JP2008159298A - Power source system - Google Patents

Power source system Download PDF

Info

Publication number
JP2008159298A
JP2008159298A JP2006344081A JP2006344081A JP2008159298A JP 2008159298 A JP2008159298 A JP 2008159298A JP 2006344081 A JP2006344081 A JP 2006344081A JP 2006344081 A JP2006344081 A JP 2006344081A JP 2008159298 A JP2008159298 A JP 2008159298A
Authority
JP
Japan
Prior art keywords
power supply
power source
main power
charging
soc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006344081A
Other languages
Japanese (ja)
Inventor
Kenta Tsutsui
健太 筒井
Yoshitaka Dansui
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006344081A priority Critical patent/JP2008159298A/en
Publication of JP2008159298A publication Critical patent/JP2008159298A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power source system excellent in reliability, capable of utilizing an alkaline storage battery for a long service life as a main power source in the real usage environment of an HEV. <P>SOLUTION: The power source system is equipped with: a main source comprising an alkaline storage battery; a charging/discharging circuit controlling the charge and discharge of the main source; a voltage sensor detecting the voltage of the main source; an SOC detector sequentially checking a charging level from the voltage detected by the voltage sensor; and a controller recognizing the charging level checked by the SOC detector as a management-required condition when the charging level is not less than A1 and its variation is not more than A2, and setting the level below A1 by discharging the main source using the charging/discharging circuit when the management-required condition continues longer than a predetermined time T1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アルカリ蓄電池を主電源とした電源システムに関し、より詳しくはアルカリ蓄電池の保存状態を適正化して長寿命化する技術に関する。   The present invention relates to a power supply system using an alkaline storage battery as a main power source, and more particularly to a technique for optimizing the storage state of an alkaline storage battery and extending its life.

ニッケル水素蓄電池をはじめとするアルカリ蓄電池は、ハイブリッド車(以下、HEVと略記)や産業用途(非常用電源など)を中心に需要が拡大しつつある。特にHEVにおいて、補助動力源であるアルカリ蓄電池はモータ駆動(放電)において連続的なアシストを必要とするために、充電深度(以下SOC、満充電時を100%、完全放電時を0%と定義して数値化)を高くする(具体的にはSOC=80%程度)ことが多い。   Demand for alkaline storage batteries such as nickel metal hydride storage batteries is increasing mainly in hybrid vehicles (hereinafter abbreviated as HEV) and industrial applications (emergency power supply, etc.). Especially in HEV, since the alkaline storage battery, which is an auxiliary power source, requires continuous assistance in driving the motor (discharge), the charge depth (hereinafter referred to as SOC, 100% when fully charged and 0% when fully discharged) is defined. (Numericalization) is often increased (specifically, SOC = 80%).

ところで正極活物質に水酸化ニッケルを用いるアルカリ蓄電池の寿命劣化要因の一つに充放電サイクルに伴う劣化が挙げられる。これは、充放電の繰り返しにより低密度なγ―NiOOHが活物質中に生成し、これにより正極が電解液を取り込みながら膨潤し、セパレータ中の電解液を枯渇させる現象に伴うものである。このような劣化はSOCを0〜100%の領域で使用するような場合に起こりやすいので、特に長寿命が要望されるHEV用途ではSOCを20〜80%程度の範囲で使用することが望まれている(例えば特許文献1)。
特開平11−187577号公報
By the way, deterioration accompanying the charge / discharge cycle is mentioned as one of the life deterioration factors of the alkaline storage battery using nickel hydroxide as the positive electrode active material. This is due to a phenomenon in which low-density γ-NiOOH is generated in the active material by repeated charge and discharge, and the positive electrode swells while taking in the electrolytic solution, thereby depleting the electrolytic solution in the separator. Such deterioration is likely to occur when SOC is used in the range of 0 to 100%. Therefore, it is desirable to use SOC in the range of about 20 to 80% particularly in HEV applications where a long life is required. (For example, Patent Document 1).
JP-A-11-187777

