JP2003068369A - Detecting method of total capacity of secondary battery and detector of total capacity - Google Patents

Detecting method of total capacity of secondary battery and detector of total capacity

Info

Publication number
JP2003068369A
JP2003068369A JP2001253313A JP2001253313A JP2003068369A JP 2003068369 A JP2003068369 A JP 2003068369A JP 2001253313 A JP2001253313 A JP 2001253313A JP 2001253313 A JP2001253313 A JP 2001253313A JP 2003068369 A JP2003068369 A JP 2003068369A
Authority
JP
Japan
Prior art keywords
secondary battery
state
current
total capacity
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001253313A
Other languages
Japanese (ja)
Inventor
Yoshihiko Mizuta
芳彦 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001253313A priority Critical patent/JP2003068369A/en
Publication of JP2003068369A publication Critical patent/JP2003068369A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a detector to easily detect the total capacity of a secondary battery. SOLUTION: The detector of the total capacity of a secondary battery comprises a current detecting means 7 to detect the charging/discharging current of the secondary battery 1, a current integration means 11 to integrate the charging/discharging current measured by the current detecting means 7 from a first state where the charging/discharging current does not flow to the secondary battery 1 for a predetermined time or more to a second state where the charging/discharging current does not again flow to the secondary battery 1 for the predetermined time or more, and to calculate the integrated current, a terminal voltage measuring means 9 to measure the first state voltage and the second state voltage, a charged level difference acquiring means 11 to acquire the charged level difference between the first state voltage and the second state voltage based on the correlation between the voltage and the charged level of the secondary battery obtained in advance, and the total capacity detecting means 11 to detect the total capacity of the secondary battery 1 based on the difference of the integrated current and the charged level.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、二次電池の総容量
の検出方法及び総容量検出装置に関する。
TECHNICAL FIELD The present invention relates to a method for detecting the total capacity of a secondary battery and a total capacity detection device.

【0002】[0002]

【従来の技術】リチウムイオン電池等の二次電池におい
て総容量とは、完全充電された状態から取り出せる基準
的な電気量であり、二次電池を使用すると電極等が劣化
するため、徐々に低下することが知られている。総容量
が低下すると二次電池が搭載される例えば電気自動車や
携帯機器の駆動時間が短縮されるから、総容量が所定量
以下になる前に二次電池を交換又は保守することが必要
となる。
2. Description of the Related Art In a secondary battery such as a lithium-ion battery, the total capacity is a standard amount of electricity that can be taken out from a fully charged state. When the secondary battery is used, the electrodes and the like deteriorate, so that it gradually decreases. Is known to do. When the total capacity decreases, the driving time of an electric vehicle or portable device equipped with a secondary battery is shortened, so it is necessary to replace or maintain the secondary battery before the total capacity falls below a predetermined amount. .

【0003】そこで、従来は、例えば二次電池の種類、
容量等によって分類した各タイプ毎に使用開始から所定
時間経過後に総容量が所定量以下になると推測して、各
タイプ毎に一律に交換又は保守時期を決めていた。
Therefore, conventionally, for example, the type of secondary battery,
For each type classified according to capacity, etc., it is presumed that the total capacity will be less than or equal to a predetermined amount after a lapse of a predetermined time from the start of use, and the replacement or maintenance time is uniformly decided for each type.

【0004】しかしながら、実際には同タイプの二次電
池であっても総容量の低下程度は、使用状況によって異
なり個体差が大きいから、交換又は保守時期を一律に定
めても、この時期がその個体に適した交換又は保守時期
とはならない場合があった。
However, in reality, even in the case of secondary batteries of the same type, the degree of decrease in total capacity varies depending on the usage situation and there is a large individual difference. Therefore, even if the replacement or maintenance time is set uniformly, this time is the same. In some cases, the replacement or maintenance time was not suitable for the individual.

【0005】また、現在の総容量を把握せずに負荷制御
又は充電制御を行うと、二次電池を有効に利用できない
ばかりか、最悪の場合には二次電池が過放電又は過充電
の状態となって損傷してしまうおそれがある。
Further, if load control or charge control is performed without grasping the current total capacity, not only the secondary battery cannot be effectively used, but in the worst case, the secondary battery is over-discharged or over-charged. May be damaged.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記のような
事情に基づいて完成されたものであって、二次電池の総
容量を簡便に検出することを目的とする。
The present invention was completed in view of the above circumstances, and an object thereof is to easily detect the total capacity of a secondary battery.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの手段として、請求項1の発明は、所定時間以上にわ
たり前記二次電池に充放電電流が流れない第1状態か
ら、再び所定時間以上にわたり前記二次電池に充放電電
流が流れない第2状態へ移るまでの充放電電流を積算し
た電流積算値と、前記第1及び第2の状態における各充
電レベル差とから前記二次電池の総容量を検出する二次
電池の総容量の検出方法であって、前記各充電レベル
は、前記第1及び第2の状態の電圧を測定して、予め把
握されている前記二次電池の電圧と充電レベルとの相関
関係に基づき得るとしたことを特徴とする。
[Means for Solving the Problems] As a means for achieving the above-mentioned object, the invention of claim 1 is such that the charging / discharging current does not flow into the secondary battery for a predetermined time or more, and then the charging is performed again for a predetermined time. The secondary battery based on the current integrated value obtained by integrating the charging / discharging current until the second state in which the charging / discharging current does not flow in the secondary battery and the difference between the charge levels in the first and second states. Is a method for detecting the total capacity of the secondary battery for detecting the total capacity of the secondary battery, wherein each of the charge levels is obtained by measuring the voltages in the first and second states, It is characterized in that it can be obtained based on the correlation between the voltage and the charge level.

