JPH07176334A - Capacity detecting method for ion secondary battery - Google Patents

Capacity detecting method for ion secondary battery

Info

Publication number
JPH07176334A
JPH07176334A JP5322213A JP32221393A JPH07176334A JP H07176334 A JPH07176334 A JP H07176334A JP 5322213 A JP5322213 A JP 5322213A JP 32221393 A JP32221393 A JP 32221393A JP H07176334 A JPH07176334 A JP H07176334A
Authority
JP
Japan
Prior art keywords
battery
capacity
voltage
battery voltage
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5322213A
Other languages
Japanese (ja)
Other versions
JP3346003B2 (en
Inventor
Takeji Tanjiyou
雄児 丹上
Hideaki Horie
英明 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP32221393A priority Critical patent/JP3346003B2/en
Publication of JPH07176334A publication Critical patent/JPH07176334A/en
Application granted granted Critical
Publication of JP3346003B2 publication Critical patent/JP3346003B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To accurately detect the total capacity and the remaining capacity in a short time by making specific calculations based on the battery voltage before and after the discharge or charge of an ion secondary battery and the current during the discharge or charge. CONSTITUTION:A battery 1 is discharged or charged for an optional time, and the integrated quantity Q of the current value flowing at that time is calculated by a current detecting means 2. Voltage values V1, V2 before and after the discharge or charge are detected by a voltage detecting means 3. A calculating means 4 calculates the total quantity =QX(VM-V0)/¦V1-V2¦ and the remaining capacity =QX(V2-V0)/¦V1-V2¦ with Q, V1, V2, where VM is the battery voltage in the fully charged state, and V0 is the battery voltage when the remaining capacity is assumed as 0. This ion secondary battery has a linear relation between the battery capacity and the battery voltage, and the total capacity and the remaining capacity can be detected in a short time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えばリチウム・イ
オン電池のようなイオン二次電池の容量検出方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacity detecting method for an ion secondary battery such as a lithium ion battery.

【0002】[0002]

