JP2964482B2 - Method for detecting remaining capacity of lead-acid battery - Google Patents

Method for detecting remaining capacity of lead-acid battery

Info

Publication number
JP2964482B2
JP2964482B2 JP1083489A JP8348989A JP2964482B2 JP 2964482 B2 JP2964482 B2 JP 2964482B2 JP 1083489 A JP1083489 A JP 1083489A JP 8348989 A JP8348989 A JP 8348989A JP 2964482 B2 JP2964482 B2 JP 2964482B2
Authority
JP
Japan
Prior art keywords
discharge
storage battery
time
data
power failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1083489A
Other languages
Japanese (ja)
Other versions
JPH02262077A (en
Inventor
秀美 福永
忠善 蒲池
寛 杉山
和美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1083489A priority Critical patent/JP2964482B2/en
Publication of JPH02262077A publication Critical patent/JPH02262077A/en
Application granted granted Critical
Publication of JP2964482B2 publication Critical patent/JP2964482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • G01R31/379Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator for lead-acid batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、無停電電源や非常用電源設備などフロート
或いはトリクル使用における鉛蓄電池設備の劣化状況や
停電時の放電可能な時間を検知する検知方法に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection method for detecting a deterioration state of a lead-acid battery facility using a float or a trickle such as an uninterruptible power supply or an emergency power supply, and a dischargeable time at the time of a power failure. Things.

従来の技術 従来、鉛蓄電池設備の寿命や放電時の残存容量を検知
する方法としては、蓄電池の電圧のみで単純に一定電
圧に到達したかどうかにより検知する方法、蓄電池の
電解液である硫酸の比重測定により検知する方法、微
分内部抵抗の測定により、残存容量を検知する方法(特
開昭63−168582号)、鉛蓄電池の正極板の膨張度合い
により検知する方法(特開昭62−47975号)などがあ
る。
2. Description of the Related Art Conventionally, as a method of detecting the life of a lead-acid battery device and the remaining capacity at the time of discharging, a method of simply detecting whether or not a constant voltage is reached only with the voltage of the storage battery, a method of detecting sulfuric acid, which is an electrolyte of the storage battery, is used. A method of detecting by specific gravity measurement, a method of detecting residual capacity by measuring differential internal resistance (Japanese Patent Application Laid-Open No. 63-168582), and a method of detecting by the degree of expansion of a positive electrode plate of a lead storage battery (Japanese Patent Application Laid-Open No. 62-47975) )and so on.

発明が解決しようとする課題 上記従来の方法では、鉛蓄電池の特性上、電圧と残
存容量の間に直線的な相関性はなく、放電終了近くまで
蓄電池の電圧に大きな変化がないために、放電終止電圧
近くまで残存容量を検知できずまた放電電流が変動する
負荷では、電圧変動が大きく精度も低いという問題点が
ある。
In the conventional method described above, there is no linear correlation between the voltage and the remaining capacity due to the characteristics of the lead storage battery, and there is no large change in the voltage of the storage battery until near the end of discharge. In a load in which the remaining capacity cannot be detected to near the end voltage and the discharge current fluctuates, there is a problem that the voltage fluctuates greatly and the accuracy is low.

また従来の方法では鉛蓄電池の電圧や温度・放電電
流を検出するセンサー以外に比重センサーの取り付けが
必要で、近年増加傾向にあるシール形の鉛蓄電池にはこ
の方法は採用できにくい。また従来の開放形の蓄電池で
も、充電後の比重均一化に長時間を要するので実用的で
ない。
Further, in the conventional method, it is necessary to attach a specific gravity sensor in addition to the sensors for detecting the voltage, temperature and discharge current of the lead storage battery, and it is difficult to adopt this method for a seal type lead storage battery which has been increasing in recent years. Also, conventional open-type storage batteries are not practical because it takes a long time to equalize the specific gravity after charging.

次に従来の方法については、蓄電池の微分抵抗を測
定するためには、短時間ではあるが大電流を流し、その
時のIRドロップから求めるか、交流法による内部抵抗計
を設置しなければならないこと及び、鉛蓄電池の正極活
物質の軟化など鉛蓄電池劣化原因によっては、蓄電池の
微分抵抗が低いにもかかわらず、放電持続時間は短くな
る場合があり、検知結果の信頼性が低いという欠点があ
る。
Next, in the conventional method, in order to measure the differential resistance of the storage battery, it is necessary to apply a large current for a short time and measure it from the IR drop at that time, or install an internal ohmmeter by the AC method. In addition, depending on the cause of deterioration of the lead storage battery such as softening of the positive electrode active material of the lead storage battery, the discharge duration may be short even though the differential resistance of the storage battery is low, and the reliability of the detection result is low. .

