JP3412355B2 - Nickel-based battery deterioration determination method - Google Patents

Nickel-based battery deterioration determination method

Info

Publication number
JP3412355B2
JP3412355B2 JP22908295A JP22908295A JP3412355B2 JP 3412355 B2 JP3412355 B2 JP 3412355B2 JP 22908295 A JP22908295 A JP 22908295A JP 22908295 A JP22908295 A JP 22908295A JP 3412355 B2 JP3412355 B2 JP 3412355B2
Authority
JP
Japan
Prior art keywords
battery
nickel
internal resistance
deterioration
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22908295A
Other languages
Japanese (ja)
Other versions
JPH0973923A (en
Inventor
克彦 山本
直樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP22908295A priority Critical patent/JP3412355B2/en
Publication of JPH0973923A publication Critical patent/JPH0973923A/en
Application granted granted Critical
Publication of JP3412355B2 publication Critical patent/JP3412355B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はニッケル系電池を一
定電流で短時間通電(充電あるいは放電)させることに
より、該ニッケル系電池の劣化状態を探知するニッケル
系電池の劣化判定方法に関するものである。 【0002】 【従来の技術】従来から、ニッケル系電池の劣化状態を
検知する方法として、容量試験による方法がある。これ
は、正確な劣化状態の検知が可能であるが、準備や測定
に長時間を要するという欠点がある。そこで、この欠点
を解決し、短時間で簡単に劣化状態を検知する方法とし
て、電池の両極端子間の交流の内部抵抗の測定値から推
定する方法が提案されている。 【0003】この方法は、電池の内部抵抗が、劣化状態
と相関関係があることを利用したものである。電池は劣
化すると電極が腐食したり、電解液が減少したりする。
このため、電極や電解液の内部抵抗が増加する。さら
に、極板の有効面積が減少し、電池容量も低下する。 【0004】 【発明が解決しようとする課題】しかし、この方法で
は、測定に使用するパルス電源やパルス負荷のオンパル
ス幅如何によっては、交流の内部抵抗と電池容量との相
関がなくなって、劣化状態検知が高い精度でできないこ
とがある。その理由は、パルス幅が非常に長い領域で
は、液濃度や電池電圧によって化学反応が生じてしまい
イオン状態が異なったり、電極の電気二重層容量のため
パルス電流による電池の端子電圧の差分ΔVが大きく変
化するので、大きく変わる差分電圧ΔVとパルス電流と
で算出される内部抵抗と電池容量との相関が低くなるた
めである。 【0005】ところが従来では、劣化状態検知に適した
パルス幅について明らかにされておらず、ニッケル系電
池の劣化状態検知方法としてはまだ技術的に確立してい
なかった。 【0006】本発明の目的は、相関の高い充放電電流の
パルス幅を特定することによりニッケル系電池の劣化状
態や容量の推定を精度高く行うことができるニッケル系
電池の劣化判定方法を提供することにある。 【0007】 【課題を解決するための手段】上記目的を達成するため
に本発明のニッケル系電池の劣化判定方法は、ニッケル
系電池を所定電流で短時間通電(充電あるいは放電)さ
せることにより、該ニッケル系電池の劣化状態を探知す
る方法において、通電開始前の前記ニッケル系電池の電
池電圧との差分を測定し、前記所定電流と前記差分電圧
に基づいた内部抵抗を算出し、次に予め求めておいた前
記ニッケル系電池の内部抵抗と電池容量の相関関係を特
定する以下に示す数式のいずれかの式に前記内部抵抗を
代入することにより前記電池容量を推定することを特徴
とする。r=Ae −BQ Q=D−Fln(r) Q=J−Klog(r) r=G10 −HQ ここでQは電池容量、rは電池の内部抵抗、A,B,
D,F,G,H,J,Kは比例定数。 【0008】 【0009】 【0010】 【0011】 【0012】 【0013】 【発明の実施の形態】以下図面を参照して本発明の実施
の形態例を詳細に説明する。即ち、電池の内部抵抗によ
ってニッケル系電池の劣化状態の検知を行う原理は、前
述したように電池の内部抵抗と劣化状態との間に相関が
あることを利用するものであるが、劣化状態の尺度とし
て電池容量に着目すれば、電池は劣化に伴って容量が減
少する。 【0014】このため、電池の内部抵抗と電池容量との
相関性が高く、しかも測定が容易な劣化状態検知に適し
たパルス幅を特定すれば、精度の高いニッケル系電池の
劣化判定方法及び劣化状態検知回路を実現できる。 【0015】図1は本発明の方法の一実施形態例を示す
ための電力供給方式の一例及び測定回路の一例を示す図
である。図において、1は商用電源、2は整流器、3は
ニッケル系電池31を直列接続した組電池、4はスイッ
チ、5は抵抗、6は負荷である。商用電源1は整流器2
の入力に接続され、整流器2の出力に負荷6が接続され
るとともに、並列に組電池3が接続されている。ニッケ
ル系電池の劣化を判定するための測定回路として、組電
池3を構成する一つのニッケル系電池31にスイッチ4
を介して抵抗5が接続されている。なお、ここでは、組
電池中の単セル電池について説明しているが、組電池の
複数個及びすべての組電池でも同様なことがいえること
はいうまでもない。また、多数の組電池にも適用できる
ということはいうまでもない。 【0016】以上の構成において通常、整流器2より、
負荷6へ電力が供給され、また組電池3を維持充電する
ための電力が供給されている。停電が発生し商用電源1
からの電力供給が途絶えると、組電池3から負荷6へ電
力が供給され、負荷6への電力供給が途絶えることはな
い。このような構成の電力供給方式において、図に示す
組電池3のうち一つのニッケル系電池31を100ms
ec以下という極めて短い時間の放電から劣化判定を行
う方法について述べる。尚、100μsec未満では測
定誤差が大きく、十分な相関が得られない。 【0017】まず、100msec以下の放電特性から
ニッケル系電池の劣化判定する方法の原理について説明
する。図2は新品と劣化したニッケル系電池の短時間放
電特性を示す図である。図2から新品よりも劣化品の方
が電圧変化が大きいことがわかる。また図3は電池の短
時間放電特性の等価回路モデルを示す図である。図3の
等価回路において、7は電池電圧VB 、8は電極内部抵
抗を含む液抵抗R1 、9は電荷移動抵抗R2 、10は電
気二重層コンデンサC、11は放電電流と等価の電流
I、12,13は電池端子である。電気二重層コンデン
サ10の両端の電圧をVC とし、短時間放電時の電池端
子12,13間の電圧V(t)を図3より求めると次の
ようになる。 【0018】 V(t) =VB −I・(R1 +R2 ) +R2 ・I・EXP (−t/CR2 )−VC ・EXP (−t/CR2 ) …(1) (1)式より安定状態(t→∞)を求めると、 V(t)=VB −I・(R1 +R2 ) となる。放電前の電池電圧VB と安定状態の電池端子電
圧V(t)の差分電圧をΔV(図3)とすると ΔV=VB −V(t)=I・(R1 +R2 ) …(2) となる。電池の劣化が進むと、電極内部抵抗を含む液抵
抗R1 、電荷移動抵抗R2 も増加するため(2)式の差
分電圧ΔVが大きくなる。また、これは図2に示すよう
に短時間放電時の電圧特性からも分かることである。な
お、内部抵抗は、差分電圧ΔVを放電又は充電電流Iで
徐すことにより得られる。 【0019】以下に、劣化状態探知に適したパルス幅に
ついて説明する。実際に使用した電池は1.2V、20
00mAh容量のNi−Cd電池で、劣化電池には実際
に数年〜10年程度用いられた電池を回収して用いた。
内部抵抗の測定には、パルス定電流源あるいはパルス放
電用負荷を使用し、電池にパルス電流を流し、定電流法
で行った。劣化状態の尺度となる電池容量は、5時間率
容量とした。 【0020】図4は容量2000mAhのNi−Cd電
池の周波数パルス幅100msec(オン幅100m
s)における電池の内部抵抗rと電池容量Qの相関を示
す特性図である。内部抵抗rが小さいほど電池容量Qが
大きくなる傾向があり、内部抵抗rと容量Qの間に強い
相関がある。尚、図4において、 【0021】 【数1】 【0022】図5は図4と同様にパルス充電から算出し
た内部抵抗と電池容量との相関係数を、パルス幅(オン