しかしながらSOCの上限値を80%に設定しても、状況によっては低密度なγ−NiOOHは生成し、結果的に正極の膨潤による劣化は起こる。具体的には、アルカリ蓄電池を短時間で繰り返し充放電している場合は問題ないものの、アルカリ蓄電池のSOCが80%近傍の状態で充放電せずに保存すると、上述した課題は頻発する。HEVを長期間使わないことなどはよくあるので、短時間で繰り返し充放電して得られた実験データとは異なる挙動が生じることによる弊害を避ける必要がある。   However, even if the upper limit value of the SOC is set to 80%, low density γ-NiOOH is generated depending on the situation, and as a result, deterioration due to swelling of the positive electrode occurs. Specifically, although there is no problem when the alkaline storage battery is repeatedly charged and discharged in a short time, if the alkaline storage battery is stored without being charged and discharged in a state where the SOC of the alkaline storage battery is close to 80%, the above-described problem occurs frequently. Since it is common not to use HEV for a long period of time, it is necessary to avoid adverse effects caused by behavior different from experimental data obtained by repeated charging and discharging in a short time.

本発明は上記課題を鑑みてなされたものであり、HEVの実使用環境において主電源であるアルカリ蓄電池を長寿命化できる、信頼性に優れた電源システムを提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a highly reliable power supply system that can extend the life of an alkaline storage battery as a main power supply in an HEV actual use environment.

上記課題を解決するために、本発明の電源システムは、アルカリ蓄電池からなる主電源と、主電源の充電および放電を制御する充放電回路と、主電源の電圧を検知する電圧センサと、電圧センサが検知した電圧から充電深度を逐次読み取るSOC検知部と、SOC検知部が読み取った充電深度がA1を超えかつ充電深度の変動幅がA2以下の状態を要管理状態と認定し、この要管理状態が所定時間T1を超えて継続したときに充放電回路を用いて主電源を放電させることによって充電深度をA1以下にする制御部と、を有することを特徴とする。   In order to solve the above problems, a power supply system of the present invention includes a main power source made of an alkaline storage battery, a charge / discharge circuit that controls charging and discharging of the main power source, a voltage sensor that detects the voltage of the main power source, and a voltage sensor. The SOC detection unit that sequentially reads the charging depth from the voltage detected by the battery, and the state in which the charging depth read by the SOC detection unit exceeds A1 and the variation range of the charging depth is A2 or less is recognized as a management required state. And a control unit that reduces the charging depth to A1 or less by discharging the main power source using the charging / discharging circuit when it continues beyond the predetermined time T1.

主電源が用いられていない場合はSOCの変動幅が小さくなるので、充電深度の変動幅がA2以下の状態を主電源が保存状態に置かれた要管理状態と認定し、この要管理状態が所定時間を超えて継続したときに充放電回路を用いて主電源を強制的に放電させることにより、正極の膨潤による劣化が抑制でき、主電源を長寿命化させることができる。   When the main power supply is not used, the fluctuation range of the SOC becomes small. Therefore, the fluctuation range of the charging depth is recognized as a management requirement state in which the main power source is placed in the storage state, and this management requirement state is When the main power supply is forcibly discharged using the charge / discharge circuit when it continues beyond a predetermined time, deterioration due to swelling of the positive electrode can be suppressed, and the life of the main power supply can be extended.

以上のように本発明によれば、主電源であるアルカリ蓄電池の長寿命化が図れるので、電源システムのHEV用途などにおける信頼性を向上させることができる。   As described above, according to the present invention, the life of the alkaline storage battery as the main power source can be extended, and thus the reliability of the power supply system in HEV applications can be improved.

