JPH07177727A - Gate driving circuit and gate driving method of voltage-driven switching element - Google Patents

Gate driving circuit and gate driving method of voltage-driven switching element

Info

Publication number
JPH07177727A
JPH07177727A JP5324876A JP32487693A JPH07177727A JP H07177727 A JPH07177727 A JP H07177727A JP 5324876 A JP5324876 A JP 5324876A JP 32487693 A JP32487693 A JP 32487693A JP H07177727 A JPH07177727 A JP H07177727A
Authority
JP
Japan
Prior art keywords
voltage
gate
emitter
switching element
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5324876A
Other languages
Japanese (ja)
Inventor
Hironobu Kin
宏信 金
Shinji Sato
伸二 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5324876A priority Critical patent/JPH07177727A/en
Publication of JPH07177727A publication Critical patent/JPH07177727A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/127Modifications for increasing the maximum permissible switched current in composite switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit
    • H03K17/166Soft switching
    • H03K17/167Soft switching using parallel switching arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/168Modifications for eliminating interference voltages or currents in composite switches

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Power Conversion In General (AREA)

Abstract

PURPOSE:To equalize current in voltage-driven switching elements which are connected in parallel by driving the voltage-driven switching elements connected to gate terminals of those switching elements simultaneously through a voltage source. CONSTITUTION:Voltage-driven switching elements, IGBT6A and 6B, are connected in parallel. When the IGBT6A is on, the voltage between a gate and an emitter VGEA is VGA+VEA. When the IGBTs are turned on, current flows between the emitters of the two IGBTs which are connected in parallel and then a voltage drop VL1 is generated by a reactor component 5A which appears in a connecting conductor and the emitter potential VEB of the IGBT6B is VEA+VL1. Since voltage VR1(=LL1) is generated across a reactor 7A correspondingly to the voltage drop due to the reactor component appearing in the connecting conductor between the emitters and thereby the gate potential VGB of the IGBT6B increases to VGA+VR1, the voltage between a gate and an emitter VGEA of the IGBT6A and that VGEB of the IGBT6B can be equal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電圧駆動型スイッチン
グ素子のゲ―ト駆動回路に係り、特に、単一のゲ―ト駆
動回路で同時に駆動される並列接続された複数の電圧駆
動型スイッチング素子のゲ―ト駆動回路及びその駆動方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gate driving circuit for a voltage driving type switching element, and more particularly to a plurality of voltage driving type switching circuits connected in parallel which are simultaneously driven by a single gate driving circuit. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device gate drive circuit and a method for driving the same.

【0002】[0002]

【従来の技術】半導体スイッチング素子は、インバ―
タ,チョッパ等の電力変換,電力制御等の用途に多く使
われており、電力分野では必要不可欠なものとなってい
る。また、電力の大容量化に対応するためには、1つの
半導体スイッチング素子では容量が足りないので、半導
体スイッチング素子を並列に接続することにより、半導
体スイッチング素子の大容量化をはかっている。図5
は、半導体スイッチング素子を並列接続したときの概念
図である。図5において、半導体スイッチング素子1A
と1Bは、並列に接続されている。2Cはコレクタ側共
通端子であり、2Eはエミッタ側共通端子である。この
回路でスイッチング動作を行う場合は、半導体スイッチ
ング素子を同時に駆動させる必要がある。
2. Description of the Related Art Semiconductor switching devices are inverters.
It is widely used for power conversion, power control, and other applications such as switches and choppers, and has become an indispensable element in the power field. Further, in order to cope with the increase in the capacity of electric power, since the capacity of one semiconductor switching element is insufficient, the capacity of the semiconductor switching element is increased by connecting the semiconductor switching elements in parallel. Figure 5
[Fig. 3] is a conceptual diagram when semiconductor switching elements are connected in parallel. In FIG. 5, semiconductor switching element 1A
And 1B are connected in parallel. 2C is a collector-side common terminal, and 2E is an emitter-side common terminal. When performing the switching operation in this circuit, it is necessary to drive the semiconductor switching elements at the same time.

【0003】半導体スイッチング素子としては、一般に
サイリスタに代表される電流駆動型スイッチング素子が
使われているが、装置の小型化、またスイッチ開閉の高
速化により最近では絶縁ゲ―トバイポ―ラモ―ドトラン
ジスタ(IGBT)に代表される電圧駆動型スイッチン
グ素子の使用が増えている。
As a semiconductor switching element, a current drive type switching element typified by a thyristor is generally used, but recently, due to the downsizing of the device and the speeding up / off of a switch, an insulating gate bipolar transistor is recently used. The use of voltage-driven switching elements represented by (IGBT) is increasing.