【0008】請求項2の発明は、二次電池の総容量を検
出する二次電池の総容量検出装置であって、前記二次電
池の充放電電流を検出する電流検出手段と、この電流検
出手段によって所定時間以上にわたり前記二次電池に充
放電電流が流れない第1状態から、再び所定時間以上に
わたり前記二次電池に充放電電流が流れない第2状態へ
移るまでに測定された充放電電流を積算して電流積算値
を算出する電流積算値算出手段と、前記第1状態及び第
2状態の電圧とを測定する端子電圧測定手段と、予め把
握されている前記二次電池の電圧と充電レベルとの相関
関係に基づき前記第1状態及び第2状態の電圧から前記
第1状態及び第2状態の充電レベル差を取得する充電レ
ベル差取得手段と、前記電流積算値及び前記充電レベル
差に基づいて前記二次電池の総容量を検出する総容量検
出手段とを備えたことを特徴とする。
According to a second aspect of the present invention, there is provided a secondary battery total capacity detecting device for detecting the total capacity of the secondary battery, comprising current detecting means for detecting a charging / discharging current of the secondary battery, and the current detecting means. The charge / discharge measured by the means from the first state in which the charge / discharge current does not flow to the secondary battery for a predetermined time or more to the second state in which the charge / discharge current does not flow to the secondary battery again for the predetermined time or more. An integrated current value calculating unit that integrates currents to calculate an integrated current value, a terminal voltage measuring unit that measures the voltage in the first state and the second state, and a voltage of the secondary battery that is known in advance. Charge level difference acquisition means for acquiring a charge level difference between the first state and the second state from the voltages in the first state and the second state based on a correlation with a charge level, the current integrated value and the charge level difference Based on the above Characterized in that a total capacitance detection means for detecting the total volume of the next cell.

【0009】[0009]

【発明の作用】本発明の方法における二次電池の総容量
の検出原理は次のようである。まず、総容量の検出対象
となる二次電池の電圧OCVと充電レベルSOCとの相関関係
を、例えば図1に示すように予め把握する。なお、ここ
では、充電レベルSOCは式(1)に示すように定義され
ている。
The principle of detecting the total capacity of the secondary battery in the method of the present invention is as follows. First, the correlation between the voltage OCV of the secondary battery whose total capacity is to be detected and the charge level SOC is grasped in advance as shown in FIG. 1, for example. It should be noted that here, the charge level SOC is defined as shown in Expression (1).

【0010】 SOC(%)=残存容量(Ah)/総容量(Ah)×100…(1)[0010] SOC (%) = Remaining capacity (Ah) / Total capacity (Ah) x 100 (1)

【0011】この相関関係は、二次電池の種類、容量等
が同一である同タイプの二次電池であれば、個体差はあ
まりないことが知られている。特にリチウムイオン二次
電池、鉛電池、中でもリチウムイオン二次電池において
は、相関関係が明確であることが知られている。従っ
て、検出対象となる二次電池自体を使ってこの相関関係
を求めることができるのみならず、この二次電池と同タ
イプの二次電池について相関関係を求めることによって
も、検出対象の二次電池の相関関係を求めることができ
るものである。相関関係は具体的には、例えば検出対象
の二次電池と同タイプの二次電池の初期状態において、
完全充電を行った後にこれを放電させつつ、放電電気量
と端子電圧を測定することによって求められる。
It is known that this correlation has little difference among individual rechargeable batteries of the same type having the same type and capacity. In particular, it is known that the correlation is clear in a lithium ion secondary battery, a lead battery, and particularly a lithium ion secondary battery. Therefore, not only can this correlation be obtained using the secondary battery itself that is the detection target, but also by obtaining the correlation for a secondary battery of the same type as this secondary battery, the secondary battery The correlation of batteries can be obtained. Specifically, the correlation is, for example, in the initial state of the secondary battery of the same type as the secondary battery to be detected,
It can be obtained by measuring the amount of discharged electricity and the terminal voltage while discharging this after performing full charging.

【0012】また、このOCVとSOCとの相関関係は、二次
電池の状態、例えば初期状態でも、劣化した状態でもあ
まり変化せず、また、この相関関係を使ってOCVから求
められるSOCは、そのOCVの測定時点の残存容量と総容量
との比を表していることが知られている。すなわち、表
1に示すような初期総容量4.0Ahの二次電池を例と
して説明すれば以下のようになる。この二次電池が、初
期状態から使用により劣化して総容量が3.0Ahの第
1劣化状態、総容量が2.0Ahの第2劣化状態となっ
たものとする。このように総容量が変化したにもかかわ
らず、OCVとSOCとの相関関係は、変化せずに全ての状態
において、OCV=3.88VのときにはSOC=50.0%となるので
ある。
Further, the correlation between OCV and SOC does not change much in the state of the secondary battery, for example, in the initial state or in the deteriorated state, and the SOC obtained from OCV using this correlation is It is known to represent the ratio of the remaining capacity to the total capacity at the time of measuring the OCV. That is, the following is a description of a secondary battery having an initial total capacity of 4.0 Ah as shown in Table 1 as an example. It is assumed that the secondary battery has deteriorated due to use from the initial state to the first deteriorated state having a total capacity of 3.0 Ah and the second deteriorated state having a total capacity of 2.0 Ah. Despite the change in the total capacitance, the correlation between OCV and SOC remains unchanged and SOC = 50.0% when OCV = 3.88V in all states.