幅)ごとに求めたパルス幅との相関を示す特性図であ
る。相関係数が高いパルス幅は100ms以下であり、
100msを越えるパルス幅では、内部抵抗と電池容量
との相関係数が低く、劣化状態検知に適さないことが分
かる。 【0023】この原因は、100msecを越える長い
パルス幅では、液濃度や電池電圧や電気二重層容量によ
りイオンの状態が左右されて内部抵抗が大きく変化し、
容量との相関が低くなるためである。 【0024】図6にオン幅1sの時の内部抵抗rと容量
Qの関係を示す。図に示すように容量Qが1800mA
h以上では抵抗rがあまり変化せず、逆に容量Qが大き
いほど抵抗rが大きくなる傾向を示している。このよう
な特性では同じ内部抵抗rに対して複数の容量Qが算出
できるので劣化判定に用いることはむずかしい。尚、図
6において、 【0025】 【数2】【0026】図7にパルス放電における内部抵抗と電池
容量の相関係数とパルス幅(オン幅)との関係を示す。
パルス放電においてもパルス充電と同じように100m
secよりも短いパルス幅では相関係数が0.8以上あ
り、内部抵抗から電池容量が推定できることがわかる。 【0027】相関係数が高いパルス幅は100msec
以下であり、内部抵抗によりニッケル系電池の劣化状態
を検知するにはパルス幅が100msec以下の範囲の
パルス発信部で定電流回路部あるいは定電流負荷部を作
動させ、電池の内部抵抗を測定することが最も有効であ
ることがわかる。 【0028】図8にパルス幅(オン幅)500μsにお
ける容量Qと抵抗rの関係を示す。容量Qと抵抗rは次
式で最もよく示される。r=Ae −BQ …(3)Q=D−Fln(r) …(4) Q=J−Klog(r) …(5) r=G10−HQ …(6) 尚、図8において、 【0029】 【数3】【0030】図9は本発明の劣化判定回路の構成の一例
を示す図である。図において、14は試験電池(試験対
象のニッケル系電池)、15はスイッチ部、16はパル
ス放電の時は定電流負荷回路部(パルス充電の時は定電
流回路部)、17は電流検出部、18は記憶演算部、1
9は電圧検出部、20は表示部である。試験電池14は
スイッチ部15に接続されると共に、電圧検出部19に
接続される。さらに電流検出部17は記憶演算部18と
接続されている。また、記憶演算部18は表示部20と
接続され、操作部はさらにスイッチ部15、電圧検出部
19等に接続されている。 【0031】このような構成の劣化判定回路において、
たとえば内部抵抗と電池容量の回帰式から電池の劣化判
定を行う動作例について説明する。まず、試験電池14
と電圧検出部19、及び試験電池14とスイッチ部15
を接続する。次に、定電流負荷回路部(あるいは定電流
回路部)16の放電電流あるいは充電電流をたとえば
0.1CAに設定し、スイッチ部15の動作によってた
とえば100msec以下の間スイッチを閉じ、放電
(あるいは充電)する。電圧検出部19は、通電開始前
の電圧と通電開始から100msec経過後までの電圧
を記憶演算部18に送り、記憶演算部18は、通電開始
前の電圧と通電開始から100msec経過後までの電
圧との差の電圧ΔVを計算する。一方、電流検出部17
は、蓄電池に流れる電流Iを定電流負荷回路部16で検
出し、記憶演算部18に送る。記憶演算部18は前記差
電圧ΔVと電流IからΔV/Iによって内部抵抗を算出
し、あらかじめ求めている内部抵抗と電池容量との相関
関係に上記で得た交流抵抗を当てはめることにより電池
容量を計算し、該電池容量のデータ又は該電池容量から
得た劣化状態を示すデータを表示部20に送りそこで表
示させる。なお、表示部20は試験電池から遠くに離れ
た別の場所に設置すれば遠隔から電池を監視するシステ
ムを構成することができる。 【0032】 【発明の効果】以上述べたように、本発明のニッケル系
電池の劣化判定方法によれば、極めて短時間に試験が終
了するために電池への負担が極めて少なくなるととも
に、試験時間が100msec以下であるので、何度測
定しても電池は劣化しないので、多数回のきめ細かい電
池管理ができ、電池の障害があれば直ちに判明でき、対
処することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel battery for detecting a deterioration state of a nickel-based battery by energizing (charging or discharging) the nickel-based battery at a constant current for a short time. it relates to the deterioration determination how the system battery. 2. Description of the Related Art Conventionally, as a method for detecting the state of deterioration of a nickel-based battery, there is a method based on a capacity test. This allows accurate detection of the deterioration state, but has the disadvantage of requiring a long time for preparation and measurement. Therefore, as a method of solving this drawback and easily detecting the deterioration state in a short time, there has been proposed a method of estimating from a measured value of an internal resistance of an alternating current between both terminals of the battery. This method utilizes the fact that the internal resistance of a battery has a correlation with the state of deterioration. When the battery is deteriorated, the electrodes are corroded and the amount of the electrolyte is reduced.
For this reason, the internal resistance of the electrodes and the electrolyte increases. Further, the effective area of the electrode plate is reduced, and the battery capacity is also reduced. However, in this method, the correlation between the internal resistance of the alternating current and the battery capacity is lost depending on the on-pulse width of the pulse power supply or the pulse load used for the measurement, and the state of deterioration is deteriorated. Detection may not be possible with high accuracy. The reason is that in a region where the pulse width is very long, a chemical reaction occurs depending on the liquid concentration and the battery voltage, and the ion state is different, and the difference ΔV of the battery terminal voltage due to the pulse current due to the electric double layer capacity of the electrode is small. This is because the correlation between the battery resistance and the internal resistance calculated by the difference voltage ΔV and the pulse current, which greatly change, is reduced. However, conventionally, a pulse width suitable for detecting the deterioration state has not been clarified, and a technique for detecting