従来の方法については、変移量検出センサーが必要
であることや、変移量から蓄電池の寿命時期は検知でき
ても、停電時の残存容量を検知することはできいないと
いう欠点がある。
The conventional methods have the disadvantages that a displacement detection sensor is required, and that the remaining capacity at the time of a power failure cannot be detected even if the life of the storage battery can be detected from the displacement.

上記4種の方法では、変動する負荷に対してリアルタ
イムに残りの放電可能な時間を検知することが出来ない
という欠点がある。
The above four methods have a disadvantage that the remaining dischargeable time cannot be detected in real time with respect to a fluctuating load.

本発明者らは、先に上記の欠点を除去する手段とし
て、特開平2−170372号に示すように、停電などによる
蓄電池の放電時において、一定時間ごとに鉛蓄電池の電
圧データー・放電電流データー・温度データーを読み込
み、放電電流データーと経過時間から放電電気量の積分
演算をするとともに、所望の放電終止電圧と現在の温度
データーに近い標準放電特性データー列を選択し、放電
電流データーの実測値の前後2点の標準放電特性データ
ーと放電電流データーの実測値との交点から持続予想時
間を求め、この持続予想時間と放電電気量から放電終止
電圧までの残りの放電可能時間を逐次計算する方法を提
案した。
As a means for eliminating the above-mentioned drawbacks, the present inventors have disclosed, as shown in Japanese Patent Application Laid-Open No. 2-170372, voltage data and discharge current data of a lead storage battery at regular time intervals when the storage battery is discharged due to a power failure or the like.・ Read the temperature data, calculate the integral of the amount of discharge from the discharge current data and the elapsed time, select the desired discharge end voltage and the standard discharge characteristic data sequence close to the current temperature data, and measure the discharge current data A method of calculating the expected duration of time from the intersection of the measured values of the standard discharge characteristic data and the discharge current data at the two points before and after, and sequentially calculating the remaining dischargeable time from the expected duration of time and the amount of discharged electricity to the discharge end voltage Suggested.

しかし前記提案は、蓄電池設備が初期の放電性能を維
持できている期間は、効果的な手段であるが、蓄電池の
使用期間とともに、放電性能が劣化している場合でも、
実際の停電が発生した時点で、放電初期の放電特性デー
ターが標準放電特性データー列とほとんど差がないこと
が多く正確な残存容量を検知することは困難であり、放
電がある程度進んだ時点で標準放電特性データー列に比
べて劣化している傾向にあることを検知できるのみであ
る。
However, the above proposal is an effective means during the period when the storage battery equipment can maintain the initial discharge performance, but with the use period of the storage battery, even when the discharge performance is degraded,
At the time of the actual power failure, the discharge characteristics data at the initial stage of the discharge often hardly differ from the standard discharge characteristics data sequence, making it difficult to detect the accurate remaining capacity. It is only possible to detect that there is a tendency of deterioration compared to the discharge characteristic data sequence.

本発明は、放電性能が劣化してきた蓄電池の場合に生
じる上記のごとき欠点を改善し、放電初期でも先の提案
よりも高い精度で停電後の真の残りの放電可能時間を検
知する手段を提供することを目的とする。
The present invention solves the above-mentioned drawbacks that occur in the case of a storage battery whose discharge performance has deteriorated, and provides a means for detecting the true remaining dischargeable time after a power failure with higher accuracy even at the initial discharge than in the previous proposal. The purpose is to do.