【0013】但し、それぞれの状態においてSOCの意味
する内容が異なる。すなわち、式(2)に示すように、
それぞれのSOCは、OCVの測定時点の残存容量と総容量と
の比を表しており、初期状態では2.0Ah/4.0Ah×100=50
%を、第1劣化状態では1.5Ah/3.0Ah×100=50%を、第2
劣化状態では1.0Ah/2.0Ah×100=50%を意味しているの
である。
However, the meaning of SOC is different in each state. That is, as shown in equation (2),
Each SOC represents the ratio of the remaining capacity at the time of OCV measurement to the total capacity, and 2.0Ah / 4.0Ah x 100 = 50 in the initial state.
%, In the first deterioration state 1.5Ah / 3.0Ah × 100 = 50%, the second
In the deteriorated state, it means 1.0Ah / 2.0Ah × 100 = 50%.

【0014】 <表1> 初期状態 第1劣化状態 第2劣化状態 OCV(V) 3.88 3.88 3.88 SOC(%) 50.0 50.0 50.0 総容量(Ah) 4.0 3.0 2.0 残存容量(Ah) 2.0 1.5 1.0[0014] <Table 1>                     Initial state First degraded state Second degraded state OCV (V) 3.88 3.88 3.88 SOC (%) 50.0 50.0 50.0 Total capacity (Ah) 4.0 3.0 2.0 Remaining capacity (Ah) 2.0 1.5 1.0

【0015】 SOC(%)=OCVを測定した時点の残存容量/OCVを測定した時点での総容量×100 …(2)[0015]   SOC (%) = Remaining capacity at the time of measuring OCV / Total capacity at the time of measuring OCV x 100 … (2)

【0016】そして、次に電気自動車等に組み込まれて
使用されている二次電池の充放電電流Iを実際に測定
し、所定時間以上にわたり二次電池に充放電電流Iが流
れない状態(第1状態)となったら、第1状態の電圧OC
V1を測定する。次に再び所定時間以上にわたり二次電池
に充放電電流Iが流れない状態(第2状態)となった
ら、第2状態の電圧OCV2を測定する。なお、所定時間と
は、電圧を安定させて、ほぼ開放電圧と等しくさせるた
めに要する時間をいい、特に限定されないが、例えば2
0分である。ここで、充放電電流Iが流れない状態と
は、完全に充放電電流が流れない状態のみならず、実質
的に充放電電流が流れていない状態、即ち充放電電流が
微量流れている状態であっても構わない。要は、この状
態で電圧を測定するとその値がほぼ開放電圧と等しくな
る状態であれば構わない。また、式(3)に示すように
第1状態から第2状態になるまでの充放電電流Iを測定
して積算し電流積算値C1を求める。この電流積算値C1
は、第1状態から第2状態になるまでに二次電池に蓄え
られ又は放電された電気量を意味する。
Then, the charging / discharging current I of the secondary battery which is built in and used in an electric vehicle or the like is actually measured, and the charging / discharging current I does not flow into the secondary battery for a predetermined time or longer (first 1 state), the voltage OC of the first state
Measure V1. Next, when the charging / discharging current I does not flow through the secondary battery for a predetermined time or longer (second state), the voltage OCV2 in the second state is measured. The predetermined time is a time required to stabilize the voltage and make it almost equal to the open circuit voltage, and is not particularly limited, but for example, 2
0 minutes. Here, the state in which the charging / discharging current I does not flow is not only a state in which the charging / discharging current does not completely flow, but also a state in which substantially no charging / discharging current flows, that is, a state in which a small amount of charging / discharging current flows. It doesn't matter. The point is that if the voltage is measured in this state, the value is almost equal to the open circuit voltage. Further, as shown in the equation (3), the charge / discharge current I from the first state to the second state is measured and integrated to obtain a current integrated value C1. This integrated current value C1
Means the amount of electricity stored or discharged in the secondary battery from the first state to the second state.

【0017】C1=∫Idt …(3)C1 = ∫Idt (3)

【0018】以上のようにして、OCV1、OCV2、及びC1が
求められる。そして、OCV1、OCV2から予め把握した図1
の相関関係を照合して、第1状態の充電レベルSOC1及び
第2状態の充電レベルSOC2が求められる。これらのSOC
1及びSOC2は、それぞれOCV1、OCV2の測定時点の残存
容量と総容量との比を表している。すなわち、それぞれ
第1状態と第2状態の残存容量と総容量との比を表して
いるから以下の式(4)(5)が成り立つ。
OCV1, OCV2, and C1 are obtained as described above. And, Figure 1 which was grasped beforehand from OCV1 and OCV2
The charge level SOC1 in the first state and the charge level SOC2 in the second state are obtained by collating the correlation of These SOC
1 and SOC2 represent the ratio of the remaining capacity and the total capacity of OCV1 and OCV2 at the time of measurement, respectively. That is, since the respective ratios of the remaining capacity and the total capacity in the first state and the second state are expressed, the following equations (4) and (5) are established.

