982-05-21 Reduce-projecting exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57084787A JPS58202449A (en) 1982-05-21 1982-05-21 Reduce-projecting exposure device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4054756A Division JPH0712019B2 (en) 1992-03-13 1992-03-13 Projection exposure method and projection exposure apparatus

Publications (2)

Publication Number Publication Date
JPS58202449A true JPS58202449A (en) 1983-11-25
JPH0328809B2 JPH0328809B2 (en) 1991-04-22

Family

ID=13840403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57084787A Granted JPS58202449A (en) 1982-05-21 1982-05-21 Reduce-projecting exposure device

Country Status (1)

Country Link
JP (1) JPS58202449A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262421A (en) * 1984-06-11 1985-12-25 Hitachi Ltd Method and device for projection and exposure
JPS63164212A (en) * 1986-12-26 1988-07-07 Hitachi Ltd Reduction stepper
JPS6442820A (en) * 1987-08-10 1989-02-15 Nec Corp Manufacture of semiconductor integrated circuit
JPH07183210A (en) * 1994-07-13 1995-07-21 Hitachi Ltd Projection aligner
JP2011014745A (en) * 2009-07-02 2011-01-20 Canon Inc Exposure method, exposure apparatus, and method of manufacturing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262421A (en) * 1984-06-11 1985-12-25 Hitachi Ltd Method and device for projection and exposure
JPS63164212A (en) * 1986-12-26 1988-07-07 Hitachi Ltd Reduction stepper
JPS6442820A (en) * 1987-08-10 1989-02-15 Nec Corp Manufacture of semiconductor integrated circuit
JPH07183210A (en) * 1994-07-13 1995-07-21 Hitachi Ltd Projection aligner
JP2011014745A (en) * 2009-07-02 2011-01-20 Canon Inc Exposure method, exposure apparatus, and method of manufacturing device

Also Published As

Publication number Publication date
JPH0328809B2 (en) 1991-04-22

Similar Documents

Publication Publication Date Title
US6057908A (en) Exposure condition measurement method
EP2466384A2 (en) Plane position detecting apparatus, exposure apparatus and device manufacturing method
CN103309169A (en) Detection apparatus, exposure apparatus, and method of manufacturing device
JP2000081320A (en) Face position detector and fabrication of device employing it
JPS5979527A (en) Pattern detector
JPS6080223A (en) Light exposing device
JPS58202449A (en) Reduce-projecting exposure device
US4941745A (en) Projection aligner for fabricating semiconductor device having projection optics
KR100303057B1 (en) Focussing method and system of exposure apparatus
US5220176A (en) Apparatus and method for detecting alignment marks having alignment optical systems&#39; driving means
US11531276B2 (en) Exposure apparatus, exposure method, and article manufacturing method
US6539326B1 (en) Position detecting system for projection exposure apparatus
US20050128454A1 (en) Exposure method and apparatus
JP2653356B2 (en) Projection exposure method
JPH06120116A (en) Best focus measuring method
JPH04348019A (en) Focus position detecting device
JP2009236653A (en) Displacement detecting apparatus, exposure apparatus, and device manufacturing method
JP5093759B2 (en) Displacement detection apparatus, exposure apparatus, and device manufacturing method
JPH0574680A (en) Projection exposing method
JPS60177625A (en) Projection exposure device
JPH10172900A (en) Exposure apparatus
JPH10335208A (en) Exposure method for aligner
JPH03231420A (en) Projection optical device
JP2023176185A (en) Alignment apparatus, exposure apparatus, and method for manufacturing article
JPH01286418A (en) Projection aligner