【従来の技術】リチウム・イオン電池は、負極に炭素電
極を用い、その電極内にリチウムがイオンの形で存在し
ているイオン二次電池である。このようなイオン二次電
池の容量検出方法としては、例えば、電池に負荷をかけ
て放電させ、その時の電流積算量によって電池容量を検
出する方法がある。また、特開昭64−59090号公
報に記載のように、温度補正を加えた電池電圧よって電
池残存容量を求める方法も提案されている。
2. Description of the Related Art A lithium-ion battery is an ion secondary battery in which a carbon electrode is used as a negative electrode and lithium is present in the form of ions in the electrode. As a method for detecting the capacity of such an ion secondary battery, for example, there is a method in which a load is applied to the battery to cause the battery to discharge, and the battery capacity is detected by the current integrated amount at that time. Further, as described in Japanese Patent Laid-Open No. 64-59090, a method has been proposed in which the battery remaining capacity is obtained from the battery voltage corrected for temperature.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の容量検出方法においては、電池を全て放電
させなければ、その放電容量がわからない、という問題
があった。また、上記特開昭64−59090号公報に
記載の方法では、電池電圧から電池容量を求めるため、
劣化などに応じて変化する電池の総容量を検出すること
が出来ない、という問題があった。本発明は、上記のご
とき従来技術の問題を解決するためになされたものであ
り、短時間で正確に総容量および残存容量を検出するこ
との出来るイオン二次電池の容量検出方法を提供するこ
とを目的とする。
However, the above-mentioned conventional capacity detection method has a problem that the discharge capacity cannot be known unless all the batteries are discharged. Further, in the method described in JP-A-64-59090, since the battery capacity is obtained from the battery voltage,
There is a problem that it is impossible to detect the total capacity of the battery, which changes according to deterioration and the like. The present invention has been made in order to solve the problems of the prior art as described above, and provides a capacity detection method for an ion secondary battery capable of accurately detecting the total capacity and the remaining capacity in a short time. With the goal.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、請求項1に記載の発明にお
いては、イオン二次電池を任意の時間のあいだ放電また
は充電したときにおける放電または充電前の電池電圧V
1と放電または充電後の電池電圧V2、および上記放電ま
たは充電中の電流を積算して求めた積算容量Qにより、
下記(数1)式を用いて電池の総容量を、下記(数2)
式を用いて残存容量を、それぞれ求めるものである。 総容量=Q×(VM−V0)/|V1−V2| …(数1) 残存容量=Q×(V2−V0)/|V1−V2| …(数2) また、請求項2に記載の発明においては、イオン二次電
池を複数個直列に接続した組電池において、上記組電池
の全体について任意の電気量Qを放電または充電させ、
そのときの各単電池の電圧の下降値または上昇値から、
上記(数1)式を用いて各単電池の総容量を、上記(数
2)式を用いて各単電池の残存容量を、それぞれ求める
ものである。なお、任意の電気量Qは(数1)式、(数
2)式の積算容量Qに相当し、また、上記の下降値また
は上昇値は|V1−V2|に相当する。また、請求項3に
記載の発明においては、放電または充電の停止時点から
電池電圧が安定するまでの緩和時間中における経過時間
と電池電圧との特性を示すデータを記憶手段に予め記憶
しておき、上記データに基づいて、放電または充電の停
止時点からの経過時間に対応して安定後の電池電圧を予
測し、その値を上記放電または充電後の電池電圧V2
して用いることにより、上記(数1)式を用いて総容量
を、上記(数2)式を用いて残存容量を、それぞれ求め
るように構成している。なお、上記緩和時間中における
経過時間と電池電圧との特性を示すデータは、例えば後
記(数3)式および図3に示すごとき特性である。
In order to achieve the above object, the present invention is constructed as described in the claims. That is, in the invention described in claim 1, the battery voltage V before discharging or charging when the ion secondary battery is discharged or charged for an arbitrary time
1 and the battery voltage V 2 after discharging or charging, and the integrated capacity Q obtained by integrating the current during discharging or charging,
The total capacity of the battery can be calculated using the following formula (formula 1) below (formula 2).
Each of the remaining capacities is obtained by using the formula. The total capacity = Q × (V M -V 0 ) / | V 1 -V 2 | ... ( number 1) the remaining capacity = Q × (V 2 -V 0 ) / | V 1 -V 2 | ... ( number 2) In the invention according to claim 2, in an assembled battery in which a plurality of ion secondary batteries are connected in series, an arbitrary quantity of electricity Q is discharged or charged in the entire assembled battery,
From the falling or rising value of the voltage of each cell at that time,
The total capacity of each unit cell is calculated using the above formula (Formula 1), and the remaining capacity of each unit battery is calculated using the above formula (Formula 2). It should be noted that the arbitrary quantity of electricity Q corresponds to the integrated capacity Q of the equations (1) and (2), and the above-mentioned fall value or rise value corresponds to | V 1 −V 2 |. In the invention according to claim 3, data indicating the characteristics of the elapsed time and the battery voltage during the relaxation time from the time when the discharge or charging is stopped to the time when the battery voltage stabilizes is stored in advance in the storage means. , Based on the above data, predicting the battery voltage after stabilization corresponding to the elapsed time from the point of time of discharging or charging, and using that value as the battery voltage V 2 after discharging or charging, The total capacity is calculated using the equation (1) and the remaining capacity is calculated using the equation (2). The data indicating the characteristics of the elapsed time and the battery voltage during the relaxation time are, for example, the characteristics shown in the following (Formula 3) and FIG.

【0005】[0005]