【0019】 SOC1(%)=第1状態の残存容量(Ah)/第1状態の総容量(Ah)×100…(4)[0019]   SOC1 (%) = Remaining capacity in the first state (Ah) / Total capacity in the first state (Ah) x 100 ... (4)

【0020】 SOC2(%)=第2状態の残存容量(Ah)/第2状態の総容量(Ah)×100…(5)[0020]   SOC2 (%) = Remaining capacity in the second state (Ah) / Total capacity in the second state (Ah) x 100 ... (5)

【0021】そして、式(4)(5)の左辺同士、右辺
同士の差をとると式(6)となる。
Then, the difference between the left sides and the right sides of the equations (4) and (5) is obtained as the equation (6).

【0022】 SOC1−SOC2 =第1状態の残存容量/第1状態の総容量×100 −第2状態の残存容量/第2状態の総容量×100…(6)[0022]     SOC1-SOC2   = Remaining capacity in the first state / Total capacity in the first state x 100       -Second state remaining capacity / Second state total capacity x 100 ... (6)

【0023】ここで、第1状態から第2状態まではほと
んど総容量が変化せず、かつ、第2状態から総容量を検
出したい時点(現在)までほとんど総容量が変化してい
ないとすると以下の式(7)が成り立ち、この関係を式
(6)に代入すると式(8)となる。
Here, assuming that the total capacity hardly changes from the first state to the second state, and that the total capacity hardly changes from the second state to the time (current) when the total capacity is desired to be detected, Equation (7) is established, and when this relationship is substituted into Equation (6), Equation (8) is obtained.

【0024】 第1状態の総容量≒第2状態の総容量≒現在の総容量…(7)[0024]   Total capacity in the first state ≈ total capacity in the second state ≅ current total capacity (7)

【0025】 SOC1−SOC2 =(第1状態の残存容量−第2状態の残存容量)/現在の総容量×100…(8)[0025]   SOC1-SOC2   = (Remaining capacity of the first state-remaining capacity of the second state) / current total capacity x 100 (8)

【0026】ここで、第1状態の残存容量と第2状態の
残存容量の差は、即ち、第1状態から第2状態になるま
でに二次電池に蓄えられ又は放電された電気量を意味
し、充放電電流Iを測定して積算した電流積算値C1と同
じになるから、この関係を式(8)に代入し、求めたい
現在の総容量をCとすると以下の式(9)となる。
Here, the difference between the state of charge in the first state and the state of charge in the second state means the amount of electricity stored or discharged in the secondary battery from the first state to the second state. Then, since it becomes the same as the integrated current value C1 obtained by measuring and integrating the charge / discharge current I, substituting this relationship into the equation (8), and letting the current total capacity to be obtained be C, the following equation (9) is obtained. Become.

【0027】SOC1−SOC2=C1/C×100…(9)SOC1-SOC2 = C1 / C × 100 (9)

【0028】この式をCについて解くと式(10)とな
り、現在の総容量CがC1、SOC1、及びSOC2の3変数か
ら求められることとなる。
When this equation is solved for C, equation (10) is obtained, and the current total capacity C can be obtained from the three variables of C1, SOC1 and SOC2.

【0029】C= C1×100/(SOC1−SOC2)…(10)C = C1 × 100 / (SOC1-SOC2) ... (10)

【0030】これによれば、第1状態の電圧OCV1、第2
状態の電圧OCV2、及び第1状態から第2状態になるまで
の充放電電流Iを測定することによって、容易に現在の
総容量Cを検出できる。よって、交換又は保守の時期を
正確に知ることができるようになる。また、現在の総容
量Cを把握しながら負荷制御又は充電制御して二次電池
を有効に利用することができる。
According to this, the voltage OCV1 in the first state, the second voltage OCV1 in the second state
The current total capacity C can be easily detected by measuring the state voltage OCV2 and the charge / discharge current I from the first state to the second state. Therefore, it becomes possible to accurately know the time for replacement or maintenance. Further, the secondary battery can be effectively used by controlling the load or charging while grasping the current total capacity C.

【0031】[0031]

【発明の実施の形態】以下、本発明を電気自動車の動力
バッテリー用の総容量の検出装置に適用した一実施形態
について図面を参照しつつ詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment in which the present invention is applied to a total capacity detecting device for a power battery of an electric vehicle will be described in detail with reference to the drawings.

【0032】図2において、1は電気自動車の動力用の
二次電池であり、例えばリチウムイオン二次電池であ
る。この二次電池1は、充放電回路3により充電され、
出力端子5を介して、電気自動車に電力を供給する。こ
の二次電池1の充放電線路には例えばホール素子を利用
した磁界検出型の電流検出手段7が設けられ、これにて
二次電池1を流れる充放電電流Iを検出できるようにな
っている。また、二次電池1には、端子電圧を測定する
端子電圧測定手段9が設けられている。
In FIG. 2, reference numeral 1 is a secondary battery for powering an electric vehicle, for example, a lithium ion secondary battery. The secondary battery 1 is charged by the charge / discharge circuit 3,
Electric power is supplied to the electric vehicle through the output terminal 5. The charging / discharging line of the secondary battery 1 is provided with a magnetic field detection type current detecting means 7 using, for example, a Hall element so that the charging / discharging current I flowing through the secondary battery 1 can be detected. . Further, the secondary battery 1 is provided with a terminal voltage measuring means 9 for measuring the terminal voltage.

【0033】これらの電流検出手段7と端子電圧測定手
段9からの信号は、CPU11に与えられるようになっ
ている。そして、このCPU11には、後述するOCV-SO
Cテーブルを記憶したメモリ13及び表示部15が接続
されている。
The signals from the current detecting means 7 and the terminal voltage measuring means 9 are supplied to the CPU 11. Then, this CPU 11 has an OCV-SO described later.
The memory 13 storing the C table and the display unit 15 are connected.