【0004】図6は、単一のゲ―ト駆動回路によって駆
動される電圧駆動型スイッチング素子の2並列接続を示
した図である。図6において、電圧駆動型スイッチング
素子3Aと3Bは並列に接続され、ゲ―ト回路4によっ
て電圧駆動型スイッチング素子3A,3Bは同時に駆動
される。2Cはコレクタ側共通端子であり、2Eはエミ
ッタ側共通端子である。この回路のように電圧駆動型ス
イッチング素子では、複数の電圧駆動型スイッチング素
子を単一のゲ―ト回路を用いて同時に駆動させることが
できる。
FIG. 6 is a diagram showing two parallel connections of voltage drive type switching elements driven by a single gate drive circuit. In FIG. 6, the voltage driven switching elements 3A and 3B are connected in parallel, and the gate circuit 4 drives the voltage driven switching elements 3A and 3B at the same time. 2C is a collector-side common terminal, and 2E is an emitter-side common terminal. In the voltage-driven switching element like this circuit, a plurality of voltage-driven switching elements can be simultaneously driven by using a single gate circuit.

【0005】[0005]

【発明が解決しようとする課題】図6のような構成で
は、電圧駆動型スイッチング素子3Aと3Bとのエミッ
タ間の接続導体にある程度のリアクトル成分がある。図
7は、上記リアクトル成分のインダクタンス値をL1と
した単一のゲ―ト駆動回路によって駆動される電圧駆動
型スイッチング素子の2並列接続を示した概略図であ
る。図7において、5Aは接続導体に発生するリアクト
ル成分であり、インダクタンス値はL1である。他の要
素は、図6と同一の構成となっている。
In the structure as shown in FIG. 6, the connecting conductor between the emitters of the voltage driven switching elements 3A and 3B has a certain reactor component. FIG. 7 is a schematic diagram showing two parallel connections of voltage drive type switching elements driven by a single gate drive circuit in which the inductance value of the reactor component is L1. In FIG. 7, 5A is a reactor component generated in the connection conductor, and the inductance value is L1. The other elements have the same configuration as in FIG.

【0006】電圧駆動型スイッチング素子に電流が流れ
ているときには、上記リアクトル成分によりエミッタ間
に下式に示す電流の時間微分に比例した電圧降下VL1
発生する。
When a current is flowing through the voltage-driven switching element, a voltage drop V L1 proportional to the time derivative of the current shown below is generated between the emitters due to the reactor component.

【0007】[0007]

【数1】 但し、上式においてiは該接続導体に流れる電流であ
る。また、ゲ―トに流れる電流は、エミッタ間接続導体
に流れる電流よりも十分小いため、ゲ―ト配線の電圧降
下の発生は殆ど無視できる。
[Equation 1] However, in the above formula, i is a current flowing through the connection conductor. Further, since the current flowing through the gate is sufficiently smaller than the current flowing through the inter-emitter connecting conductor, the occurrence of voltage drop in the gate wiring can be almost ignored.

【0008】電圧駆動型スイッチング素子3Aのゲ―ト
電位VGAと電圧駆動型スイッチング素子3Bのゲ―ト電
位VGBは等しい電位VGA=VGBとなるが、電圧駆動型ス
イッチング素子3Bのエミッタ電位VEBはVEB=VEA
L1となる。よって、電圧駆動型スイッチング素子3A
のゲ―ト・エミッタ間電圧VGEA は下式となる。
The gate potential V GA of the voltage drive type switching element 3A and the gate potential V GB of the voltage drive type switching element 3B are equal potential V GA = V GB , but the emitter of the voltage drive type switching element 3B The potential V EB is V EB = V EA +
It becomes V L1 . Therefore, the voltage-driven switching element 3A
The gate-emitter voltage V GEA is expressed by the following equation.

【0009】[0009]

【数2】VGEA =VGA−VEA 一方、過渡時の電圧駆動型スイッチング素子3Bのゲ―
ト・エミッタ間電圧VGEB は下式となる。
On the other hand, V GEA = V GA −V EA
The emitter-to-emitter voltage V GEB is given by the following formula.

【0010】[0010]