【作用】後記図2に示すように、リチウム・イオン電池
のごときイオン二次電池においては、電池容量と電池電
圧とに直線関係がある。したがって電池の残存容量がど
のような値でも、任意の時間のあいだ放電または充電し
たときの電流積算量Qと放電または充電前の電圧V1
放電または充電後の電圧V2より、請求項1に記載のご
とく、(数1)式から総容量を、(数2)式から残存容
量を求めることができる。なお、総容量とは、満充電時
の残存容量(100%時の値)である。また、複数個の
単電池を直列に接続した組電池においては、放電または
充電時に流れる電流は全ての単電池において同じ値であ
るが、それによって生じる電池電圧の変化は、各単電池
の容量に応じて異なっている。したがって、請求項2に
記載のごとく、任意の電気量Qを放電または充電させた
場合における各単電池の電圧変化|V1−V2|を測定す
ることにより、各単電池ごとの容量を検出することが出
来る。また、請求項3においては、放電または充電の停
止時点から電池電圧が安定するまでの緩和時間中におい
て、予め記憶しておいた緩和時間中における経過時間と
電池電圧との特性を示すデータから電池電圧が安定した
ときにおけるV2の値を予測し、それを用いて短い停止
時間中でも残存容量を検出することが出来るように構成
したものである。
As shown in FIG. 2 described later, in an ion secondary battery such as a lithium ion battery, there is a linear relationship between the battery capacity and the battery voltage. Therefore, regardless of the remaining capacity of the battery, the integrated current amount Q when the battery is discharged or charged and the voltage V 1 before discharging or charging for any time,
From the voltage V 2 after discharging or charging, as described in claim 1, the total capacity can be obtained from the equation (1) and the remaining capacity can be obtained from the equation (2). The total capacity is the remaining capacity when fully charged (value at 100%). Further, in an assembled battery in which a plurality of unit cells are connected in series, the current flowing at the time of discharging or charging has the same value in all the unit cells, but the change in the battery voltage caused by it is different from the capacity of each unit cell. Depending on. Therefore, as described in claim 2, the capacity of each unit cell is detected by measuring the voltage change | V 1 −V 2 | of each unit cell when an arbitrary amount of electricity Q is discharged or charged. You can do it. Further, in claim 3, during the relaxation time from the point of time when the discharge or charge is stopped to the time when the battery voltage becomes stable, the battery is stored based on the data indicating the characteristics of the elapsed time and the battery voltage stored in advance during the relaxation time. The configuration is such that the value of V 2 when the voltage is stable can be predicted and the remaining capacity can be detected using it even during a short stop time.

【0006】[0006]

【実施例】以下、この発明を図面に基づいて説明する。
図1は、本発明の容量検出方法の概念を示すブロック図
である。図1において、1はリチウム・イオン電池のよ
うなイオン二次電池(以下、電池と略記する)であり、
放電または充電中における電流を検出する電流検出手段
2、電池1の電圧を検出する電圧検出手段3が接続さ
れ、さらに電流検出手段2と電圧検出手段3は演算手段
4に接続されている。この演算手段4は電流検出手段2
からの出力と電圧検出手段3からの出力により、電池の
総容量および残存容量を算出する。この演算手段4によ
って算出された電池容量は表示手段5で表示される。な
お、電流検出手段2は、例えば放電または充電の電流路
に直列に低抵抗を接続し、その両端の電圧を増幅回路を
介して出力する手段を用いることが出来る。また、電圧
検出手段3は、例えば電池1の端子電圧をバッファ回路
を介して出力する手段を用いることが出来る。また、演
算手段4は、例えばマイクロコンピュータで構成するこ
とが出来る。また、表示手段5は、例えば液晶表示器の
ような表示装置、或いはハードコピーを出力するプリン
タ等を用いることが出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram showing the concept of the capacitance detection method of the present invention. In FIG. 1, 1 is an ion secondary battery (hereinafter abbreviated as a battery) such as a lithium ion battery,
The current detecting means 2 for detecting the current during discharging or charging and the voltage detecting means 3 for detecting the voltage of the battery 1 are connected, and the current detecting means 2 and the voltage detecting means 3 are connected to the calculating means 4. The calculation means 4 is the current detection means 2
The total capacity and the remaining capacity of the battery are calculated from the output from the battery and the output from the voltage detecting means 3. The battery capacity calculated by the calculation means 4 is displayed on the display means 5. The current detecting means 2 may be, for example, a means in which a low resistance is connected in series to a discharging or charging current path and the voltage across the low resistance is output via an amplifier circuit. Further, as the voltage detection means 3, for example, a means for outputting the terminal voltage of the battery 1 via a buffer circuit can be used. Further, the calculation means 4 can be composed of, for example, a microcomputer. Further, as the display means 5, for example, a display device such as a liquid crystal display, or a printer that outputs a hard copy can be used.