【0034】このような構成の検出装置において、まず
CPU11は、電流検出手段7によって測定された充放
電電流Iを読み込む。そして、この充放電電流Iが0と
なり、継続して例えば20分以上経過すると、CPU1
1は充放電電流Iが流れない第1状態と判定する。第1
状態と判定されるとCPU11は端子電圧測定手段9か
ら二次電池1の電圧OCV1を読み込みメモリ13に記憶す
る。
In the detecting device having such a configuration, the CPU 11 first reads the charge / discharge current I measured by the current detecting means 7. Then, when the charging / discharging current I becomes 0 and continuously e.g. 20 minutes or more, the CPU 1
1 is determined as the first state in which the charging / discharging current I does not flow. First
When the state is determined, the CPU 11 reads the voltage OCV1 of the secondary battery 1 from the terminal voltage measuring means 9 and stores it in the memory 13.

【0035】また、第1状態と判定されるとCPU11
は、例えば1秒ごとに電流検出手段7によって測定され
た充放電電流Iに対応する値を充放電カウンタに積算す
る。なお、充放電カウンタは、第1状態と判定された時
点で0にリセットされている。
When it is determined that the state is the first state, the CPU 11
For example, the value corresponding to the charging / discharging current I measured by the current detecting means 7 is integrated into the charging / discharging counter every second. The charge / discharge counter is reset to 0 at the time when it is determined to be in the first state.

【0036】そして、充放電電流Iが再び0となり、継
続して例えば20分以上経過すると、CPU11は、充
放電電流が流れない第2状態と判定する。第2状態と判
定されるとCPU11は端子電圧測定手段9から二次電
池1の電圧OCV2を読み込みメモリ13に記憶する。
When the charging / discharging current I becomes 0 again and, for example, 20 minutes or more continues, the CPU 11 determines that the charging / discharging current does not flow in the second state. When the second state is determined, the CPU 11 reads the voltage OCV2 of the secondary battery 1 from the terminal voltage measuring means 9 and stores it in the memory 13.

【0037】また、第2状態と判定されるとCPU11
は、充放電電流Iの充放電カウンタへの加算を終了す
る。このようにして、充放電カウンタには、第1状態か
ら第2状態までに充放電された充放電電気量(電流積算
量C1)が積算されている。このようにして、CPU11
は、電流積算値算出手段として機能する。
When it is determined that the state is the second state, the CPU 11
Ends the addition of the charging / discharging current I to the charging / discharging counter. In this way, the charge / discharge counter charges the amount of charge / discharge electricity (current integrated amount C1) charged / discharged from the first state to the second state. In this way, the CPU 11
Functions as a current integrated value calculation means.

【0038】そして、この実施形態では以下のようにし
て二次電池1の現在の総容量Cが算出されて、その結果
が表示部15に表示される。まず、CPU11は、メモ
リ13から第1状態の電圧OCV1及び第2状態の電圧OCV2
を読み込み、これらの電圧OCV1,OCV2に応じたSOC1、SO
C2をメモリ13に記憶したOCV-SOCテーブルから取得し
てその差を算出する。このようにして、CPU11は充
電レベル差取得手段として機能する。なお、このOCV-SO
Cテーブルは、例えば図4に示すようにOCVとSOCとの対
応関係を示しており、例えば二次電池1と同じタイプの
二次電池を初期状態で完全充電して、放電させることに
よって求めることができる。
In this embodiment, the current total capacity C of the secondary battery 1 is calculated as follows, and the result is displayed on the display unit 15. First, the CPU 11 causes the memory 13 to output the voltage OCV1 in the first state and the voltage OCV2 in the second state.
Read, SOC1, SO corresponding to these voltages OCV1, OCV2
C2 is acquired from the OCV-SOC table stored in the memory 13 and the difference is calculated. In this way, the CPU 11 functions as a charge level difference acquisition unit. This OCV-SO
The C table shows the correspondence between OCV and SOC as shown in FIG. 4, for example, and is obtained by fully charging and discharging a secondary battery of the same type as the secondary battery 1 in the initial state. You can

【0039】次に、CPU11は、総容量検出手段とし
て、上述の電流積算値C1と充電レベル差(SOC1−SOC
2)から、C= C1×100/(SOC1−SOC2)の関係を使っ
て総容量Cを演算し、その結果を表示部15に表示す
る。例えば、初期の総容量4.0Ahのリチウムイオン二次
電池を使用した場合において、OCV1,OCV2がそれぞれ3.
88V,3.92Vとすると、SOC1,SOC2はそれぞれ50%、60%
となる。そして、充放電電気量(電流積算量C1)が0.3A
hとすると、現在の総容量は3.0Ahとなる。
Next, the CPU 11 serves as a total capacity detecting means, and the above-mentioned current integrated value C1 and charge level difference (SOC1-SOC).
From 2), the total capacity C is calculated using the relationship of C = C1 × 100 / (SOC1-SOC2), and the result is displayed on the display unit 15. For example, when using an initial lithium ion secondary battery with a total capacity of 4.0 Ah, OCV1 and OCV2 are 3.
Assuming 88V and 3.92V, SOC1 and SOC2 are 50% and 60% respectively
Becomes And the charge / discharge electricity (current integrated amount C1) is 0.3A
Assuming h, the current total capacity will be 3.0 Ah.