以下、図を用いて本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

第1の発明は、アルカリ蓄電池からなる主電源と、主電源の充電および放電を制御する充放電回路と、主電源の電圧を検知する電圧センサと、電圧センサが検知した電圧から充電深度を逐次読み取るSOC検知部と、SOC検知部が読み取った充電深度がA1を超えかつ充電深度の変動幅がA2以下の状態を要管理状態と認定し、この要管理状態が所定時間T1を超えて継続したときに充放電回路を用いて主電源を放電させることによって充電深度をA1以下にする制御部と、を有する電源システムに関する。   The first invention sequentially determines a main power source composed of an alkaline storage battery, a charge / discharge circuit for controlling charging and discharging of the main power source, a voltage sensor for detecting the voltage of the main power source, and a charging depth from the voltage detected by the voltage sensor. The SOC detection unit to be read and the state where the charge depth read by the SOC detection unit exceeds A1 and the fluctuation range of the charge depth is A2 or less are recognized as the management required state, and this management required state has continued for a predetermined time T1. The present invention relates to a power supply system including a control unit that sometimes lowers the charging depth to A1 or less by discharging a main power supply using a charge / discharge circuit.

図1は本発明の電源システムの構成の一例を示すブロック図である。アルカリ蓄電池からなる主電源1は、CPU2と並列に接続されている。このCPU2には、主電源1の電圧を検知する電圧センサと、電圧センサが検知した電圧から充電深度を逐次読み取るSOC検知部と、SOC検知部が読み取った充電深度に応じて主電源を放電させる制御部とが含まれている。   FIG. 1 is a block diagram showing an example of the configuration of the power supply system of the present invention. A main power source 1 made of an alkaline storage battery is connected in parallel with the CPU 2. The CPU 2 includes a voltage sensor that detects the voltage of the main power source 1, an SOC detection unit that sequentially reads the charging depth from the voltage detected by the voltage sensor, and the main power source that is discharged according to the charging depth read by the SOC detection unit. And a control unit.

制御部の機能についてさらに詳述する。SOC検知部が読み取ったSOCが所定値A1より高く、かつSOCの変動幅が所定値A2より小さい場合に、制御部は主電源1を強制的に放電すべき要管理状態と認定し、この要管理状態が所定時間T1を超えて継続したときに、制御部は充放電回路を用いて主電源1を放電させることによって充電深度をA1以下にする。ここで充放電回路とは、CPU2に含まれる制御部の指令に応じて開閉するスイッチ5および6と、スイッチ5と接続された発電機3と、スイッチ6と接続された負荷4とを含む。   The function of the control unit will be further described in detail. When the SOC read by the SOC detection unit is higher than the predetermined value A1 and the fluctuation range of the SOC is smaller than the predetermined value A2, the control unit recognizes the main power supply 1 as a management required state that should be forcibly discharged. When the management state continues beyond the predetermined time T1, the control unit discharges the main power source 1 using the charge / discharge circuit to make the charging depth A1 or less. Here, the charge / discharge circuit includes switches 5 and 6 that open and close according to a command from a control unit included in the CPU 2, a generator 3 connected to the switch 5, and a load 4 connected to the switch 6.