【0007】次に作用を説明する。Next, the operation will be described.

【0008】電池1を任意の時間のあいだ放電または充
電する。そして演算手段4は、その間に電流検出手段2
で検出された電流値の積算量を演算し、かつ電圧検出手
段3で検出された電圧から放電または充電の前と後の電
圧値を演算し、それらに基づいて、電池の総容量と残存
容量を算出する。次に、上記の算出方法について説明す
る。図2は、イオン二次電池における電圧Vと電池容量
(%)との関係を示す特性図である。図2に示すよう
に、負極に結晶化度の低い炭素材料を用いたイオン二次
電池は、電池容量と電池電圧とに直線関係がある。した
がって電池の残存容量がどのような値でも、任意の時間
のあいだ放電または充電したときの電流積算量Qと、放
電または充電前の電圧V1、放電または充電後の電圧V2
より、次式によって総容量と残存容量を求めることがで
きる。なお、総容量とは、図2から判るように満充電時
の残存容量(100%時の値)である。 総容量=Q×(VM−V0)/|V1−V2| …(数1) 残存容量=Q×(V2−V0)/|V1−V2| …(数2) ただし、VM:満充電状態での電池電圧 V0:残存容量を0とみなす電池電圧 なお、残存容量を0とみなす電池電圧V0は、厳密に化
学的な意味における残存容量0ではないが、それ以上の
放電を行なうと過放電状態となって実質的にそれ以上放
電出来ない値であり、予め設定した値である。
The battery 1 is discharged or charged for an arbitrary time. The calculation means 4 is connected to the current detection means 2 in the meantime.
The total amount of the battery and the remaining capacity of the battery are calculated based on the integrated value of the current value detected in step S1, and the voltage value before and after the discharge or charge from the voltage detected by the voltage detection means 3. To calculate. Next, the above calculation method will be described. FIG. 2 is a characteristic diagram showing the relationship between the voltage V and the battery capacity (%) in the ion secondary battery. As shown in FIG. 2, the ion secondary battery using a carbon material having a low crystallinity for the negative electrode has a linear relationship between the battery capacity and the battery voltage. Therefore, regardless of the remaining capacity of the battery, the integrated current amount Q when discharging or charging for any time, the voltage V 1 before discharging or charging, the voltage V 2 after discharging or charging
Therefore, the total capacity and the remaining capacity can be calculated by the following equations. The total capacity is the remaining capacity (value at 100%) when fully charged, as can be seen from FIG. The total capacity = Q × (V M -V 0 ) / | V 1 -V 2 | ... ( number 1) the remaining capacity = Q × (V 2 -V 0 ) / | V 1 -V 2 | ... ( number 2) However, V M : battery voltage in a fully charged state V 0 : battery voltage in which remaining capacity is regarded as 0 Note that the battery voltage V 0 in which remaining capacity is regarded as 0 is not strictly 0 in the chemical sense, A value that is set in advance is a value at which over-discharging occurs when discharging more than that and practically no more discharging is possible.

【0009】また、図2に示す直線は温度によって変化
する。したがって電池温度を検出して温度補償を行なう
ことにより、より正確に容量を検出することができる。
例えば、温度が上昇すると電池電圧も上昇するので、基
準温度からの偏差に応じて検出した電圧を補正してやれ
ばよい。ただし、上記の温度による電池電圧の変化は、
0.01V/10℃以内であり、測定誤差や、検出の簡
便さを考えると、温度補正は必ずしも必要ではない。
The straight line shown in FIG. 2 changes with temperature. Therefore, by detecting the battery temperature and performing temperature compensation, the capacity can be detected more accurately.
For example, when the temperature rises, the battery voltage also rises, so the detected voltage may be corrected according to the deviation from the reference temperature. However, the change in battery voltage due to the above temperature is
Since it is within 0.01 V / 10 ° C., the temperature correction is not always necessary considering the measurement error and the ease of detection.