【0040】このように本実施形態によれば、第1状態
の電圧OCV1、第2状態の電圧OCV2、及び第1状態から第
2状態になるまでの充放電電流Iを測定することによっ
て、現在の総容量Cが演算される。従って、充放電を繰
り返して二次電池1が劣化して、現在の総容量Cが初期
の総容量よりも低下したとしても、現在の総容量Cを容
易に把握することができる。よって交換又は保守の時期
を正確に知ることができ、また、現在の総容量Cを把握
しながら負荷制御又は充電制御して二次電池を有効に利
用することができる。
As described above, according to this embodiment, by measuring the voltage OCV1 in the first state, the voltage OCV2 in the second state, and the charge / discharge current I from the first state to the second state, The total capacity C of is calculated. Therefore, even if the secondary battery 1 deteriorates due to repeated charging and discharging and the current total capacity C becomes lower than the initial total capacity, the current total capacity C can be easily grasped. Therefore, it is possible to accurately know the time of replacement or maintenance, and it is possible to effectively use the secondary battery by controlling the load or charging while grasping the current total capacity C.

【0041】また、電流検出手段7、端子電圧測定手段
9は、従来より電池管理のために通常備えられているた
め、本実施形態では新たにハードを追加する必要はない
という利点もある。
Further, since the current detecting means 7 and the terminal voltage measuring means 9 have been conventionally provided for battery management, there is an advantage that no additional hardware is required in this embodiment.

【0042】本発明は上記記述及び図面によって説明し
た実施形態に限定されるものではなく、例えば次のよう
な実施形態も本発明の技術的範囲に含まれ、さらに、下
記以外にも要旨を逸脱しない範囲内で種々変更して実施
することができる。
The present invention is not limited to the embodiments described by the above description and the drawings. For example, the following embodiments are also included in the technical scope of the present invention. Various modifications can be made within the range not to implement.

【0043】(1)上記実施形態では、電気自動車の動
力バッテリー用の総容量の検出装置に適用した例を示し
たが、これに限らず、例えば電池管理装置、携帯型パソ
コン、携帯電話に適用しても良いことは勿論である。
(1) In the above embodiment, an example in which the present invention is applied to a total capacity detecting device for a power battery of an electric vehicle is shown, but the present invention is not limited to this, and is applied to, for example, a battery management device, a portable personal computer, a mobile phone. Of course, you can do that.

【0044】(2)上記実施形態では、総容量Cを演算
し、その結果を表示部15に表示することとしたが、こ
れに限らず、例えば総容量Cが所定の値に達したときに
ランプ等を点灯させたりすることにより、交換時期を通
知する構成としても良い。また、総容量Cを元に演算さ
れる値、例えば総容量CとSOCから演算したバックアップ
時間を表示する構成としても良い。
(2) In the above embodiment, the total capacity C is calculated and the result is displayed on the display unit 15. However, the present invention is not limited to this. For example, when the total capacity C reaches a predetermined value. The replacement time may be notified by turning on a lamp or the like. A value calculated based on the total capacity C, for example, a backup time calculated from the total capacity C and SOC may be displayed.

【0045】(3)上記実施形態では、リチウムイオン
二次電池に適用した例を示したが、電池種類はこれに限
られず、各種の電池に幅広く適用することができる。
(3) In the above-mentioned embodiment, an example in which the invention is applied to a lithium ion secondary battery is shown, but the kind of battery is not limited to this, and it can be widely applied to various batteries.

【0046】(4)上記実施形態では、二次電池1を単
セルとしたが、複数のセルであってもよいことは勿論で
ある。
(4) In the above embodiment, the secondary battery 1 is a single cell, but it goes without saying that it may be a plurality of cells.

【0047】(5)上記実施形態では、OCV-SOCテーブ
ルは、初期状態の二次電池を完全充電して放電させるこ
とによって求めることとしたが、これに限らず、初期状
態以外の二次電池を使っても求めることができることは
勿論である。
(5) In the above embodiment, the OCV-SOC table is obtained by completely charging and discharging the secondary battery in the initial state. However, the OCV-SOC table is not limited to this. Of course, you can get it by using.

【0048】(6)上記実施形態では、電気自動車の動
力バッテリー用の総容量を算出して数字表示する一実施
形態について示したが、これに限られず、総容量を算出
せずに、例えばOCV1,OCV2,C1の3変数を用いた演算式を
定め、これに基づく演算結果f(OCV1,OCV2,C1)が所定の
範囲内にあるか否かによって総容量が所定の範囲内にあ
るかを検出してもよい。
(6) In the above embodiment, an embodiment has been shown in which the total capacity for the power battery of an electric vehicle is calculated and displayed in numbers, but the present invention is not limited to this, and the total capacity is not calculated, for example, OCV1. , OCV2, C1 is used to determine the operation formula, and the calculation result f (OCV1, OCV2, C1) based on it determines whether the total capacity is within the specified range or not. It may be detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】電圧OCVと充電レベルSOCとの相関関係を示すグ
ラフ
FIG. 1 is a graph showing the correlation between voltage OCV and charge level SOC.

【図2】本発明の一実施形態を示すブロック図FIG. 2 is a block diagram showing an embodiment of the present invention.

【図3】充放電電流値の推移を示すグラフFIG. 3 is a graph showing changes in charging / discharging current value.

【図4】OCV−SOCテーブルを示す表FIG. 4 is a table showing an OCV-SOC table.