HEVに用いる電源システムのSOCの挙動の一例を図2に示す。燃焼エネルギーあるいはブレーキによる回生エネルギーは発電機3によって電気エネルギーに変換される。実使用状態ではスイッチ5および6ともにONとなり、負荷4に供給すべき電気量に応じて、発電機1からの電流が主電源1に供給される充電と、電流が発電機3と主電源1の双方から負荷4に供給される放電(急速発進時、加速時、登坂時などに該当)とが頻繁に繰り返される。しかしHEVが未使用状態(例えば車両停止時)になると、SOC値にかかわらず主電源1は放置されることになる。ここで図2(a)に示すように、SOCが所定値A1より大きな値を示す要管理状態となり、しかもこの要管理状態が所定時間T1を超えて継続すると、上述したように低密度なγ−NiOOHが生成しやすくなって正極の膨潤による主電源1の劣化が懸念されるようになる。本発明の電源システムは、SOCの変動幅が所定値A2より小さい状態(すなわち未使用状態)であることが検知できれば制御部が指令し、スイッチ5がOFFのままスイッチ6のみをONにし、図2(b)に示すように負荷4を用いて主電源1のSOCを所定値A1以下に低下させる。この動作によって正極でγ−NiOOHが生成しやすくなる領域を回避できるので、主電源1の劣化が抑制できるようになる。   An example of the SOC behavior of the power supply system used for HEV is shown in FIG. The regenerative energy from the combustion energy or the brake is converted into electric energy by the generator 3. In the actual use state, both the switches 5 and 6 are turned on, and charging is performed in which the current from the generator 1 is supplied to the main power source 1 according to the amount of electricity to be supplied to the load 4, and the current is generated by the generator 3 and the main power source 1. Are frequently repeated to the load 4 (corresponding to rapid start, acceleration, climbing, etc.). However, when the HEV is in an unused state (for example, when the vehicle is stopped), the main power supply 1 is left unattended regardless of the SOC value. Here, as shown in FIG. 2A, when the SOC is in a required management state where the SOC is larger than the predetermined value A1, and this required management state continues beyond the predetermined time T1, as described above, the low density γ -NiOOH is easily generated, and there is a concern about deterioration of the main power source 1 due to swelling of the positive electrode. In the power supply system of the present invention, if it is detected that the fluctuation range of the SOC is smaller than the predetermined value A2 (that is, the unused state), the control unit commands, and only the switch 6 is turned on while the switch 5 is turned off. As shown in 2 (b), the SOC of the main power supply 1 is lowered to a predetermined value A1 or less using the load 4. By this operation, it is possible to avoid a region where γ-NiOOH is easily generated at the positive electrode, so that deterioration of the main power supply 1 can be suppressed.

なお図1に示す構成は一例であり、電圧センサ、SOC検知部および制御部が別個に構成されていても良い。   The configuration illustrated in FIG. 1 is an example, and the voltage sensor, the SOC detection unit, and the control unit may be configured separately.

第2の発明は、第1の発明を踏まえて、A1を20〜70%としたことを特徴とする。A1を過度に小さくすると、蓄えられた電気エネルギーが極度に少なくなって電源としての役割が低下する。一方でA1を過度に大きくすると、上述したγ−NiOOHの生成に
起因する劣化が十分に防げなくなる。
The second invention is characterized in that A1 is set to 20 to 70% based on the first invention. If A1 is made excessively small, the stored electric energy is extremely reduced and the role as a power source is lowered. On the other hand, if A1 is excessively increased, the deterioration due to the generation of γ-NiOOH described above cannot be prevented sufficiently.

第3の発明は、第1の発明を踏まえて、A2を0〜2%としたことを特徴とする。A2が2%を超えるSOCの変動をも未使用状態として処理すると、実使用状態との区別が困難になるので好ましくない。   The third invention is characterized in that A2 is set to 0 to 2% based on the first invention. It is not preferable to treat the SOC variation in which A2 exceeds 2% as an unused state because it becomes difficult to distinguish the actual usage state.

第4の発明は、第1の発明を踏まえて、T1を1〜3時間としたことを特徴とする。T1を過度に小さくすると、実使用状態における小休止をも未使用状態と誤認することになる。一方でT1を過度に大きくすると、上述したγ−NiOOHの生成を助長することになるので好ましくない。   The fourth invention is characterized in that T1 is set to 1 to 3 hours based on the first invention. If T1 is excessively small, even a short pause in the actual use state will be mistaken as an unused state. On the other hand, if T1 is excessively increased, the above-described production of γ-NiOOH is promoted, which is not preferable.