【数3】 VGEB =VGB−VEB =VGB−VEA−VL1 よって、電圧駆動型スイッチング素子3A,3Bのゲ―
ト・エミッタ間電圧は等しくなく、その結果過渡時の電
圧駆動型スイッチング素子3A,3Bに均等に電流が流
れないという問題がある。よって本発明は、簡単なゲ―
ト駆動回路構成で、並列接続した電圧駆動型スイッチン
グ素子の電流を均等化することを目的とする。
[ Expression 3] V GEB = V GB −V EB = V GB −V EA −V L1 Therefore, the voltage drive type switching elements 3A and 3B are gated.
The voltage between the emitter and the emitter is not equal, and as a result, there is a problem in that current does not flow evenly through the voltage-driven switching elements 3A and 3B during a transition. Therefore, the present invention is a simple game.
It is an object of the present invention to equalize the currents of the voltage-driven switching elements connected in parallel with each other in a drive circuit configuration.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1に係る電圧駆動型スイッチング素
子のゲ―ト駆動回路は、各コレクタ端子及び各エミッタ
端子同士を接続導体で並列に接続された複数の電圧駆動
型スイッチング素子のゲ―トを駆動する電圧駆動型スイ
ッチング素子のゲ―ト駆動回路において、並列接続され
た各電圧駆動型スイッチング素子のエミッタ間接続導体
に発生するリアクトル成分の電圧降下に相当する電圧を
発生させる電圧源と、上記電圧源を介して上記電圧駆動
型スイッチング素子のゲ―ト端子に接続される上記電圧
駆動型スイッチング素子を同時に駆動する駆動手段とを
有することを特徴とする電圧駆動型スイッチング素子の
ゲ―ト駆動回路を提供する。
In order to achieve the above object, a gate drive circuit for a voltage drive type switching element according to claim 1 of the present invention uses a connection conductor for connecting each collector terminal and each emitter terminal. In a gate drive circuit for a voltage-driven switching element that drives the gates of a plurality of voltage-driven switching elements connected in parallel, this occurs in the emitter-to-emitter connection conductor of each voltage-driven switching element connected in parallel. A voltage source for generating a voltage corresponding to the voltage drop of the reactor component, and a driving means for simultaneously driving the voltage driving type switching element connected to the gate terminal of the voltage driving type switching element via the voltage source. There is provided a gate drive circuit of a voltage drive type switching element characterized by having.

【0012】また、本発明の請求項2に係る電圧駆動型
スイッチング素子のゲ―ト駆動方法は、各コレクタ端子
及び各エミッタ端子同士を接続導体で並列に接続された
複数の電圧駆動型スイッチング素子のゲ―トを駆動する
電圧駆動型スイッチング素子のゲ―ト駆動方法におい
て、並列接続された各電圧駆動型スイッチング素子のエ
ミッタ間接続導体に発生するリアクトル成分の電圧降下
分に相当する電圧を発生させ、上記電圧を上記電圧駆動
型スイッチング素子のゲ―ト端子に加え、上記電圧駆動
型スイッチング素子を同時に駆動させる電圧駆動型スイ
ッチング素子のゲ―ト駆動方法を提供する。
According to a second aspect of the present invention, there is provided a method of driving a gate of a voltage-driven switching element, wherein a plurality of voltage-driven switching elements in which collector terminals and emitter terminals are connected in parallel by connecting conductors. In the gate driving method of the voltage-driven switching element that drives the gate, the voltage corresponding to the voltage drop of the reactor component generated in the inter-emitter connection conductor of each voltage-driven switching element connected in parallel is generated. Thus, there is provided a gate driving method of a voltage driving type switching element, in which the voltage is applied to the gate terminal of the voltage driving type switching element to drive the voltage driving type switching element simultaneously.

【0013】[0013]

【作用】以上のように本発明では、並列接続された各ス
イッチング素子のエミッタ間接続導体に発生するリアク
トル成分による電圧降下によって、各スイッチング素子
のエミッタ電位が影響を受ける。そこで、上記リアクト
ル成分による電圧降下に相当する電圧をゲ―ト電源に加
えゲ―ト電源を上昇させることによって、並列接続した
複数の電圧駆動型スイッチング素子間の電流を均等化す
る。
As described above, in the present invention, the emitter potential of each switching element is affected by the voltage drop due to the reactor component generated in the inter-emitter connecting conductor of each switching element connected in parallel. Therefore, a voltage corresponding to the voltage drop due to the reactor component is applied to the gate power supply to raise the gate power supply, thereby equalizing the currents among the plurality of voltage-driven switching elements connected in parallel.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面を用いて説明
する。図1は本発明の第1の実施例を示す概略図であ
る。尚、本実施例においては、電圧駆動型スイッチング
素子として絶縁ゲ―トバイポ―ラモ―ドトランジスタ
(Insulated Gate Bipolar mode Transistor:以下IG
BTとする)を用いて説明する。図1においてIGBT
6AとIGBT6Bとは並列に接続されており、エミッ
タ間の接続導体にはリアクトル成分5Aが生じる。ゲ―
ト回路7は、上記IGBTを駆動する回路で、IGBT
6Aには直接接続され、IGBT6Bには上記エミッタ
間接続導体に発生するリアクトル成分5Aによる電圧降
下VL1に等しい電圧を発生するように上記エミッタ間の
接続導体にゲ―ト線を巻き付けたリアクトル7Aを介し
て接続する。図1において、IGBT6AのON時のゲ
―ト・エミッタ間電圧VGEA は下式となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a first embodiment of the present invention. In this embodiment, an insulated gate bipolar mode transistor (hereinafter referred to as IG) is used as a voltage driving type switching element.
BT). In FIG. 1, the IGBT
6A and the IGBT 6B are connected in parallel, and a reactor component 5A is generated in the connecting conductor between the emitters. Gee
The circuit 7 is a circuit for driving the above-mentioned IGBT.
6A is directly connected, and a reactor 7A in which a gate wire is wound around the connection conductor between the emitters is connected to the IGBT 6B so as to generate a voltage equal to the voltage drop V L1 due to the reactor component 5A generated in the connection conductor between the emitters. Connect through. In FIG. 1, the gate-emitter voltage V GEA when the IGBT 6A is ON is given by the following equation.