【符号の説明】[Explanation of symbols]

1…二次電池 3…充放電回路 5…出力端子 7…電流検出手段 9…端子電圧測定手段 11…CPU(電流積算値算出手段、充電レベル差取得
手段、総容量検出手段) 13…メモリ
DESCRIPTION OF SYMBOLS 1 ... Secondary battery 3 ... Charge / discharge circuit 5 ... Output terminal 7 ... Current detection means 9 ... Terminal voltage measurement means 11 ... CPU (current integrated value calculation means, charge level difference acquisition means, total capacity detection means) 13 ... Memory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 所定時間以上にわたり前記二次電池に充
放電電流が流れない第1状態から、再び所定時間以上に
わたり前記二次電池に充放電電流が流れない第2状態へ
移るまでの充放電電流を積算した電流積算値と、前記第
1及び第2の状態における各充電レベル差とから前記二
次電池の総容量を検出するものであって、前記各充電レ
ベルは、前記第1及び第2の状態の電圧を測定して、予
め把握されている前記二次電池の電圧と充電レベルとの
相関関係に基づき得ることを特徴とする二次電池の総容
量の検出方法。
1. A charging / discharging process from a first state in which a charging / discharging current does not flow to the secondary battery for a predetermined time or more to a second state in which a charging / discharging current does not flow to the secondary battery for a predetermined time or more again. The total capacity of the secondary battery is detected from the integrated current value obtained by integrating the current and the charge level differences in the first and second states, wherein the charge levels are the first and second charge levels. 2. A method for detecting the total capacity of a secondary battery, characterized in that the voltage in the state 2 is measured and obtained based on a previously known correlation between the voltage of the secondary battery and a charge level.
【請求項2】 二次電池の総容量を検出するものであっ
て、 前記二次電池の充放電電流を検出する電流検出手段と、 この電流検出手段によって所定時間以上にわたり前記二
次電池に充放電電流が流れない第1状態から、再び所定
時間以上にわたり前記二次電池に充放電電流が流れない
第2状態へ移るまでに測定された充放電電流を積算して
電流積算値を算出する電流積算値算出手段と、 前記第1状態及び第2状態の電圧とを測定する端子電圧
測定手段と、 予め把握されている前記二次電池の電圧と充電レベルと
の相関関係に基づき前記第1状態及び第2状態の電圧か
ら前記第1状態及び第2状態の充電レベル差を取得する
充電レベル差取得手段と、 前記電流積算値及び前記充電レベル差に基づいて前記二
次電池の総容量を検出する総容量検出手段とを備えてな
る二次電池の総容量検出装置。
2. A secondary battery for detecting a total capacity of the secondary battery, the current detecting unit detecting a charging / discharging current of the secondary battery, and the current detecting unit charging the secondary battery for a predetermined time or more. A current for accumulating the charge / discharge currents measured from the first state in which the discharge current does not flow to the second state in which the charge / discharge current does not flow in the secondary battery again for a predetermined time or more to calculate a current integrated value. An integrated value calculating means, a terminal voltage measuring means for measuring the voltages in the first state and the second state, and the first state based on a previously known correlation between the voltage of the secondary battery and the charge level. And a charge level difference acquisition means for acquiring the charge level difference between the first state and the second state from the voltage of the second state, and detecting the total capacity of the secondary battery based on the integrated current value and the charge level difference. Total capacity check The total capacitance detection device for a secondary battery comprising a unit.
JP2001253313A 2001-08-23 2001-08-23 Detecting method of total capacity of secondary battery and detector of total capacity Pending JP2003068369A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001253313A JP2003068369A (en) 2001-08-23 2001-08-23 Detecting method of total capacity of secondary battery and detector of total capacity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001253313A JP2003068369A (en) 2001-08-23 2001-08-23 Detecting method of total capacity of secondary battery and detector of total capacity

Publications (1)

Publication Number Publication Date
JP2003068369A true JP2003068369A (en) 2003-03-07

Family

ID=19081665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001253313A Pending JP2003068369A (en) 2001-08-23 2001-08-23 Detecting method of total capacity of secondary battery and detector of total capacity

Country Status (1)