主電源1を構成するアルカリ蓄電池には、ニッケル水素蓄電池やニッケルカドミウム蓄電池を選択することができる。正極はともに水酸化ニッケルを活物質として、適宜コバルト、コバルト化合物、軽希土類化合物、酸化亜鉛などが添加剤として加えられた上で、三次元金属多孔体に充填されるか、二次元金属多孔体に焼結されて構成される。負極はニッケル水素蓄電池の場合は水素吸蔵合金、ニッケルカドミウム蓄電池の場合はカドミウムを活物質として、炭素材料や各種結着剤が添加剤として加えられた上で、三次元金属多孔体に充填されるか、二次元金属多孔体に塗布されて構成される。この正極および負極を、ポリオレフィン不繊布に代表されるセパレータを介して捲回あるいは積層することにより電極群を構成し、この電極群を円筒型あるいは矩形の電槽缶に挿入した後、アルカリ水溶液からなる電解液を注入することにより、アルカリ蓄電池が構成される。   A nickel hydride storage battery or a nickel cadmium storage battery can be selected as the alkaline storage battery constituting the main power source 1. Both positive electrodes have nickel hydroxide as the active material, and cobalt, cobalt compounds, light rare earth compounds, zinc oxide, etc. are added as additives, and then filled into the three-dimensional metal porous body or the two-dimensional metal porous body. Sintered into a structure. The negative electrode is a hydrogen storage alloy in the case of a nickel metal hydride storage battery, and in the case of a nickel cadmium storage battery, cadmium is used as an active material, and a carbon material and various binders are added as additives and then filled into a three-dimensional metal porous body. Alternatively, it is configured by being applied to a two-dimensional metal porous body. An electrode group is formed by winding or laminating the positive electrode and the negative electrode through a separator typified by a polyolefin non-woven fabric. After inserting the electrode group into a cylindrical or rectangular battery case, An alkaline storage battery is configured by injecting an electrolytic solution.

以下、本発明の実施例について、詳細に説明する。なお本発明がこの実施例のみに限定されないことは云うまでもない。   Examples of the present invention will be described in detail below. Needless to say, the present invention is not limited to this embodiment.

(実施例1)
水酸化ニッケルを活物質とする長尺状の正極と、水素吸蔵合金を活物質とする長尺状の負極とを、スルホン化処理したポリプロピレン不繊布からなるセパレータを介して捲回し、電極群を構成した。この電極群を内径30mm、長さ60mmの円筒型電槽缶に挿入し、水酸化カリウムを主体とする電解液を注入して封口し、公称容量6Ahのニッケル水素蓄電池を得た。このニッケル水素蓄電池を12セル直列に接続して主電源とした。
(Example 1)
A long positive electrode using nickel hydroxide as an active material and a long negative electrode using a hydrogen storage alloy as an active material are wound through a separator made of a sulfonated polypropylene non-woven fabric, and the electrode group is Configured. This electrode group was inserted into a cylindrical battery case having an inner diameter of 30 mm and a length of 60 mm, and an electrolyte mainly composed of potassium hydroxide was injected and sealed to obtain a nickel hydride storage battery having a nominal capacity of 6 Ah. This nickel metal hydride storage battery was connected in series in 12 cells to serve as the main power source.

この主電源を用いて図1と同様の電源システムを構成し、強制放電の条件として、SOCの変動幅A2が1%以下であればそのまま放置を継続し、放置が2時間に達した時点で(T1=2時間)、3AにてSOCが50%になるまで放電を行う(A1=50%)ように制御部に入力した。この電源システムを実施例1とする。   A power supply system similar to that shown in FIG. 1 is configured using this main power supply. If the SOC fluctuation range A2 is 1% or less as a condition for forced discharge, the power supply system is continued as it is, and when the power supply is left for 2 hours. (T1 = 2 hours) It was input to the control section so that discharging was performed until SOC reached 50% at 3A (A1 = 50%). This power supply system is referred to as Example 1.

(実施例2〜5)
A1を15%(実施例2)、20%(実施例3)、70%(実施例4)および75%(実施例5)とした以外は、実施例1と同様に構成した電源システムを実施例2〜5とする。
(Examples 2 to 5)
A power supply system configured in the same manner as in Example 1 was implemented except that A1 was 15% (Example 2), 20% (Example 3), 70% (Example 4), and 75% (Example 5). Examples 2 to 5.

(実施例6〜7)
T1を3時間(実施例6)および3.5時間(実施例7)とした以外は、実施例1と同様に構成した電源システムを実施例6〜7とする。
(Examples 6 to 7)
Except that T1 was set to 3 hours (Example 6) and 3.5 hours (Example 7), the power supply system configured in the same manner as Example 1 is referred to as Examples 6-7.