【0015】[0015]

【数4】VGEA =VGA−VEA IGBTがONして電流が流れると、並列接続された2
つのIGBTのエミッタ間に電流が流れ、接続導体に発
生するリアクトル成分5Aによる電圧降下VL1が発生す
る。このとき、IGBT6Bのエミッタ電位は下式とな
る。
[ Equation 4] V GEA = V GA −V EA When the IGBT is turned on and a current flows, the two are connected in parallel.
A current flows between the emitters of the two IGBTs, causing a voltage drop V L1 due to the reactor component 5A generated in the connecting conductor. At this time, the emitter potential of the IGBT 6B is given by the following formula.

【0016】[0016]

【数5】VEB=VEA+VL1 また、エミッタ間接続導体にゲ―ト線を巻き付けたリア
クトル7Aには、エミッタ間接続導体に発生するリアク
トル成分による電圧降下に応じた電圧VR1(=VL1)が
発生し、IGBT6Bのゲ―ト電位を上昇させるのでゲ
―ト電位VGBは下式となる。
[Equation 5] V EB = V EA + V L1 Further , the reactor 7A in which the gate wire is wound around the inter-emitter connection conductor has a voltage V R1 (= which depends on the voltage drop due to the reactor component generated in the inter-emitter connection conductor. V L1 ) is generated and the gate potential of the IGBT 6B is raised, so the gate potential V GB is expressed by the following formula.

【0017】[0017]

【数6】VGB=VGA+VR1 IGBT6Bのゲ―ト・エミッタ間電圧は[数5]と
[数6]により下式となる。
[Equation 6] V GB = V GA + V R1 The gate-emitter voltage of the IGBT 6B is given by the following equation according to [Equation 5] and [Equation 6].

【0018】[0018]

【数7】 VGEB =VGB+VEB =(VGA+VR1)−(VEA+VL1) =VGA−VEA =VGEA よって、IGBT6AとIGBT6Bのゲ―ト・エミッ
タ間電圧VGEA とVGEBを等しくできる。
## EQU7 ## V GEB = V GB + V EB = (V GA + V R1 ) − (V EA + V L1 ) = V GA −V EA = V GEA Therefore, the gate-emitter voltage V GEA of the IGBT 6A and the IGBT 6B is obtained. V GEB can be equal.

【0019】図2は第1の実施例の動作を説明するもの
である。並列に接続されたIGBT6AとIGBT6B
とのエミッタ間接続導体に生じるリアクトル成分5Aに
よって起こる電圧降下はVL1である。また、上記電圧降
下に相当する電圧VR1は電圧源8Aによって発生する。
電圧源8Aは、図1のエミッタ間接続導体にゲ―ト線を
巻き付けたリアクトル7Aに相当するものである。
FIG. 2 illustrates the operation of the first embodiment. IGBT6A and IGBT6B connected in parallel
The voltage drop caused by the reactor component 5A generated in the emitter-to-emitter connection conductor is V L1 . A voltage V R1 corresponding to the above voltage drop is generated by the voltage source 8A.
The voltage source 8A corresponds to the reactor 7A in which the gate wire is wound around the inter-emitter connection conductor in FIG.

【0020】並列に接続されたIGBT6AとIGBT
6Bとを同時に駆動するためには、単一のゲ―ト回路で
駆動すれば良いが、IGBT6AとIGBT6Bとのエ
ミッタ間接続導体に発生するリアクトル成分による電圧
降下VL1が生じるので安定に駆動しない。そこでIGB
T6Bにはゲ―ト回路を直接接続するのではなく、電圧
源8を介して接続すると、IGBT6Bのゲ―トには電
圧源8による電圧分が増えて電圧がかかるので両方のI
GBTに均等な電流が流れる。
IGBT 6A and IGBT connected in parallel
In order to drive 6B and 6B at the same time, it may be driven by a single gate circuit, but the voltage drop V L1 due to the reactor component generated in the emitter-to-emitter connecting conductor between IGBT 6A and IGBT 6B is not stable. . So IGB
If the gate circuit is not directly connected to T6B but is connected via the voltage source 8, the voltage of the voltage source 8 increases and a voltage is applied to the gate of the IGBT 6B.
A uniform current flows through the GBT.