Country Link
JP (1) JP2003068369A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630927A2 (en) 2004-08-23 2006-03-01 Denso Corporation Vehicle-mounted power supply system
US7317300B2 (en) 2003-06-23 2008-01-08 Denso Corporation Automotive battery state monitor apparatus
WO2008095315A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery management system
WO2010150076A1 (en) 2009-06-24 2010-12-29 Toyota Jidosha Kabushiki Kaisha Upper-limit of state-of-charge estimating device and upper-limit of state-of-charge estimating method
WO2011090020A1 (en) 2010-01-19 2011-07-28 株式会社Gsユアサ Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
US20120004799A1 (en) * 2010-06-30 2012-01-05 Reizo Maeda Soc correctable power supply device for hybrid car
JP2012078095A (en) * 2010-09-30 2012-04-19 Hitachi Ltd Storage battery control system for railway vehicle
US20130066573A1 (en) * 2011-09-12 2013-03-14 Eaglepicher Technologies, Llc Systems and methods for determining battery state-of-health
JP2013250159A (en) * 2012-05-31 2013-12-12 Sanyo Electric Co Ltd Residual capacity calculation method for secondary battery, and pack battery
WO2014084565A1 (en) * 2012-11-27 2014-06-05 에스케이이노베이션 주식회사 Apparatus for estimating battery charging state, and method therefor
JP2014517257A (en) * 2011-03-28 2014-07-17 チャンズ アセンディング エンタープライズ カンパニー リミテッド Charge state determination system and method
EP3106892A1 (en) 2015-06-17 2016-12-21 GS Yuasa International Ltd. State estimation device and state estimation method
US10962597B2 (en) 2017-12-04 2021-03-30 Gs Yuasa International Ltd. Measurement apparatus, energy storage apparatus, measurement system, and offset error measurement method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317300B2 (en) 2003-06-23 2008-01-08 Denso Corporation Automotive battery state monitor apparatus
US7554297B2 (en) 2003-06-23 2009-06-30 Denso Corporation Automotive battery state monitor apparatus
EP1630927A2 (en) 2004-08-23 2006-03-01 Denso Corporation Vehicle-mounted power supply system
US7477038B2 (en) 2004-08-23 2009-01-13 Denso Corporation Vehicle-mounted power supply system
WO2008095315A1 (en) * 2007-02-09 2008-08-14 Advanced Lithium Power Inc. Battery management system
WO2010150076A1 (en) 2009-06-24 2010-12-29 Toyota Jidosha Kabushiki Kaisha Upper-limit of state-of-charge estimating device and upper-limit of state-of-charge estimating method
DE112010002716T5 (en) 2009-06-24 2012-08-16 Toyota Jidosha Kabushiki Kaisha Upper limit charge state estimator and method for estimating an upper limit state of charge
US8912761B2 (en) 2009-06-24 2014-12-16 Toyota Jidosha Kabushiki Kaisha Upper-limit of state-of-charge estimating device and upper-limit of state-of-charge estimating method
WO2011090020A1 (en) 2010-01-19 2011-07-28 株式会社Gsユアサ Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
US9263773B2 (en) 2010-01-19 2016-02-16 Gs Yuasa International Ltd. Secondary battery state of charge determination apparatus, and method of determining state of charge of secondary battery
US20120004799A1 (en) * 2010-06-30 2012-01-05 Reizo Maeda Soc correctable power supply device for hybrid car
JP2012078095A (en) * 2010-09-30 2012-04-19 Hitachi Ltd Storage battery control system for railway vehicle
JP2014517257A (en) * 2011-03-28 2014-07-17 チャンズ アセンディング エンタープライズ カンパニー リミテッド Charge state determination system and method
JP2013061337A (en) * 2011-09-12 2013-04-04 Eaglepicher Technologies Llc Systems and methods for determining battery state-of-health
CN102998626A (en) * 2011-09-12 2013-03-27 伊格皮切尔科技有限责任公司 Systems and methods for determining battery state-of-health
US9244132B2 (en) 2011-09-12 2016-01-26 Eaglepicher Technologies, Llc Systems and methods for determining battery state-of-health
US20130066573A1 (en) * 2011-09-12 2013-03-14 Eaglepicher Technologies, Llc Systems and methods for determining battery state-of-health
CN107576912A (en) * 2011-09-12 2018-01-12 伊格皮切尔科技有限责任公司 System and method for determining battery state-of-health
JP2013250159A (en) * 2012-05-31 2013-12-12 Sanyo Electric Co Ltd Residual capacity calculation method for secondary battery, and pack battery
WO2014084565A1 (en) * 2012-11-27 2014-06-05 에스케이이노베이션 주식회사 Apparatus for estimating battery charging state, and method therefor
EP3106892A1 (en) 2015-06-17 2016-12-21 GS Yuasa International Ltd. State estimation device and state estimation method
US10330735B2 (en) 2015-06-17 2019-06-25 Gs Yuasa International Ltd. State estimation device and state estimation method
US10962597B2 (en) 2017-12-04 2021-03-30 Gs Yuasa International Ltd. Measurement apparatus, energy storage apparatus, measurement system, and offset error measurement method

Similar Documents

Publication Publication Date Title
US11054482B2 (en) Systems and methods for determining battery state of charge
KR101461681B1 (en) Battery charge indication methods, battery charge monitoring devices, rechargeable batteries, and articles of manufacture
US8643331B1 (en) Enhanced voltage-based fuel gauges and methods
US7446505B2 (en) System and method for calculating a state of charge of a battery
KR101195515B1 (en) Status detector for power supply, power supply, and initial characteristic extracting device for use with power supply
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
JP5439126B2 (en) Status detector for power supply
US8264203B2 (en) Monitoring state of charge of a battery
US8332169B2 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
JP6300945B2 (en) Apparatus and method for controlling a plurality of cells of a battery
KR101402802B1 (en) Apparatus and Method for cell balancing based on battery&#39;s voltage variation pattern
KR20120123346A (en) Device for measuring state of charge of secondary battery and method for measuring state of charge of secondary battery
US20210249885A1 (en) Battery management device, battery management method, and battery pack
JP2003068369A (en) Detecting method of total capacity of secondary battery and detector of total capacity
EP3570405B1 (en) Device and method for controlling discharge
JP2003284253A (en) Method of adjusting capacity of secondary battery
JP2000323182A (en) Battery pack power source device
JP3676154B2 (en) Charge / discharge control method for battery pack
US20210247446A1 (en) Battery management apparatus, battery management method, and battery pack
JP2002170599A (en) Monitor, controller, and battery module
JP2021071319A (en) Soc estimating device, power storage device, and soc estimating method
JP2000236630A (en) Charging system, charger and secondary battery pack

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070110