(比較例)
実施例1に示したような強制放電を行わないようにした以外は、実施例1と同様に構成した電源システムを比較例とする。
(Comparative example)
A power supply system configured in the same manner as in Example 1 is used as a comparative example except that the forced discharge as shown in Example 1 is not performed.

上述した電源システムを、以下に示す方法で評価した。結果を(表1)に示す。   The power supply system described above was evaluated by the following method. The results are shown in (Table 1).

(放電容量測定)
各々の電源システムを完全放電状態から3Aで1.6時間の充電を行い(SOC80%)、電源を要管理状態にした後、45℃環境下で10時間放置した。なお各実施例については、この放置の間に各々の設定条件に応じて強制放電を行った。さらに放置後、3Aで12Vに達するまで放電を行った。この充放電サイクルを300回繰り返し、最後に求めた放電容量αを、A1に6Ahを乗じた理論容量βで除した値を、寿命特性の尺度として(表1)に記した。
(Discharge capacity measurement)
Each power supply system was charged for 1.6 hours at 3 A from a completely discharged state (SOC 80%), and after the power supply was brought into a management-required state, it was left in a 45 ° C. environment for 10 hours. In addition, about each Example, forced discharge was performed according to each setting condition during this leaving. Further, after being left standing, discharging was performed at 3A until reaching 12V. This charge / discharge cycle was repeated 300 times, and the value obtained by dividing the finally obtained discharge capacity α by the theoretical capacity β obtained by multiplying A1 by 6 Ah is shown in Table 1 as a measure of life characteristics.

Figure 2008159298
本発明に示す強制放電を行わなかった比較例は、寿命特性が極端に低下した。これは放置中に正極でγ−NiOOHが顕著に生成したためである。この比較例に対し、各実施例は良好な寿命特性を示した。ただしA1が高い実施例5は寿命特性がやや低下した。またA1が低い実施例2については、寿命特性は良好なものの、SOC自体が低すぎるので残存容量が低いという課題が生じた。よって強制放電後のSOCであるA1は20〜70%が好ましいことが判る。また、強制放電を実施してもT1が長い実施例7については放電容量がやや低下した。よって要管理状態と認定して強制放電を実施するまでの時間T1は3時間以下が好ましいことが判る。
Figure 2008159298
The comparative example in which the forced discharge shown in the present invention was not performed had extremely deteriorated life characteristics. This is because γ-NiOOH was remarkably generated at the positive electrode during standing. In contrast to this comparative example, each example exhibited good life characteristics. However, in Example 5 where A1 was high, the life characteristics were slightly deteriorated. Moreover, about Example 2 with low A1, although the lifetime characteristic was favorable, since the SOC itself was too low, the subject that residual capacity was low arose. Therefore, it can be seen that A1 which is the SOC after the forced discharge is preferably 20 to 70%. Moreover, even if forced discharge was implemented, about Example 7 with long T1, discharge capacity fell a little. Therefore, it can be seen that the time T1 from the recognition of the management required state to the forced discharge is preferably 3 hours or less.

なお本実施例以外に、SOCの変動幅A2が2%を超えると、実使用状態において微弱な充放電を行っている際に強制放電が行われることを確認した。よってA2は0〜2%であるのが好ましい。また同様に、T1を1時間未満に設定すると、実使用状態における小休止をも未使用状態と誤認し、強制放電が行われることを確認した。よって要管理状態と認定して強制放電を実施するまでの時間T1は1時間以上が好ましい。   In addition to this example, it was confirmed that if the SOC fluctuation range A2 exceeds 2%, forced discharge is performed during weak charge / discharge in the actual use state. Therefore, A2 is preferably 0 to 2%. Similarly, when T1 was set to less than 1 hour, a short pause in the actual use state was mistaken as an unused state, and it was confirmed that forced discharge was performed. Therefore, it is preferable that the time T1 from the recognition of the management required state to the forced discharge is 1 hour or more.