the deterioration state of a nickel-based battery has not been technically established yet. An object of the present invention, provides a deterioration determining how nickel-based batteries can perform high accuracy estimation of the deterioration state or the capacity of the nickel-based batteries by identifying the pulse width of the high correlation discharge current Is to do. In order to achieve the above object, a method for judging the deterioration of a nickel-based battery according to the present invention comprises the steps of energizing (charging or discharging) a nickel-based battery with a predetermined current for a short time. a method of detecting a deteriorated state of the nickel-based batteries, the difference between the battery voltage of the nickel-based batteries before the start of energization is measured to calculate the internal resistance based on the predetermined current and the differential voltage, then advance Before asking
The correlation between internal resistance and battery capacity of nickel-based batteries
The battery capacity is estimated by substituting the internal resistance into any one of the following equations . r = Ae- BQ Q = D-Fln (r) Q = J-Klog (r) r = G10- HQ where Q is the battery capacity, r is the internal resistance of the battery, A, B,
D, F, G, H, J, and K are proportional constants. An embodiment of the present invention will be described below in detail with reference to the accompanying drawings. That is, the principle of detecting the state of deterioration of the nickel-based battery by the internal resistance of the battery utilizes the fact that there is a correlation between the internal resistance of the battery and the state of deterioration as described above. Focusing on the battery capacity as a measure, the capacity of a battery decreases with deterioration. For this reason, if the pulse width suitable for detecting the deterioration state, which has a high correlation between the internal resistance of the battery and the battery capacity and is easy to measure, is specified, the method of determining the deterioration of the nickel-based battery with high accuracy and the deterioration can be improved. A state detection circuit can be realized. FIG. 1 is a diagram showing an example of a power supply system and an example of a measuring circuit for showing an embodiment of the method of the present invention. In the figure, 1 is a commercial power supply, 2 is a rectifier, 3 is an assembled battery in which nickel-based batteries 31 are connected in series, 4 is a switch, 5 is a resistor, and 6 is a load. Commercial power supply 1 is rectifier 2
, The load 6 is connected to the output of the rectifier 2, and the battery pack 3 is connected in parallel. As a measurement circuit for determining the deterioration of the nickel-based battery, a switch 4 is connected to one nickel-based battery 31 constituting the battery pack 3.
Is connected to the resistor 5 via the. Here, the single cell battery in the assembled battery is described, but it goes without saying that the same can be said for a plurality of assembled batteries and all assembled batteries. It goes without saying that the present invention can be applied to a large number of assembled batteries. In the above configuration, usually, the rectifier 2
Power is supplied to the load 6 and power for maintaining and charging the battery pack 3 is supplied. Commercial power supply 1 due to power outage
When the power supply from the power supply is interrupted, the power is supplied from the battery pack 3 to the load 6, and the power supply to the load 6 is not interrupted. In the power supply system having such a configuration, one nickel-based battery 31 of the battery pack 3 shown in FIG.