【0021】本実施例を用いれば、単一のゲ―ト回路で
も並列接続したエミッタ間接続導体によって引き起こさ
れるゲ―ト電圧のばらつきを補正でき、並列接続したI
GBT6AとIGBT6Bとに流れる電流を均等化する
効果がある。
According to this embodiment, even if a single gate circuit is used, it is possible to correct the variation in the gate voltage caused by the emitter-to-emitter connecting conductors connected in parallel, and the parallel connection I
This has the effect of equalizing the currents flowing through the GBT 6A and the IGBT 6B.

【0022】次に本発明の第2の実施例について説明す
る。図3はIGBTを3並列接続した本発明の第2の実
施例を示す概略図である。図3において、IGBT6A
とIGBT6BとIGBT6Cとは並列接続されてい
る。IGBT6AとIGBT6Bとのエミッタ間接続導
体にはリアクトル成分5Aが生じ、IGBT6BとIG
BT6Cとのエミッタ間接続導体にはリアクトル成分5
Bが生じる。ゲ―ト回路4は、上記IGBTを駆動する
回路で、IGBT6Aには直接接続され、IGBT6B
にはIGBT6AとIGBT6Bとのエミッタ間接続導
体に発生するリアクトル成分5Aによる電圧降下VL1
等しい電圧を発生するように上記エミッタ間接続導体に
ゲ―ト線を巻き付けたリアクトル7Aを介して接続し、
IGBT6CにはIGBT6Bに接続されるものを分枝
してIGBT6BとIGBT6Cとのエミッタ間接続導
体に発生するリアクトル成分5Bによる電圧降下VL2
等しい電圧を発生するように上記エミッタ間接続導体に
ゲート線を巻き付けたリアクトル7Bを介して接続され
る。
Next, a second embodiment of the present invention will be described. FIG. 3 is a schematic diagram showing a second embodiment of the present invention in which three IGBTs are connected in parallel. In FIG. 3, the IGBT 6A
The IGBT 6B and the IGBT 6C are connected in parallel. The reactor component 5A is generated in the inter-emitter connection conductor between the IGBT 6A and the IGBT 6B, and the IGBT 6B and the IG
Reactor component 5 is used for the emitter-to-emitter connection conductor with BT6C.
B occurs. The gate circuit 4 is a circuit for driving the above-mentioned IGBT and is directly connected to the IGBT 6A.
Is connected through a reactor 7A having a gate wire wound around the emitter connecting conductor so as to generate a voltage equal to a voltage drop V L1 due to a reactor component 5A generated in the emitter connecting conductor between the IGBT 6A and the IGBT 6B. ,
A gate line is connected to the emitter connecting conductor so as to generate a voltage equal to the voltage drop V L2 due to the reactor component 5B generated in the emitter connecting conductor between the IGBT 6B and the IGBT 6C by branching the IGBT 6C connected to the IGBT 6B. Is connected via a reactor 7B wound around.

【0023】この回路では、IGBT6Aのベ―スエミ
ッタ間電圧とIGBT6Bのベ―スエミッタ間電圧とに
ついては第1の実施例と同様の結果が得られる。そこ
で、IGBT6Cのゲ―ト・エミッタ間電圧について考
えてみると、IGBTがONして電流が流れると、並列
接続された3つのIGBTのエミッタ間に電流が流れ、
接続導体に発生するリアクトル成分5Aと5Bによる電
圧降下VL1とVL2が発生する。このとき、IGBT6C
のエミッタ電位は下式となる。
In this circuit, the same results as those of the first embodiment are obtained with respect to the base-emitter voltage of the IGBT 6A and the base-emitter voltage of the IGBT 6B. Therefore, considering the gate-emitter voltage of the IGBT 6C, when the IGBT is turned on and a current flows, a current flows between the emitters of the three IGBTs connected in parallel,
Voltage drops V L1 and V L2 are generated by the reactor components 5A and 5B generated in the connecting conductor. At this time, the IGBT6C
The emitter potential of is as follows.