本発明の電源システムの構成の一例を示すブロック図The block diagram which shows an example of a structure of the power supply system of this invention (a)従来の電源システムのSOCの挙動の一例を示す図、(b)本発明の電源システムのSOCの挙動の一例を示す図(A) The figure which shows an example of the behavior of SOC of the conventional power supply system, (b) The figure which shows an example of the behavior of SOC of the power supply system of this invention

符号の説明Explanation of symbols

1 主電源
2 CPU
3 外部電源
4 負荷
5 スイッチ
6 スイッチ
1 Main power 2 CPU
3 External power supply 4 Load 5 Switch 6 Switch

Claims (4)

アルカリ蓄電池からなる主電源と、
前記主電源の充電および放電を制御する充放電回路と、
前記主電源の電圧を検知する電圧センサと、
前記電圧センサが検知した電圧から充電深度を逐次読み取るSOC検知部と、
前記SOC検知部が読み取った充電深度がA1を超えかつ充電深度の変動幅がA2以下の状態を要管理状態と認定し、この要管理状態が所定時間T1を超えて継続したときに前記充放電回路を用いて前記主電源を放電させることによって充電深度をA1以下にする制御部と、
を有する電源システム。
A main power source comprising an alkaline storage battery;
A charge / discharge circuit for controlling charging and discharging of the main power source;
A voltage sensor for detecting the voltage of the main power supply;
An SOC detector that sequentially reads the charging depth from the voltage detected by the voltage sensor;
When the state of charge depth read by the SOC detection unit exceeds A1 and the variation range of the charge depth is A2 or less is recognized as a management required state, the charge / discharge is performed when the management required state continues for a predetermined time T1. A control unit that reduces the charging depth to A1 or less by discharging the main power supply using a circuit;
Having a power system.
前記A1を20〜70%としたことを特徴とする、請求項1記載の電源システム。 The power supply system according to claim 1, wherein the A1 is 20 to 70%. 前記A2を0〜2%としたことを特徴とする、請求項1記載の電源システム。 The power supply system according to claim 1, wherein the A2 is 0 to 2%. 前記T1を1〜3時間としたことを特徴とする、請求項1記載の電源システム。 The power supply system according to claim 1, wherein the T1 is set to 1 to 3 hours.
JP2006344081A 2006-12-21 2006-12-21 Power source system Pending JP2008159298A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006344081A JP2008159298A (en) 2006-12-21 2006-12-21 Power source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006344081A JP2008159298A (en) 2006-12-21 2006-12-21 Power source system

Publications (1)

Publication Number Publication Date
JP2008159298A true JP2008159298A (en) 2008-07-10

Family

ID=39659986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006344081A Pending JP2008159298A (en) 2006-12-21 2006-12-21 Power source system

Country Status (1)