【0010】次に、第2の実施例について説明する。こ
の実施例は、イオン二次電池を複数個直列に接続した組
電池に関するものである。組電池においては、環境条件
の違い等によって各単電池ごとに容量が異なってくる。
しかし、従来方法では組電池における各単電池個々の容
量を測定することはできなかった。本実施例において
は、組電池全体に任意の電気量Qを短時間の間に放電ま
たは充電し、その時の各単電池の電圧下降値または上昇
値を測定する。この電圧下降値または上昇値は、前記
(数1)式、(数2)式における|V1−V2|に相当
し、上記電気量Qは電流積算量Qに相当する。したがっ
てそれらの値を用いて前記(数1)式、(数2)式から
各単電池の容量を簡単に求めることができる。なお、上
記の任意の電気量Qを放電するには、短時間のあいだ組
電池に抵抗器を接続して放電させ、そのときの電流値を
測定し、上記時間と電流との積を求めればよい。また、
その時点における総容量と規格容量(厳密には各単電池
ごとに多少異なる新品時の容量)との比が容量劣化率で
あるから、各単電池の容量から容量劣化率も求められ
る。そのため容量の少なくなった単電池を早期に発見す
ることが可能である。
Next, a second embodiment will be described. This example relates to an assembled battery in which a plurality of ion secondary batteries are connected in series. In the battery pack, the capacity varies from cell to cell due to differences in environmental conditions.
However, the conventional method cannot measure the capacity of each unit cell in the assembled battery. In this embodiment, an arbitrary amount of electricity Q is discharged or charged in the entire assembled battery in a short time, and the voltage drop value or the rise value of each unit cell at that time is measured. The voltage decrease value or the voltage increase value corresponds to | V 1 −V 2 | in the equations (1) and (2), and the electricity quantity Q corresponds to the current integration quantity Q. Therefore, using these values, the capacity of each unit cell can be easily obtained from the equations (1) and (2). In order to discharge the above-mentioned arbitrary quantity of electricity Q, connect a resistor to the assembled battery for a short time to discharge, measure the current value at that time, and obtain the product of the above time and current. Good. Also,
The capacity deterioration rate is the ratio of the total capacity at that time to the standard capacity (strictly speaking, the capacity at the time of a new battery that is slightly different for each single battery). Therefore, the capacity deterioration rate can also be obtained from the capacity of each single battery. Therefore, it is possible to early find a cell with a small capacity.

【0011】次に、第3の実施例について説明する。こ
の実施例は、放電または充電の停止時点から電池電圧が
安定するまでの緩和時間中において、残存容量を検出す
る方法である。前記(数1)式、(数2)式における放
電または充電後の電池電圧V2は、放電または充電後に
電池電圧が安定したときにおける値である。しかし、放
電または充電後に電池電圧が安定するまでには時間がか
かり、イオン二次電池の場合、放電末期には2週間以上
かかることもある。したがって放電または充電後に電池
電圧が完全に安定するまで待つことは実用的でない。特
に、電気自動車の場合には、走行しているときの電流値
を積算して電気量Qを求め、停止しているとき(電流値
が0のとき)の電圧Vを用いて前記(数2)式から電池
の残存容量を求めるようになっている。この停止時間は
一般に短いので、放電または充電の停止時点から電池電
圧が安定するまでの緩和時間の間に安定後の電池電圧を
推定する必要がある。
Next, a third embodiment will be described. This embodiment is a method of detecting the remaining capacity during the relaxation time from the point of time when discharging or charging is stopped until the battery voltage stabilizes. The battery voltage V 2 after discharging or charging in the formulas (1) and (2) is a value when the battery voltage is stable after discharging or charging. However, it takes time for the battery voltage to stabilize after discharging or charging, and in the case of an ion secondary battery, it may take 2 weeks or more at the end of discharging. Therefore, it is not practical to wait until the battery voltage becomes completely stable after discharging or charging. In particular, in the case of an electric vehicle, the current value when the vehicle is running is integrated to obtain the quantity of electricity Q, and the voltage V when the vehicle is stopped (when the current value is 0) is used to calculate The remaining capacity of the battery is calculated from the formula). Since this stop time is generally short, it is necessary to estimate the battery voltage after stabilization during the relaxation time from the time when discharge or charge is stopped until the battery voltage stabilizes.