課題を解決するための手段 本発明は、停電あるいは定期的に疑似停電を発生させ
た時に放電終止電圧までの真の残りの放電可能時間を逐
次演算・表示するとともに、停電回復にあたる放電終止
までの蓄電池の放電特性データーを標準放電特性データ
ー列と比較することで劣化率を算出し、その結果を記憶
装置内に格納しておく学習機能を付加することにより、
次の停電時には標準放電特性データー列と単に比較演算
された仮の持続時間に劣化率を乗算した時間を真の持続
予想時間とすることができ、真の持続予想時間から既に
経過した時間を差し引くことで、蓄電池の放電初期で
も、正確に蓄電池の真の残りの放電可能時間を検知・表
示し得るものである。
Means for Solving the Problems The present invention sequentially calculates and displays the true remaining dischargeable time up to the discharge end voltage when a power outage or a simulated power outage is periodically generated, and until the end of discharge corresponding to the power outage recovery. By adding a learning function to calculate the deterioration rate by comparing the discharge characteristic data of the storage battery with the standard discharge characteristic data sequence and store the result in the storage device,
At the time of the next power outage, the time obtained by simply multiplying the tentative duration calculated by simply comparing the standard discharge characteristic data sequence with the deterioration rate can be used as the true expected duration, and the time already elapsed is subtracted from the true expected duration. Thus, even at the initial stage of discharging the storage battery, the true remaining dischargeable time of the storage battery can be accurately detected and displayed.

作用 本発明は、上記方法により放電性能が劣化している蓄
電池であっても充電初期であるか否かに関わらず正確に
真の残りの放電可能時間を検知・表示し得るものであ
る。また、真の残りの放電可能時間や劣化状況を表示さ
せることにより、蓄電池の寿命劣化判定が容易となり、
蓄電池設備の交換時期の警報などを行うことで、管理者
や使用者による蓄電池設備の交換等の保守を容易になし
うるものである。
The present invention can accurately detect and display the true remaining dischargeable time of a storage battery whose discharge performance has been degraded by the above method, regardless of whether it is at the beginning of charging or not. Also, by displaying the true remaining dischargeable time and deterioration status, it becomes easy to determine the life degradation of the storage battery,
By performing an alarm or the like on the replacement time of the storage battery facility, maintenance such as replacement of the storage battery facility by an administrator or a user can be easily performed.

実施例 以下本発明の実施例を示す。第1図は本発明の実施例
を示す蓄電池設備の監視装置の真の残りの放電可能時間
検知部分のブロック図である。第1図において、1は制
御部であるマイクロプロセッサー、2は停電もしくは疑
似停電の検知および停電もしくは疑似停電後、蓄電池の
真の残りの放電可能時間を逐次演算し、表示するための
プログラムを記憶しているプログラムメモリ、3は蓄電
池の温度別・放電終止電圧別の標準放電特性データー配
列および劣化率を格納したメモリーである。4は入出力
インターフェイスで、キーボード・パネルスイッチ5な
どの操作機器や、蓄電池の真の残りの放電可能時間など
を表示する表示装置6や、温度データー8、蓄電池電圧
データー9、放電電流データー10をコンピューターに取
り込むA/Dコンバーター7などを接続する。
Examples Examples of the present invention will be described below. FIG. 1 is a block diagram of a true remaining dischargeable time detection part of a storage battery equipment monitoring device according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a microprocessor which is a control unit, and 2 denotes a program for sequentially calculating and displaying a true remaining dischargeable time of a storage battery after a power failure or a pseudo power failure is detected and after a power failure or a pseudo power failure. A program memory 3 stores a standard discharge characteristic data array and a deterioration rate for each temperature and discharge end voltage of the storage battery. Reference numeral 4 denotes an input / output interface, which includes operating devices such as a keyboard and a panel switch 5, a display device 6 for displaying the true remaining dischargeable time of the storage battery, temperature data 8, storage battery voltage data 9, and discharge current data 10. Connect an A / D converter 7 to be imported to the computer.

次にこの監視装置による停電時の真の残りの放電可能
時間演算処理プロセスについて第2図のフローチャート
を用いて説明する。
Next, a description will be given, with reference to the flowchart of FIG. 2, of a process of calculating a true remaining dischargeable time at the time of a power failure by the monitoring device.

S11において、先ず監視装置が接点信号や蓄電池放電
電流データー10の増加などにより停電を検知すると、S1
2において蓄電池電圧データー9・温度データー8・放
電電流データー10を読み込む。
In S11, first, when the monitoring device detects a power failure due to an increase in the contact signal or the battery discharge current data 10, the S1
In step 2, the storage battery voltage data 9, temperature data 8, and discharge current data 10 are read.

そして、S13において放電開始からの放電電流データ
ー10と経過時間により放電電気量を積算する。
Then, in S13, the amount of discharge electricity is integrated based on the discharge current data 10 from the start of discharge and the elapsed time.

次に、S14において標準放電特性データー配列を格納
したメモリー3の中からあらかじめキーボード5などに
より入力設定された蓄電池の放電終止電圧に該当し、か
つ現在の温度データー8に最も近い温度の標準放電特性
データー列を選択し、選択された標準放電特性データー
列の中から放電電流データー10の実測値に最も近い前後
2点の標準放電特性データーを取り出し、S12において
読み込まれた放電電流データー10の実測値との交点を求
め、満充電状態での放電可能時間の演算を行う。これが
蓄電池の劣化を加味していない仮の持続時間となる。
Next, in S14, the standard discharge characteristic of the temperature corresponding to the discharge end voltage of the storage battery previously set by the keyboard 5 or the like from the memory 3 storing the standard discharge characteristic data array and closest to the current temperature data 8 Select the data sequence, take out the standard discharge characteristic data at the two points closest to the actual measured value of the discharge current data 10 from the selected standard discharge characteristic data sequence, and measure the actual measured value of the discharge current data 10 read in S12. And calculate the dischargeable time in the fully charged state. This is a temporary duration that does not take into account the deterioration of the storage battery.

そしてS15において、S14で得られた仮の持続時間に劣
化率(≦1)を乗じて真の持続予想時間を求める。
Then, in S15, the tentative duration obtained in S14 is multiplied by the deterioration rate (≦ 1) to obtain a true expected duration.

その後、S16において、S13で積算した放電電気量を放
電電流データー10の実測値で除算した値を現在すでに経
過した時間として用い、S15において求めた真の持続予
想時間から差し引き、真の残りの放電可能時間とする。
Thereafter, in S16, the value obtained by dividing the amount of discharge electricity integrated in S13 by the actually measured value of the discharge current data 10 is used as the time that has already elapsed, and is subtracted from the true expected duration obtained in S15 to obtain the true remaining discharge. It is possible time.

本実施例においては、S18においてS16で演算された真
の残りの放電可能時間を表示装置6に表示する。
In the present embodiment, the true remaining dischargeable time calculated in S16 in S18 is displayed on the display device 6.

そして、S19において放電電流データー10などにより
停電が復旧したかどうかを判断し、復旧していない場合
はS12の処理の戻り、同じ処理を繰り返し、S18で真の残
りの放電可能時間を更新して表示する。
Then, in S19, it is determined whether or not the power failure has been recovered by the discharge current data 10, etc., and if not recovered, the process of S12 returns, the same process is repeated, and the true remaining dischargeable time is updated in S18. indicate.

なお、停電が回復した場合は、S20において、停電時
の最終放電特性データーと選択された標準放電特性デー
ター列とを比較演算して劣化率を求め、S21においてこ
の劣化率を記憶装置内に格納し、S22において通常の監
視モードに戻る。なお通常放電性能が劣化していない場
合や標準特性データー列よりも実放電経過時間が長い場
合は劣化率は初期値の1とする。
When the power outage is recovered, in step S20, the final discharge characteristic data at the time of the power outage is compared with the selected standard discharge characteristic data sequence to determine the deterioration rate, and in step S21, the deterioration rate is stored in the storage device. Then, the process returns to the normal monitoring mode in S22. When the normal discharge performance is not deteriorated or when the actual discharge elapsed time is longer than the standard characteristic data sequence, the deterioration rate is set to the initial value of 1.

第3図は、48V30Ahの蓄電池設備を+45℃の雰囲気中
で0.25CA相当の定電流負荷を用いてフロート充電回路を
構成し、1ケ月に1度疑似的に停電状態とし42Vまでの
放電可能時間を、停電開始5分経過時点の放電可能時間
の計算値と実際の放電可能時間の誤差(絶対値)を、先
に提案した方法と前記本発明の方法により計算した結果
を比較したものである。このように本発明の方法により
予測検知した真の残りの放電可能時間の値は実際の値と
の誤差がほぼ±5%前後で経過している。一方先に提案
した方法は蓄電池が劣化してくるに従って、誤差が大き
くなっていまう結果となった。
Fig. 3 shows the construction of a float charging circuit using a constant current load equivalent to 0.25 CA in a 48V 30Ah storage battery facility in an atmosphere of + 45 ° C, and a pseudo power failure once a month to discharge to 42V. Is a comparison of the calculated value of the dischargeable time at 5 minutes after the start of the power failure and the error (absolute value) between the actual dischargeable time and the result calculated by the previously proposed method and the method of the present invention. . As described above, the value of the true remaining dischargeable time predicted and detected by the method of the present invention elapses with an error of about ± 5% from the actual value. On the other hand, the method proposed earlier resulted in an error increasing as the storage battery deteriorated.

発明の効果 以上詳述したように、本発明の方法は蓄電池設備の放
電性能が劣化してきても放電初期、即ち停電初期におい
て真の残りの放電可能時間を正確に予測計算することが
でき、実用的に極めて有効な手段である。
Effects of the Invention As described in detail above, the method of the present invention can accurately predict and calculate the true remaining dischargeable time at the initial stage of discharge, that is, at the early stage of power failure even if the discharge performance of the storage battery equipment has deteriorated, This is an extremely effective means.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の方法による蓄電池設備の監視装置のブ
ロック図、第2図は真の残りの放電可能時間検知の演算
処理プロセスを示すフローチャート、第3図は本発明の
方法による停電初期に予測計算した真の残りの放電可能
時間と実際の放電可能時間との誤差を示す図である。 1……マイクロプロセッサー、3……標準放電特性デー
ターを格納した記憶装置、7……温度データー・蓄電池
電圧データー・放電電流データーを読み込むためのA/D
コンバーター、23……本発明の方法による誤差の推移、
24……先に提案した方法による誤差の推移。
FIG. 1 is a block diagram of a storage battery facility monitoring apparatus according to the method of the present invention, FIG. 2 is a flowchart showing a process of calculating the true remaining dischargeable time, and FIG. It is a figure which shows the difference | error between the true remaining dischargeable time estimated and calculated and the actual dischargeable time. 1 ... Microprocessor, 3 ... Storage device storing standard discharge characteristic data, 7 ... A / D for reading temperature data, storage battery voltage data, discharge current data
Converter 23, transition of error by the method of the present invention,
24… The transition of the error by the method proposed earlier.

フロントページの続き (72)発明者 山口 和美 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平2−262078(JP,A) 特開 平2−170372(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01R 31/36 H02J 7/00 H01M 10/42 - 10/48 Continuation of the front page (72) Inventor Kazumi Yamaguchi 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP-A-2-260078 (JP, A) JP-A-2-170372 (JP) , A) (58) Field surveyed (Int. Cl. 6 , DB name) G01R 31/36 H02J 7/00 H01M 10/42-10/48

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】温度別に鉛蓄電池の放電電流と放電終止電
圧別の放電可能時間の関係をあらかじめ記憶装置に標準
放電特性データー配列として格納しておき、停電時もし
くは疑似停電時の鉛蓄電池の電圧データー・放電電流デ
ーター・温度データーを読み込み、放電電流データーと
経過時間から放電電気量の積分演算をするとともに、所
望の放電終止電圧と現在の温度データーに近い標準放電
特性データー列を選択し、放電電流データーの実測値の
前後2点の標準放電特性データーと放電電流データーの
実測値との交点から持続予想時間を求め、この持続予想
時間と前記放電電気量から残りの放電可能時間の演算を
する鉛蓄電池の残存容量検知方法であり、 停電時もしくは疑似停電時の放電特性データー列を前記
標準放電特性データー列と比較し、蓄電池の劣化率を演
算して記憶装置内に格納し、次の停電時もしくは疑似停
電時には仮の持続予想時間に前記劣化率を乗じる演算を
行い、真の残りの放電可能時間を検出することを特徴と
する鉛蓄電池の残存容量検知方法。
1. The relationship between the discharge current of a lead storage battery for each temperature and the dischargeable time for each discharge end voltage is stored in advance in a storage device as a standard discharge characteristic data array, and the voltage of the lead storage battery at the time of a power failure or a pseudo power failure is stored. Reads data, discharge current data, and temperature data, calculates the integral of the amount of discharge from the discharge current data and elapsed time, and selects a standard discharge characteristic data sequence close to the desired discharge end voltage and current temperature data, and discharges. The expected duration is obtained from the intersection of the standard discharge characteristic data at two points before and after the actual measured value of the current data and the actual measured value of the discharge current data, and the remaining dischargeable time is calculated from the expected duration and the amount of discharged electricity. This is a method for detecting the remaining capacity of a lead storage battery, and compares the discharge characteristic data sequence at the time of power failure or pseudo power failure with the standard discharge characteristic data sequence. Then, the deterioration rate of the storage battery is calculated and stored in the storage device, and at the time of the next power outage or pseudo power outage, a calculation is performed by multiplying the temporary expected duration by the deterioration rate, and the true remaining dischargeable time is detected. A method for detecting a remaining capacity of a lead storage battery.
JP1083489A 1989-03-31 1989-03-31 Method for detecting remaining capacity of lead-acid battery Expired - Lifetime JP2964482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1083489A JP2964482B2 (en) 1989-03-31 1989-03-31 Method for detecting remaining capacity of lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083489A JP2964482B2 (en) 1989-03-31 1989-03-31 Method for detecting remaining capacity of lead-acid battery

Publications (2)

Publication Number Publication Date
JPH02262077A JPH02262077A (en) 1990-10-24
JP2964482B2 true JP2964482B2 (en) 1999-10-18

Family

ID=13803893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083489A Expired - Lifetime JP2964482B2 (en) 1989-03-31 1989-03-31 Method for detecting remaining capacity of lead-acid battery

Country Status (1)

Country Link
JP (1) JP2964482B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120536B2 (en) * 1989-03-31 1995-12-20 三菱電機株式会社 Battery level recognition device
JP3311416B2 (en) * 1993-02-12 2002-08-05 オムロン株式会社 Battery retention time prediction device
JP4511673B2 (en) * 2000-02-29 2010-07-28 Necフィールディング株式会社 AC uninterruptible power supply
JP5441735B2 (en) * 2010-01-28 2014-03-12 株式会社Nttファシリティーズ Storage battery deterioration tendency estimation system and storage battery deterioration tendency estimation program
CN109143090A (en) * 2018-08-14 2019-01-04 Oppo广东移动通信有限公司 Apparatus control method, device, storage medium and electronic equipment

Also Published As

Publication number Publication date
JPH02262077A (en) 1990-10-24

Similar Documents

Publication Publication Date Title
EP1049231B1 (en) Parameter measuring method, charge/discharge control method and apparatus and life predicting method for secondary batteries and power storage apparatus using the same
CN1102740C (en) Monitoring technique for accurately determining residual capacity of battery
US6157169A (en) Monitoring technique for accurately determining residual capacity of a battery
CN100483146C (en) Apparatus, methods and computer program products for estimation of battery reserve life using adaptively modified state of health indicator-based reserve life models
US6469471B1 (en) Battery charge measurement and discharge reserve time prediction technique and apparatus
JP3285720B2 (en) Method and apparatus for detecting deterioration of assembled battery
JP2006242880A (en) Condition detector for power supply device, power supply device, and initial characteristic extractor used for power supply device
JP3371588B2 (en) Remaining battery capacity display
Çadırcı et al. Microcontroller-based on-line state-of-charge estimator for sealed lead–acid batteries
JP2001110459A (en) Battery pack having capacity correcting function
JP2964482B2 (en) Method for detecting remaining capacity of lead-acid battery
EP1649538B1 (en) Battery float management
JP2003168489A (en) Detecting method of charging/discharging state of alkaline storage battery
JP3412355B2 (en) Nickel-based battery deterioration determination method
JP3136981B2 (en) Storage battery life prediction method and life prediction device
KR960027130A (en) Battery charging control device and method for electric vehicle
JP2792064B2 (en) Method for detecting remaining capacity of lead-acid battery
JPH10253725A (en) Method and equipment for measuring battery state
JPH11344544A (en) Method for measuring battery capacity of battery pack
JP2964483B2 (en) Method for detecting remaining capacity of lead-acid battery
JP3430600B2 (en) Method and apparatus for estimating deterioration state of storage battery
JP3346003B2 (en) Method for detecting capacity of ion secondary battery
JP3237229B2 (en) Secondary battery system
JP3792874B2 (en) Lead-acid battery life determination device, life prediction device, life determination method, and life prediction method
JP2976808B2 (en) Storage battery deterioration diagnosis device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 10