【0024】[0024]

【数8】VEC=VEA+VL1+VL2 また、エミッタ間接続導体にゲ―ト線を巻き付けたリア
クトル7Aと7Bには、エミッタ間接続導体に発生する
リアクトル成分による電圧降下に応じた電圧VR1(=V
L1)とVR2(=VL2)が発生し、IGBT6Cのゲ―ト
電位を上昇させるのでゲ―ト電位VGCは下式となる。
[Equation 8] V EC = V EA + V L1 + V L2 Further , the reactors 7A and 7B in which the gate wire is wound around the emitter-to-emitter connection conductor have a voltage corresponding to the voltage drop due to the reactor component generated in the emitter-to-emitter connection conductor. V R1 (= V
Since L1 ) and V R2 (= V L2 ) are generated to raise the gate potential of the IGBT 6C, the gate potential V GC is given by the following formula.

【0024】[0024]

【数9】VGC=VGA+VR1+VR2 また、IGBT6Cのゲ―ト・エミッタ間電圧は下式と
なる。
## EQU9 ## V GC = V GA + V R1 + V R2 Further , the gate-emitter voltage of the IGBT 6C is given by the following formula.

【0025】[0025]

【数10】 VGEC =VGC−VEC =(VGA+VR1+VR2)−(VEA+VL1+VL2) =VGA−VEA 従って、[数7],[数10]よりIGBT6AとIG
BT6BとIGBT6Cとのゲ―ト・エミッタ間電圧V
GEA とVGEB とVGEC とは全て等しくなる。よって、本
実施例ではIGBTを3並列接続としても、エミッタ間
接続導体によって引き起こされるゲ―ト電圧のばらつき
を補正でき、各IGBTのゲ―ト・エミッタ間電圧を等
しくできる。
[ Equation 10] V GEC = V GC −V EC = (V GA + V R1 + V R2 ) − (V EA + V L1 + V L2 ) = V GA −V EA Therefore, from [Equation 7] and [Equation 10], the IGBT 6A is obtained. IG
Gate-emitter voltage V between BT6B and IGBT6C
GEA , V GEB and V GEC are all equal. Therefore, in this embodiment, even if the three IGBTs are connected in parallel, it is possible to correct the variation in the gate voltage caused by the inter-emitter connection conductor and make the gate-emitter voltage of each IGBT equal.

【0026】また、同様にしてIGBTを4個以上複数
個並列に接続しても各IGBTのゲ―ト・エミッタ間電
圧を等しくすることができる。次に本発明の第3の実施
例について説明する。図4はゲ―ト電圧の補正手段であ
る電圧源としてエミッタ接続導体に、変圧器を挿入した
第3の実施例である。図4において、IGBT6AとI
GBT6Bとは並列に接続されており、エミッタ間の接
続導体にはリアクトル成分5Aが生じる。ゲ―ト回路4
は、上記IGBTを駆動する回路で、IGBT6Aには
直接接続され、IGBT6Bには変圧器9を介して接続
される。変圧器9は、エミッタ間接続導体がコアを貫通
するように挿入され、変圧器9の2次側にはIGBT6
A,IGBT6Bのエミッタ間接続導体の電圧降下に等
しい電圧が発生するようにコイルが巻かれているものと
する。よって、変圧器9により、エミッタ間接続導体の
電圧降下VL1に相当する電圧VR1が変圧器9の二次側に
発生し、IGBT6Bのゲ―ト電位をVR1だけ上昇させ
る。これにより、IGBT6AとIGBT6Bとのゲ―
ト・エミッタ間電圧を等しくできる。
Similarly, even if four or more IGBTs are connected in parallel, the gate-emitter voltage of each IGBT can be made equal. Next, a third embodiment of the present invention will be described. FIG. 4 shows a third embodiment in which a transformer is inserted in the emitter connecting conductor as a voltage source which is a means for correcting the gate voltage. In FIG. 4, IGBT 6A and I
It is connected in parallel with the GBT 6B, and a reactor component 5A is generated in the connecting conductor between the emitters. Gate circuit 4
Is a circuit for driving the IGBT, which is directly connected to the IGBT 6A and is connected to the IGBT 6B through the transformer 9. The transformer 9 is inserted so that the inter-emitter connection conductor passes through the core, and the IGBT 6 is provided on the secondary side of the transformer 9.
It is assumed that the coil is wound so that a voltage equal to the voltage drop of the inter-emitter connection conductor of the A and IGBT 6B is generated. Therefore, the transformer 9 generates a voltage V R1 corresponding to the voltage drop V L1 across the emitter-to-emitter connection conductor on the secondary side of the transformer 9 and raises the gate potential of the IGBT 6B by V R1 . As a result, the IGBT6A and the IGBT6B are connected to each other.
The voltage between the emitter and emitter can be made equal.

【0027】また、変圧器9の代わりに変流器と変流器
の二次側にリアクトル負荷を設置してVR1を誘起させて
も同様の効果が得られる。以上の説明では、スイッチン
グ素子にIGBTを用いたが、他のスイッチング素子、
例えばMOS型サイリスタ(Mos Controled Thyristor
:MCT)のような電圧駆動型スイッチング素子を用
いても同様の効果を得ることができる。
The same effect can be obtained by installing a reactor load on the secondary side of the current transformer instead of the transformer 9 and inducing V R1 . In the above description, the IGBT is used as the switching element, but other switching elements,
For example, MOS thyristor (Mos Controled Thyristor)
: MCT) can be used to obtain the same effect.

【0028】[0028]

【発明の効果】以上の説明より、本発明によれば並列接
続した複数の電圧駆動型スイッチング素子のゲ―ト・エ
ミッタ間電圧を等しく制御できるので、並列接続のため
の接続導体によって引き起こされるゲ―ト電圧のばらつ
きをなくし、並列接続した複数の電圧駆動型スイッチン
グ素子間の電流を均等化できる。
As described above, according to the present invention, since the gate-emitter voltage of a plurality of voltage-driven switching elements connected in parallel can be controlled equally, the gate caused by the connecting conductors for parallel connection can be controlled. -It is possible to eliminate variations in voltage and to equalize currents among a plurality of voltage-driven switching elements connected in parallel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す概略図FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施例の動作説明図FIG. 2 is an operation explanatory diagram of the first embodiment of the present invention.

【図3】本発明の第2の実施例を示す概略図FIG. 3 is a schematic diagram showing a second embodiment of the present invention.

【図4】本発明の第3の実施例を示す概略図FIG. 4 is a schematic diagram showing a third embodiment of the present invention.

【図5】従来のスイッチング素子の並列接続の概念図FIG. 5 is a conceptual diagram of conventional parallel connection of switching elements.

【図6】従来の電圧駆動型スイッチング素子の並列接続
の概略図
FIG. 6 is a schematic diagram of parallel connection of conventional voltage-driven switching elements.

【図7】従来の電圧駆動型スイッチング素子の並列接続
の問題点を含めた概略図
FIG. 7 is a schematic diagram including a problem of parallel connection of conventional voltage-driven switching elements.

【符号の説明】[Explanation of symbols]

4…ゲ―ト接続回路 5A,5B…エミッタ間接続導体に発生するリアクトル
成分 6A,6B,6C…電圧駆動型スイッチング素子 7A,7B…エミッタ間接続導体に巻き付けたリアクト
ル 8A,8B…電圧源 9…変圧器
4 ... Gate connection circuit 5A, 5B ... Reactor component generated in inter-emitter connection conductor 6A, 6B, 6C ... Voltage-driven switching element 7A, 7B ... Reactor wound around emitter-connection conductor 8A, 8B ... Voltage source 9 … Transformer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 各コレクタ端子及び各エミッタ端子同士
を接続導体で並列に接続された複数の電圧駆動型スイッ
チング素子のゲ―トを駆動する電圧駆動型スイッチング
素子のゲ―ト駆動回路において、並列接続された各電圧
駆動型スイッチング素子のエミッタ間接続導体に発生す
るリアクトル成分の電圧降下分に相当する電圧を発生さ
せる電圧源と、前記電圧源を介して前記電圧駆動型スイ
ッチング素子のゲ―ト端子に接続される前記電圧駆動型
スイッチング素子を同時に駆動する駆動手段とを具備し
たことを特徴とする電圧駆動型スイッチング素子のゲ―
ト駆動回路。
1. A gate drive circuit of a voltage drive type switching element for driving a gate of a plurality of voltage drive type switching elements in which respective collector terminals and respective emitter terminals are connected in parallel by connecting conductors, A voltage source that generates a voltage corresponding to the voltage drop of the reactor component generated in the emitter-to-emitter connection conductor of each connected voltage-driven switching element, and the gate of the voltage-driven switching element via the voltage source. And a driving means for simultaneously driving the voltage-driven switching element connected to the terminal.
Drive circuit.
【請求項2】 各コレクタ端子及び各エミッタ端子同士
を接続導体で並列に接続された複数の電圧駆動型スイッ
チング素子のゲ―トを駆動する電圧駆動型スイッチング
素子のゲ―ト駆動方法において、並列接続された各電圧
駆動型スイッチング素子のエミッタ間接続導体に発生す
るリアクトル成分の電圧降下分に相当する電圧を発生さ
せ、前記電圧を前記電圧駆動型スイッチング素子のゲ―
ト端子に加え、前記電圧駆動型スイッチング素子を同時
に駆動させることを特徴とする電圧駆動型スイッチング
素子のゲ―ト駆動方法。
2. A gate driving method of a voltage driving type switching element for driving a gate of a plurality of voltage driving type switching elements in which each collector terminal and each emitter terminal are connected in parallel by a connecting conductor, A voltage corresponding to the voltage drop of the reactor component generated in the emitter-to-emitter connection conductor of each connected voltage-driven switching element is generated, and the voltage is generated by the gate of the voltage-driven switching element.
A gate driving method for a voltage-driven switching element, characterized in that the voltage-driven switching element is driven simultaneously with the gate terminal.
JP5324876A 1993-12-22 1993-12-22 Gate driving circuit and gate driving method of voltage-driven switching element Pending JPH07177727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5324876A JPH07177727A (en) 1993-12-22 1993-12-22 Gate driving circuit and gate driving method of voltage-driven switching element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5324876A JPH07177727A (en) 1993-12-22 1993-12-22 Gate driving circuit and gate driving method of voltage-driven switching element

Publications (1)

Publication Number Publication Date
JPH07177727A true JPH07177727A (en) 1995-07-14

Family

ID=18170626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5324876A Pending JPH07177727A (en) 1993-12-22 1993-12-22 Gate driving circuit and gate driving method of voltage-driven switching element

Country Status (1)

Country Link
JP (1) JPH07177727A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053546A1 (en) * 1997-05-23 1998-11-26 Kabushiki Kaisha Toshiba Power converter wherein mos gate semiconductor device is used
US6208041B1 (en) 1998-09-11 2001-03-27 Mitsubishi Denki Kabushiki Kaisha Drive control device, module and combined module
WO2016189585A1 (en) * 2015-05-22 2016-12-01 日産自動車株式会社 Power conversion device
JP2017175602A (en) * 2016-01-29 2017-09-28 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Method and apparatus for current/power balancing
CN108429434A (en) * 2018-02-06 2018-08-21 创驱(上海)新能源科技有限公司 A method of realizing real-time dynamic current equalizing between at least two power components

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998053546A1 (en) * 1997-05-23 1998-11-26 Kabushiki Kaisha Toshiba Power converter wherein mos gate semiconductor device is used
US6208041B1 (en) 1998-09-11 2001-03-27 Mitsubishi Denki Kabushiki Kaisha Drive control device, module and combined module
WO2016189585A1 (en) * 2015-05-22 2016-12-01 日産自動車株式会社 Power conversion device
KR20180002736A (en) * 2015-05-22 2018-01-08 닛산 지도우샤 가부시키가이샤 Power conversion device
CN107710575A (en) * 2015-05-22 2018-02-16 日产自动车株式会社 Power-converting device
JPWO2016189585A1 (en) * 2015-05-22 2018-04-05 日産自動車株式会社 Power converter
RU2663827C1 (en) * 2015-05-22 2018-08-10 Ниссан Мотор Ко., Лтд. Power conversion device
CN107710575B (en) * 2015-05-22 2019-01-01 日产自动车株式会社 Power-converting device
US10230294B2 (en) 2015-05-22 2019-03-12 Nissan Motor Co., Ltd. Power conversion device with gate drive circuit
JP2017175602A (en) * 2016-01-29 2017-09-28 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Method and apparatus for current/power balancing
CN108429434A (en) * 2018-02-06 2018-08-21 创驱(上海)新能源科技有限公司 A method of realizing real-time dynamic current equalizing between at least two power components

Similar Documents

Publication Publication Date Title
US9154125B2 (en) Method of controlling an IGBT and a gate driver
JP3447949B2 (en) Gate drive circuit and power converter for insulated gate semiconductor device
JP2010088299A (en) Semiconductor device
JP3696833B2 (en) Power semiconductor device
JPH07336996A (en) Gate driver for voltage driven power switch element
JPH1168540A (en) Output for circuit for high-voltage proof power ic
US6727516B2 (en) Semiconductor power conversion apparatus
JP2003060157A (en) Power module
JPH07177727A (en) Gate driving circuit and gate driving method of voltage-driven switching element
US11050358B2 (en) Power module with built-in drive circuit
JP3456836B2 (en) Gate drive circuit
JPH0819246A (en) Parallel connection circuit of semiconductor switching devices
US4833587A (en) Semiconductor switching circuit
JPH11163257A (en) Semiconductor device
DE102020106219A1 (en) Parallel power module with additional emitter / source path
JP2002094363A (en) Gate drive circuit for insulation gate type semiconductor element, the insulation gate type semiconductor element and power converter using them
JPH1141909A (en) Semiconductor module and power conversion device
JP4631409B2 (en) Semiconductor switch circuit
JPH08308092A (en) Highly voltage-resistant circuit breaker apparatus
JP4639687B2 (en) Voltage variation suppression method for voltage-driven semiconductor devices
JPH084122B2 (en) Semiconductor device
JPH09130217A (en) Semiconductor device
JP2005020869A (en) Driving unit for voltage drive type semiconductor device
KR20240054012A (en) Power module for vehicle and motor drive units including them
JPH06342872A (en) Semiconductor device