【0012】図3は、緩和時間と放電後の電池電圧との
関係を示す特性図である。図3の曲線は一般的には下記
(数3)式で表わされ、各パラメータを予め求めておく
ことにより、安定後の電池電圧を推定することが可能で
ある。 電圧差η=iRe〔1−exp(−t/Re・CdL)〕 …(数3) ただし、Re:電荷移動抵抗、 CdL:二重層容量 i:放電または充電時の電流 t:放電または充電停止後の経過時間 なお、電荷移動抵抗Reと二重層容量CdLは、電池を抵
抗と容量との直列回路モデルとして表現した場合におけ
る抵抗と容量に相当する。また、電位差ηは放電または
充電停止後の経過時間tにおける電圧と安定後の電圧と
の差を示す。したがって、図3または(数3)式の特性
を演算手段4に記憶させておき、放電または充電停止後
の経過時間tからそのときの電位差ηを求め、そのとき
の電池電圧に加算することによって安定後の電池電圧を
推定し、その値を前記V2として用いることにより、
(数1)式、(数2)式から容量を算出することが出来
る。
FIG. 3 is a characteristic diagram showing the relationship between the relaxation time and the battery voltage after discharge. The curve in FIG. 3 is generally represented by the following (Equation 3) formula, and by obtaining each parameter in advance, it is possible to estimate the battery voltage after stabilization. Voltage difference η = iRe [1-exp (-t / Re · CdL)] (Equation 3) where Re: charge transfer resistance, CdL: double layer capacity i: current during discharging or charging t: discharging or stopping charging After that, the charge transfer resistance Re and the double layer capacity CdL correspond to the resistance and the capacity when the battery is expressed as a series circuit model of the resistance and the capacity. Further, the potential difference η indicates the difference between the voltage at the elapsed time t after the discharge or the charging is stopped and the voltage after the stabilization. Therefore, the characteristic of FIG. 3 or the expression (Equation 3) is stored in the calculating means 4, the potential difference η at that time is obtained from the elapsed time t after the discharging or charging is stopped, and it is added to the battery voltage at that time. By estimating the battery voltage after stabilization and using that value as the V 2 ,
The capacity can be calculated from the equations (1) and (2).

【0013】[0013]

【発明の効果】以上説明したように、請求項1に記載の
発明においては、任意の時間のあいだ放電または充電し
たときにおける放電または充電前の電池電圧V1と放電
または充電後の電池電圧V2、および上記放電または充
電中の電流を積算して求めた積算容量Qから電池の総容
量および残存容量を求めるように構成したことにより、
電池の総容量と残存容量を同時に検出することが出来る
と共に、算出方法が単純なため、容易かつ正確に容量を
検出できる、という効果が得られる。また、請求項2に
記載の発明においては、組電池を構成する各単電池の容
量を容易に検出することが出来る。という効果が得られ
る。また、請求項3に記載の発明においては、安定後の
電圧を予測することにより、短い停止時間中でも電池容
量を正確に検出することが出来る、という効果が得ら
れ、特に電気自動車用として実用上の利点が大きい。
As described above, according to the first aspect of the invention, the battery voltage V 1 before discharging or charging and the battery voltage V after discharging or charging when discharging or charging for any time. 2 , and by being configured to obtain the total capacity and the remaining capacity of the battery from the integrated capacity Q obtained by integrating the current during discharging or charging,
The total capacity and the remaining capacity of the battery can be detected at the same time, and since the calculation method is simple, the capacity can be detected easily and accurately. Further, in the invention according to the second aspect, the capacity of each unit cell constituting the assembled battery can be easily detected. The effect is obtained. Further, in the invention described in claim 3, by predicting the voltage after stabilization, it is possible to obtain the effect that the battery capacity can be accurately detected even during a short stop time. Has great advantages.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の容量検出方法の概念を示すブロック
図。
FIG. 1 is a block diagram showing the concept of a capacitance detection method of the present invention.