A method for determining deterioration from discharge in a very short time of ec or less will be described. If the time is less than 100 μsec, the measurement error is large, and a sufficient correlation cannot be obtained. First, the principle of a method for determining deterioration of a nickel-based battery from discharge characteristics of 100 msec or less will be described. FIG. 2 is a diagram showing short-time discharge characteristics of a new nickel battery and a deteriorated nickel battery. FIG. 2 shows that the deteriorated product has a larger voltage change than the new product. FIG. 3 is a diagram showing an equivalent circuit model of the short-time discharge characteristics of the battery. In the equivalent circuit of FIG. 3, 7 is a battery voltage V B , 8 is a liquid resistance R 1 including the internal resistance of the electrode, 9 is a charge transfer resistance R 2 , 10 is an electric double layer capacitor C, and 11 is a current equivalent to a discharge current. I, 12 and 13 are battery terminals. The voltage between both ends of the electric double layer capacitor 10 is defined as V C, and the voltage V (t) between the battery terminals 12 and 13 at the time of short-time discharge is obtained from FIG. V (t) = V B− I · (R 1 + R 2 ) + R 2 · I · EXP (−t / CR 2 ) −V C · EXP (−t / CR 2 ) (1) (1) )), The stable state (t → 求 め る) is obtained as follows: V (t) = V B −I · (R 1 + R 2 ) Assuming that the difference voltage between the battery voltage V B before discharging and the battery terminal voltage V (t) in a stable state is ΔV (FIG. 3), ΔV = V B −V (t) = I · (R 1 + R 2 ) (2) ). As the battery deteriorates, the liquid resistance R 1 including the internal resistance of the electrode and the charge transfer resistance R 2 also increase, so that the differential voltage ΔV in the equation (2) increases. This can also be seen from the voltage characteristics during short-time discharge as shown in FIG. Note that the internal resistance is obtained by reducing the difference voltage ΔV with the discharging or charging current I. The pulse width suitable for detecting the deterioration state will be described below. The battery actually used is 1.2V, 20
As a deteriorated battery, a battery actually used for several years to about 10 years was collected and used as a deteriorated battery.
The internal resistance was measured by a constant current method using a pulse constant current source or a pulse discharge load, applying a pulse current to the battery. The battery capacity as a measure of the deterioration state was a 5-hour rate capacity. FIG. 4 shows a frequency pulse width of a Ni-Cd battery having a capacity of 2000 mAh of 100 msec (an ON width of 100 msec).
FIG. 6 is a characteristic diagram showing a correlation between the internal resistance r of the battery and the battery capacity Q in s). Battery capacity Q tends to increase as internal resistance r decreases, and there is a strong correlation between internal resistance r and capacity Q. Note that, in FIG. FIG. 5 is a characteristic diagram showing the correlation between the correlation coefficient between the internal resistance and the battery capacity calculated from the pulse charging and the pulse width obtained for each pulse width (ON width), similarly to FIG. The pulse width with a high correlation coefficient is 100 ms or less,
If the pulse width exceeds 100 ms, the correlation coefficient between the internal resistance and the battery capacity is low, which indicates that the pulse width is not suitable for detecting the deterioration state. The reason for this is that with a long pulse width exceeding 100 msec, the state of ions is influenced by the liquid concentration, the battery voltage and the electric double layer capacity, and the internal resistance greatly changes.
This is because the correlation with the capacity is low. FIG. 6 shows the relationship between the internal resistance r and the capacitance Q when the ON width is 1 s. As shown in the figure, the capacity Q is 1800 mA.
Above h, the resistance r does not change much, and conversely, the resistance r increases as the capacity Q increases. With such characteristics, a plurality of capacitances Q can be calculated for the same internal resistance r, so that it is difficult to use them for deterioration determination. Note that, in FIG. FIG. 7 shows the relationship between the pulse width (ON width) and the correlation coefficient between the internal resistance and the battery capacity in pulse discharge.