Country Link
JP (1) JP2008159298A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231441A (en) * 2009-01-07 2013-11-14 Shin Kobe Electric Mach Co Ltd Life estimation system
JP2018007412A (en) * 2016-07-01 2018-01-11 トヨタ自動車株式会社 Battery system
DE102020214388A1 (en) 2020-11-17 2022-05-19 Robert Bosch Gesellschaft mit beschränkter Haftung Method for reducing calendar aging of a main energy store of a trailer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130397A (en) * 1993-10-29 1995-05-19 Sanyo Electric Co Ltd Secondary battery protecting method and device therefor
JPH07176334A (en) * 1993-12-21 1995-07-14 Nissan Motor Co Ltd Capacity detecting method for ion secondary battery
JPH08179018A (en) * 1994-12-26 1996-07-12 Nissan Motor Co Ltd Residual capacity display device for secondary battery
JP2000287372A (en) * 1999-03-31 2000-10-13 Hitachi Ltd Method and device for using lithium-ion secondary battery
JP2001006750A (en) * 1999-06-25 2001-01-12 Toyota Motor Corp Battery inspecting device
JP2004296394A (en) * 2003-03-28 2004-10-21 Sanyo Electric Co Ltd Nickel-hydrogen storage battery and battery pack
JP2005245056A (en) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd Battery pack and rechargeable electric appliance set
JP2006158161A (en) * 2004-12-01 2006-06-15 Honda Motor Co Ltd Charge/discharge control device for motor battery
JP2006164882A (en) * 2004-12-10 2006-06-22 Nissan Motor Co Ltd Capacity adjusting device for battery pack
JP2006217757A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Controller for secondary battery
JP2006278132A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Battery charging and discharging control device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130397A (en) * 1993-10-29 1995-05-19 Sanyo Electric Co Ltd Secondary battery protecting method and device therefor
JPH07176334A (en) * 1993-12-21 1995-07-14 Nissan Motor Co Ltd Capacity detecting method for ion secondary battery
JPH08179018A (en) * 1994-12-26 1996-07-12 Nissan Motor Co Ltd Residual capacity display device for secondary battery
JP2000287372A (en) * 1999-03-31 2000-10-13 Hitachi Ltd Method and device for using lithium-ion secondary battery
JP2001006750A (en) * 1999-06-25 2001-01-12 Toyota Motor Corp Battery inspecting device
JP2004296394A (en) * 2003-03-28 2004-10-21 Sanyo Electric Co Ltd Nickel-hydrogen storage battery and battery pack
JP2005245056A (en) * 2004-02-24 2005-09-08 Matsushita Electric Works Ltd Battery pack and rechargeable electric appliance set
JP2006158161A (en) * 2004-12-01 2006-06-15 Honda Motor Co Ltd Charge/discharge control device for motor battery
JP2006164882A (en) * 2004-12-10 2006-06-22 Nissan Motor Co Ltd Capacity adjusting device for battery pack
JP2006217757A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Controller for secondary battery
JP2006278132A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Battery charging and discharging control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231441A (en) * 2009-01-07 2013-11-14 Shin Kobe Electric Mach Co Ltd Life estimation system
JP2018007412A (en) * 2016-07-01 2018-01-11 トヨタ自動車株式会社 Battery system
DE102020214388A1 (en) 2020-11-17 2022-05-19 Robert Bosch Gesellschaft mit beschränkter Haftung Method for reducing calendar aging of a main energy store of a trailer

Similar Documents

Publication Publication Date Title
US10967755B2 (en) Controlling battery states of charge in systems having separate power sources
JP4898308B2 (en) Charging circuit, charging system, and charging method
JP4613781B2 (en) Charge / discharge control method and power supply system for alkaline storage battery
KR20100033509A (en) Power system and assembled battery controlling method
JP6647866B2 (en) Controlling the state of charge of a battery in a system with an independent power supply
JP2010060408A (en) Method for determining degradation of lithium-ion battery, method for controlling the same, apparatus for determining degradation of the same, apparatus for controlling the same, and vehicle
CN109962302A (en) The capacity restoration method of battery system and lithium ion secondary battery
WO2009147505A2 (en) Charge control device and vehicle equipped with the same
KR20100061754A (en) Power supply system
JP2010011708A (en) Charge control method, discharge control method and charge/discharge system of battery pack
US10903669B2 (en) Control device and method for charging a rechargeable battery
KR101567036B1 (en) Reproducing apparatus of industrial battery and Reproduction method of industrial storage battery using the same apparatus
JP3721690B2 (en) Secondary battery protection device
JP2008159298A (en) Power source system
JP2017117637A (en) Power supply device
JP5822779B2 (en) Power storage system and charge / discharge control method thereof
EP2946433B1 (en) Electrochemical cell or battery with reduced impedance and method for producing same
US7353894B2 (en) Sealed nickel-metal hydride storage cells and hybrid electric having the storage cells
JP5137603B2 (en) Charge / discharge control method and charge / discharge control system for alkaline storage battery
JP2009118697A (en) Method of controlling charge/discharge by battery
WO2013105139A1 (en) Method for controlling and device for controlling secondary battery
JP2015041445A (en) Regeneration method of alkaline secondary battery
JP2011233471A (en) Charging and discharging control method and system of alkali storage battery
JP2002051471A (en) Power supply system for vehicle, and method for estimating state of charging of the system
JP2016100932A (en) Backup power supply system for vehicle power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108