【図2】イオン二次電池における電圧Vと電池容量との
関係を示す特性図。
FIG. 2 is a characteristic diagram showing the relationship between voltage V and battery capacity in an ion secondary battery.

【図3】緩和時間と放電後の電池電圧との関係を示す特
性図。
FIG. 3 is a characteristic diagram showing a relationship between a relaxation time and a battery voltage after discharging.

【符号の説明】[Explanation of symbols]

1…イオン二次電池 4…演算手段 2…電流検出手段 5…表示手段 3…電圧検出手段 DESCRIPTION OF SYMBOLS 1 ... Ion secondary battery 4 ... Calculation means 2 ... Current detection means 5 ... Display means 3 ... Voltage detection means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】イオン二次電池を任意の時間のあいだ放電
または充電したときにおける放電または充電前の電池電
圧V1と放電または充電後の電池電圧V2、および上記放
電または充電中の電流を積算して求めた積算容量Qによ
り、下記(数1)式を用いて電池の総容量を、下記(数
2)式を用いて残存容量を、それぞれ求めることを特徴
とするイオン二次電池の容量検出方法。 総容量=Q×(VM−V0)/|V1−V2| …(数1) 残存容量=Q×(V2−V0)/|V1−V2| …(数2) ただし、VM:満充電状態における電池電圧 V0:残存容量を0とみなす電池電圧
1. A battery voltage V 1 before discharge or charge when the ion secondary battery is discharged or charged for an arbitrary time, a battery voltage V 2 after discharge or charge, and a current during the discharge or charge. The total capacity of the battery is calculated using the following formula (1) and the remaining capacity is calculated using the formula (2) below, based on the cumulative capacity Q obtained by integration. Capacity detection method. The total capacity = Q × (V M -V 0 ) / | V 1 -V 2 | ... ( number 1) the remaining capacity = Q × (V 2 -V 0 ) / | V 1 -V 2 | ... ( number 2) However, V M : battery voltage in a fully charged state V 0 : battery voltage with remaining capacity regarded as 0
【請求項2】イオン二次電池を複数個直列に接続した組
電池において、 上記組電池の全体について任意の電気量Qを放電または
充電させ、そのときの各単電池の電圧の下降値または上
昇値から、上記(数1)式を用いて各単電池の総容量
を、上記(数2)式を用いて各単電池の残存容量を、そ
れぞれ求めることを特徴とする請求項1に記載のイオン
二次電池の容量検出方法。
2. In an assembled battery in which a plurality of ion secondary batteries are connected in series, an arbitrary quantity of electricity Q is discharged or charged in the entire assembled battery, and the voltage drop value or increase of each unit cell at that time is discharged. The total capacity of each unit cell is calculated from the value by using the above formula (Equation 1), and the remaining capacity of each unit cell is calculated by using the above formula (Equation 2), respectively. Ion secondary battery capacity detection method.
【請求項3】放電または充電の停止時点から電池電圧が
安定するまでの緩和時間中における経過時間と電池電圧
との特性を示すデータを記憶手段に予め記憶しておき、
上記データに基づいて、放電または充電の停止時点から
の経過時間に対応して安定後の電池電圧を予測し、その
値を上記放電または充電後の電池電圧V2として用いる
ことにより、上記(数1)式を用いて総容量を、上記
(数2)式を用いて残存容量を、それぞれ求めることを
特徴とする請求項1または請求項2に記載のイオン二次
電池の容量検出方法。
3. Data indicating the characteristics of the elapsed time and the battery voltage during the relaxation time from the stop of discharge or charge until the battery voltage stabilizes is stored in advance in the storage means.
Based on the above data, the battery voltage after stabilization is predicted corresponding to the elapsed time from the stop point of discharge or charge, and the value is used as the battery voltage V 2 after discharge or charge to The method for detecting the capacity of an ion secondary battery according to claim 1 or 2, wherein the total capacity is calculated using the equation (1) and the remaining capacity is calculated using the equation (2).
JP32221393A 1993-12-21 1993-12-21 Method for detecting capacity of ion secondary battery Expired - Fee Related JP3346003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32221393A JP3346003B2 (en) 1993-12-21 1993-12-21 Method for detecting capacity of ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32221393A JP3346003B2 (en) 1993-12-21 1993-12-21 Method for detecting capacity of ion secondary battery