100m in pulse discharge as well as pulse charge
With a pulse width shorter than sec, the correlation coefficient is 0.8 or more, which indicates that the battery capacity can be estimated from the internal resistance. The pulse width having a high correlation coefficient is 100 msec.
In order to detect the deterioration state of the nickel-based battery based on the internal resistance, the constant current circuit unit or the constant current load unit is operated by the pulse transmission unit having a pulse width of 100 msec or less, and the internal resistance of the battery is measured. Is most effective. FIG. 8 shows the relationship between the capacitance Q and the resistance r at a pulse width (ON width) of 500 μs. The capacitance Q and the resistance r are best shown by the following equations. r = Ae- BQ (3) Q = D-Fln (r) (4) Q = J-Klog (r) (5) r = G10- HQ (6) In FIG. [Equation 3] FIG. 9 is a diagram showing an example of the configuration of the deterioration determination circuit of the present invention. In the figure, 14 is a test battery (a nickel-based battery to be tested), 15 is a switch unit, 16 is a constant current load circuit unit for pulse discharge (constant current circuit unit for pulse charge), and 17 is a current detector. , 18 are storage operation units, 1
Reference numeral 9 denotes a voltage detection unit, and reference numeral 20 denotes a display unit. The test battery 14 is connected to the switch 15 and to the voltage detector 19. Further, the current detection unit 17 is connected to the storage operation unit 18. The storage operation unit 18 is connected to the display unit 20, and the operation unit is further connected to the switch unit 15, the voltage detection unit 19, and the like. In the deterioration judgment circuit having such a configuration,
For example, an operation example of determining the deterioration of the battery from the regression equation of the internal resistance and the battery capacity will be described. First, the test battery 14
And voltage detector 19, and test battery 14 and switch 15
Connect. Next, the discharging current or the charging current of the constant current load circuit section (or constant current circuit section) 16 is set to, for example, 0.1 CA, and the switch is closed for 100 msec or less by the operation of the switch section 15 to discharge (or charge). ). The voltage detection unit 19 sends the voltage before the start of energization and the voltage until 100 msec has elapsed since the start of energization to the storage operation unit 18. Is calculated. On the other hand, the current detector 17
Detects the current I flowing in the storage battery by the constant current load circuit section 16 and sends it to the storage operation section 18. The storage operation unit 18 calculates the internal resistance from the difference voltage ΔV and the current I by ΔV / I, and applies the AC resistance obtained above to the correlation between the internal resistance and the battery capacity, which is obtained in advance, to calculate the battery capacity. The calculation is performed, and the data of the battery capacity or the data indicating the deterioration state obtained from the battery capacity is sent to the display unit 20 and displayed there. In addition, if the display unit 20 is installed in another place far away from the test battery, a system for remotely monitoring the battery can be configured. [0032] As described above, according to the present invention, according to the deterioration determination how nickel-based battery of the present invention, along with the burden on the battery in order to test in a very short time is completed is extremely small, the test Since the time is 100 msec or less, the battery does not deteriorate no matter how many times the measurement is performed. Therefore, the battery can be managed many times in detail, and if there is a failure in the battery, it can be immediately identified and dealt with.

【図面の簡単な説明】 【図1】本発明の一実施形態例を示すための電力供給方
式の一例及び測定回路の一例を示す構成説明図である。 【図2】短時間放電による過渡電圧特性の一例を示す特
性図である。 【図3】電池の一般的等価回路モデルを示す回路図であ
る。 【図4】充電前と充電後(100ms通電)の定常状態
における電池電圧の差分ΔVと通電電流Iから算出した
電池の内部抵抗と電池の容量の相関の一例を示す特性図
である。 【図5】通電(この場合は充電)のオン幅と相関係数の
関係の一例を示す特性図である。 【図6】充電前と充電後(1S通電)における電池内部
抵抗と電池容量の関係の一例を示す特性図である。 【図7】通電(この場合は放電)のオン幅と相関係数の
関係の一例を示す特性図である。 【図8】オン幅500μsにおける電池内部抵抗と電池
容量の関係の一例を示す特性図である。 【図9】本発明の実施形態例を示すブロック図である。 【符号の説明】 1…商用電源、2…整流器、3…ニッケル系電池を直列
接続した組電池、4…スイッチ、5…抵抗、6…負荷、
7…電池電圧VB 、8…電極内部抵抗を含む液抵抗R
1 、9…電荷移動抵抗R2 、10…電気二重層コンデン
サC、11…放電(通電)電流と等価の電流、12,1
3…電池端子、14…試験電池、15…スイッチ部、1
6…定電流負荷回路部(又は定電流回路部)、17…電
流検出部、18…記憶演算部、19…電圧検出部、20
…表示部、31…ニッケル系電池。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a configuration explanatory diagram showing an example of a power supply system and an example of a measurement circuit for showing an embodiment of the present invention. FIG. 2 is a characteristic diagram showing an example of a transient voltage characteristic due to short-time discharge. FIG. 3 is a circuit diagram showing a general equivalent circuit model of a battery. FIG. 4 is a characteristic diagram showing an example of the correlation between the internal resistance of a battery and the capacity of the battery calculated from the difference ΔV in battery voltage and the current I flowing in a steady state before and after charging (100-ms conduction). FIG. 5 is a characteristic diagram illustrating an example of a relationship between an ON width of energization (in this case, charging) and a correlation coefficient. FIG. 6 is a characteristic diagram showing an example of a relationship between battery internal resistance and battery capacity before and after charging (1S energization). FIG. 7 is a characteristic diagram showing an example of a relationship between an ON width of energization (discharge in this case) and a correlation coefficient. FIG. 8 is a characteristic diagram showing an example of a relationship between a battery internal resistance and a battery capacity at an ON width of 500 μs. FIG. 9 is a block diagram showing an embodiment of the present invention. [Description of Signs] 1 ... Commercial power supply, 2 ... Rectifier, 3 ... A battery pack with nickel-based batteries connected in series, 4 ... Switch, 5 ... Resistance, 6 ... Load,
7 ... battery voltage V B, solution resistance R including 8 ... electrode internal resistance
1, 9 ... charge transfer resistance R 2, 10 ... electric double layer capacitor C, 11 ... discharge (current) current equivalent of the current, 12,1
3 ... Battery terminal, 14 ... Test battery, 15 ... Switch part, 1
6 constant current load circuit section (or constant current circuit section), 17 current detection section, 18 storage operation section, 19 voltage detection section, 20
... Display unit, 31 ... Nickel-based battery.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/42 - 10/48 G01R 31/36 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H01M 10/42-10/48 G01R 31/36

Claims (1)

(57)【特許請求の範囲】 【請求項1】 ニッケル系電池を所定電流で短時間通電
させることにより、該ニッケル系電池の劣化状態を探知
する方法において、 通電開始前の前記ニッケル系電池の電池電圧との差分を
測定し、前記所定電流と前記差分電圧に基づいた内部抵
抗を算出し、 次に予め求めておいた前記ニッケル系電池の内部抵抗と
電池容量の相関関係を特定する以下に示す数式のいずれ
かの式に前記内部抵抗を代入することにより前記電池容
量を推定することを特徴とするニッケル系電池の劣化判
定方法。r=Ae −BQ Q=D−Fln(r) Q=J−Klog(r) r=G10 −HQ ここでQは電池容量、rは電池の内部抵抗、A,B,
D,F,G,H,J,Kは比例定数。
(57) [Claim 1] In a method for detecting the state of deterioration of a nickel-based battery by passing a nickel-based battery at a predetermined current for a short time, the method comprises the steps of: Measure the difference between the battery voltage and calculate the internal resistance based on the predetermined current and the difference voltage, and then calculate the internal resistance of the nickel-based battery determined in advance.
Any of the following formulas that specify the battery capacity correlation
A method for determining deterioration of a nickel-based battery, comprising estimating the battery capacity by substituting the internal resistance for any one of the above equations . r = Ae- BQ Q = D-Fln (r) Q = J-Klog (r) r = G10- HQ where Q is the battery capacity, r is the internal resistance of the battery, A, B,
D, F, G, H, J, and K are proportional constants.
JP22908295A 1995-09-06 1995-09-06 Nickel-based battery deterioration determination method Expired - Lifetime JP3412355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22908295A JP3412355B2 (en) 1995-09-06 1995-09-06 Nickel-based battery deterioration determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22908295A JP3412355B2 (en) 1995-09-06 1995-09-06 Nickel-based battery deterioration determination method

Publications (2)

Publication Number Publication Date
JPH0973923A JPH0973923A (en) 1997-03-18
JP3412355B2 true JP3412355B2 (en) 2003-06-03

Family

ID=16886475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22908295A Expired - Lifetime JP3412355B2 (en) 1995-09-06 1995-09-06 Nickel-based battery deterioration determination method

Country Status (1)

Country Link
JP (1) JP3412355B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598873B2 (en) 1998-08-10 2004-12-08 トヨタ自動車株式会社 Secondary battery state determination method and state determination device, and secondary battery regeneration method
JP2002156427A (en) * 2000-11-21 2002-05-31 Gs-Melcotec Co Ltd Method for evaluating capacity of secondary battery
JP4920306B2 (en) * 2006-05-19 2012-04-18 富士電機株式会社 Storage battery state monitoring device, storage battery state monitoring method, storage battery state monitoring program
JP5091067B2 (en) * 2008-09-17 2012-12-05 カルソニックカンセイ株式会社 Method and apparatus for estimating remaining battery level
KR101102456B1 (en) * 2009-03-09 2012-01-05 윤대성 Recycling method for degraded the performance of the battery in forklift
JP6664872B2 (en) 2014-10-28 2020-03-13 株式会社Gbs Charging device, charging program, charging method
JP6632918B2 (en) * 2016-03-18 2020-01-22 Ntn株式会社 Deterioration determination device for secondary battery
KR102254776B1 (en) * 2019-10-14 2021-05-24 주식회사 민테크 Impedance measuring device
KR102259643B1 (en) * 2019-10-17 2021-06-02 경북대학교 산학협력단 State of battery monitoring method and apparatus

Also Published As

Publication number Publication date
JPH0973923A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US6313607B1 (en) Method and apparatus for evaluating stored charge in an electrochemical cell or battery
US4876513A (en) Dynamic state-of-charge indicator for a battery and method thereof
CN102565710B (en) Method and apparatus for assessing battery state of health
CN102468521B (en) Method and apparatus for assessing battery state of health
US7295936B2 (en) Electronic battery tester with relative test output
US6737831B2 (en) Method and apparatus using a circuit model to evaluate cell/battery parameters
JP5442583B2 (en) State detection device for power supply and power supply device
US20040108856A1 (en) Electronic battery tester
JP2003508759A (en) Method and apparatus for electronically assessing the internal temperature of electrochemical cells and batteries
WO2003034084A1 (en) Electronic battery tester with relative test output
CN103149535A (en) Method and apparatus for online determination of battery state of charge and state of health
JP3192794B2 (en) Lead storage battery deterioration judgment method and deterioration judgment device
EP4191732A1 (en) Battery management device, battery management method
JP3412355B2 (en) Nickel-based battery deterioration determination method
TWI579575B (en) Battery health detection method and its circuit
CN109116260A (en) A kind of reminding method of lithium primary cell low battery
Frivaldsky et al. Design of measuring and evaluation unit for multi-cell traction battery system of industrial AGV
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
JP3346003B2 (en) Method for detecting capacity of ion secondary battery
JP3410158B2 (en) Lead storage battery deterioration judgment method and deterioration judgment device
JP2964482B2 (en) Method for detecting remaining capacity of lead-acid battery
CN113514771A (en) Battery impedance service life estimation method and system
JP2792064B2 (en) Method for detecting remaining capacity of lead-acid battery
JP2000133322A (en) Charge/discharge system for secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090328

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100328

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term