Publications (2)

Publication Number Publication Date
JPH07176334A true JPH07176334A (en) 1995-07-14
JP3346003B2 JP3346003B2 (en) 2002-11-18

Family

ID=18141221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32221393A Expired - Fee Related JP3346003B2 (en) 1993-12-21 1993-12-21 Method for detecting capacity of ion secondary battery

Country Status (1)

Country Link
JP (1) JP3346003B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311114A (en) * 2001-04-18 2002-10-23 Kyushu Hitachi Maxell Ltd Small sized electric apparatus
JP2008159298A (en) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd Power source system
JP2014025858A (en) * 2012-07-27 2014-02-06 Toyota Motor Corp Secondary battery pre-shipment inspection method
JP2016513249A (en) * 2013-07-04 2016-05-12 エルジー・ケム・リミテッド Battery SOC estimation method and system
JP2016125882A (en) * 2014-12-26 2016-07-11 株式会社リコー Charged state detecting apparatus, charged state detecting method, and moving body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311114A (en) * 2001-04-18 2002-10-23 Kyushu Hitachi Maxell Ltd Small sized electric apparatus
JP2008159298A (en) * 2006-12-21 2008-07-10 Matsushita Electric Ind Co Ltd Power source system
JP2014025858A (en) * 2012-07-27 2014-02-06 Toyota Motor Corp Secondary battery pre-shipment inspection method
CN103579698A (en) * 2012-07-27 2014-02-12 丰田自动车株式会社 Method of inspecting secondary battery
US9091733B2 (en) 2012-07-27 2015-07-28 Toyota Jidosha Kabushiki Kaisha Method of inspecting secondary battery
JP2016513249A (en) * 2013-07-04 2016-05-12 エルジー・ケム・リミテッド Battery SOC estimation method and system
US10073145B2 (en) 2013-07-04 2018-09-11 Lg Chem, Ltd. Method and system for estimating state of charge of battery
JP2016125882A (en) * 2014-12-26 2016-07-11 株式会社リコー Charged state detecting apparatus, charged state detecting method, and moving body

Also Published As

Publication number Publication date
JP3346003B2 (en) 2002-11-18

Similar Documents

Publication Publication Date Title
US10955479B2 (en) Battery control device
EP3413067B1 (en) Method and apparatus for estimating a state of health of a battery pack
US10310024B2 (en) Methods and apparatus for measuring battery characteristics
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
US20110037475A1 (en) Battery Capacity Estimation by DCIR
US10345392B2 (en) Methods and apparatus for estimating a state of health of a battery
JP3371588B2 (en) Remaining battery capacity display
JPH03503936A (en) Charging status indication
US10024924B2 (en) Remaining battery life prediction device and battery pack
WO2001016615A1 (en) Method and apparatus for evaluating stored charge in an electrochemical cell or battery
KR101031722B1 (en) Battery pack and battery remaining power calculating method
JP4542675B2 (en) Voltage correction device for battery pack for electric vehicle
JP3453821B2 (en) Battery remaining capacity measurement device
EP4152022B1 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
JP2000338201A (en) Judging apparatus of life and residual capacity of combined battery
KR101268082B1 (en) SOC Estimation Method using Polarizing Voltage and Open Circuit Voltage
JP2003068369A (en) Detecting method of total capacity of secondary battery and detector of total capacity
JP3346003B2 (en) Method for detecting capacity of ion secondary battery
JP2014059227A (en) Soundness calculation device for battery and soundness calculation method therefor
CN117250514A (en) Correction method for full life cycle SOC of power battery system
JP3412355B2 (en) Nickel-based battery deterioration determination method
JPH11344544A (en) Method for measuring battery capacity of battery pack
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
JP3422174B2 (en) Battery remaining capacity meter

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130906

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees